Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b43239f9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b43239f9
编写于
10月 21, 2022
作者:
K
Kevin吴嘉文
提交者:
梦柳
11月 04, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
#47042
上级
7bef9603
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
70 addition
and
39 deletion
+70
-39
python/paddle/distributed/fleet/fleet.py
python/paddle/distributed/fleet/fleet.py
+0
-1
python/paddle/regularizer.py
python/paddle/regularizer.py
+1
-1
python/paddle/tensor/manipulation.py
python/paddle/tensor/manipulation.py
+69
-37
未找到文件。
python/paddle/distributed/fleet/fleet.py
浏览文件 @
b43239f9
...
@@ -1120,7 +1120,6 @@ class Fleet(object):
...
@@ -1120,7 +1120,6 @@ class Fleet(object):
Examples:
Examples:
.. code-block:: python
.. code-block:: python
import numpy as np
import paddle
import paddle
import paddle.nn.functional as F
import paddle.nn.functional as F
paddle.enable_static()
paddle.enable_static()
...
...
python/paddle/regularizer.py
浏览文件 @
b43239f9
...
@@ -43,7 +43,7 @@ class L1Decay(fluid.regularizer.L1Decay):
...
@@ -43,7 +43,7 @@ class L1Decay(fluid.regularizer.L1Decay):
# Example1: set Regularizer in optimizer
# Example1: set Regularizer in optimizer
import paddle
import paddle
from paddle.regularizer import L1Decay
from paddle.regularizer import L1Decay
import numpy as np
linear = paddle.nn.Linear(10, 10)
linear = paddle.nn.Linear(10, 10)
inp = paddle.rand(shape=[10, 10], dtype="float32")
inp = paddle.rand(shape=[10, 10], dtype="float32")
out = linear(inp)
out = linear(inp)
...
...
python/paddle/tensor/manipulation.py
浏览文件 @
b43239f9
...
@@ -2276,21 +2276,33 @@ def unique_consecutive(
...
@@ -2276,21 +2276,33 @@ def unique_consecutive(
x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2])
x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2])
output = paddle.unique_consecutive(x) #
output = paddle.unique_consecutive(x) #
np_output = output.numpy() # [1 2 3 1 2]
print(output)
# Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [1, 2, 3, 1, 2])
_, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True)
_, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True)
np_inverse = inverse.numpy() # [0 0 1 1 2 3 3 4]
print(inverse)
np_counts = inverse.numpy() # [2 2 1 2 1]
# Tensor(shape=[8], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [0, 0, 1, 1, 2, 3, 3, 4])
print(counts)
# Tensor(shape=[5], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [2, 2, 1, 2, 1])
x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
output = paddle.unique_consecutive(x, axis=0) #
output = paddle.unique_consecutive(x, axis=0) #
np_output = output.numpy() # [2 1 3 0 1 2 1 3 2 1 3]
print(output)
# Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [[2, 1, 3],
# [3, 0, 1],
# [2, 1, 3]])
x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]])
output = paddle.unique_consecutive(x, axis=0) #
output = paddle.unique_consecutive(x, axis=0) #
np_output = output.numpy()
print(output)
# [[2 1 3]
# Tensor(shape=[3, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [3 0 1]
# [[2, 1, 3],
# [2 1 3]]
# [3, 0, 1],
# [2, 1, 3]])
"""
"""
if
axis
is
None
:
if
axis
is
None
:
...
@@ -2411,18 +2423,33 @@ def unique(
...
@@ -2411,18 +2423,33 @@ def unique(
unique = paddle.unique(x)
unique = paddle.unique(x)
np_unique = unique.numpy() # [1 2 3 5]
np_unique = unique.numpy() # [1 2 3 5]
_, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
_, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
np_indices = indices.numpy() # [3 0 1 4]
print(indices)
np_inverse = inverse.numpy() # [1 2 2 0 3 2]
# Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
np_counts = counts.numpy() # [1 1 3 1]
# [3, 0, 1, 4])
print(inverse)
# Tensor(shape=[6], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [1, 2, 2, 0, 3, 2])
print(counts)
# Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [1, 1, 3, 1])
x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
unique = paddle.unique(x)
unique = paddle.unique(x)
np_unique = unique.numpy() # [0 1 2 3]
print(unique)
# Tensor(shape=[4], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [0, 1, 2, 3])
unique = paddle.unique(x, axis=0)
unique = paddle.unique(x, axis=0)
<<<<<<< HEAD
np_unique = unique.numpy()
np_unique = unique.numpy()
# [[2 1 3]
# [[2 1 3]
# [3 0 1]]
# [3 0 1]]
=======
print(unique)
# Tensor(shape=[2, 3], dtype=int64, place=Place(gpu:0), stop_gradient=True,
# [[2, 1, 3],
# [3, 0, 1]])
>>>>>>> a65746580b (fix numpy issue in codeblock examples (#47042))
"""
"""
if
axis
is
None
:
if
axis
is
None
:
axis
=
[]
axis
=
[]
...
@@ -3032,12 +3059,10 @@ def scatter_nd(index, updates, shape, name=None):
...
@@ -3032,12 +3059,10 @@ def scatter_nd(index, updates, shape, name=None):
.. code-block:: python
.. code-block:: python
import paddle
import paddle
import numpy as np
index_data = np.array([[1, 1],
index = paddle.to_tensor([[1, 1],
[0, 1],
[0, 1],
[1, 3]]).astype(np.int64)
[1, 3]], dtype="int64")
index = paddle.to_tensor(index_data)
updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
shape = [3, 5, 9, 10]
shape = [3, 5, 9, 10]
...
@@ -3109,19 +3134,22 @@ def tile(x, repeat_times, name=None):
...
@@ -3109,19 +3134,22 @@ def tile(x, repeat_times, name=None):
data = paddle.to_tensor([1, 2, 3], dtype='int32')
data = paddle.to_tensor([1, 2, 3], dtype='int32')
out = paddle.tile(data, repeat_times=[2, 1])
out = paddle.tile(data, repeat_times=[2, 1])
np_out = out.numpy()
print(out)
# [[1, 2, 3]
# Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
# [1, 2, 3]]
# [[1, 2, 3],
# [1, 2, 3]])
out = paddle.tile(data, repeat_times=(2, 2))
out = paddle.tile(data, repeat_times=(2, 2))
np_out = out.numpy()
print(out)
# [[1, 2, 3, 1, 2, 3]
# Tensor(shape=[2, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
# [1, 2, 3, 1, 2, 3]]
# [[1, 2, 3, 1, 2, 3],
# [1, 2, 3, 1, 2, 3]])
repeat_times = paddle.to_tensor([1, 2], dtype='int32')
repeat_times = paddle.to_tensor([1, 2], dtype='int32')
out = paddle.tile(data, repeat_times=repeat_times)
out = paddle.tile(data, repeat_times=repeat_times)
np_out = out.numpy()
print(out)
# [[1, 2, 3, 1, 2, 3]]
# Tensor(shape=[1, 6], dtype=int32, place=Place(gpu:0), stop_gradient=True,
# [[1, 2, 3, 1, 2, 3]])
"""
"""
if
in_dygraph_mode
():
if
in_dygraph_mode
():
if
isinstance
(
repeat_times
,
core
.
eager
.
Tensor
):
if
isinstance
(
repeat_times
,
core
.
eager
.
Tensor
):
...
@@ -3221,8 +3249,10 @@ def expand_as(x, y, name=None):
...
@@ -3221,8 +3249,10 @@ def expand_as(x, y, name=None):
data_x = paddle.to_tensor([1, 2, 3], 'int32')
data_x = paddle.to_tensor([1, 2, 3], 'int32')
data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
out = paddle.expand_as(data_x, data_y)
out = paddle.expand_as(data_x, data_y)
np_out = out.numpy()
print(out)
# [[1, 2, 3], [1, 2, 3]]
# Tensor(shape=[2, 3], dtype=int32, place=Place(gpu:0), stop_gradient=True,
# [[1, 2, 3],
# [1, 2, 3]])
"""
"""
if
in_dygraph_mode
():
if
in_dygraph_mode
():
return
_C_ops
.
expand_as
(
x
,
None
,
y
.
shape
)
return
_C_ops
.
expand_as
(
x
,
None
,
y
.
shape
)
...
@@ -4232,10 +4262,11 @@ def as_complex(x, name=None):
...
@@ -4232,10 +4262,11 @@ def as_complex(x, name=None):
import paddle
import paddle
x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
y = paddle.as_complex(x)
y = paddle.as_complex(x)
print(y
.numpy()
)
print(y)
# [[ 0. +1.j 2. +3.j 4. +5.j]
# Tensor(shape=[2, 3], dtype=complex64, place=Place(gpu:0), stop_gradient=True,
# [ 6. +7.j 8. +9.j 10.+11.j]]
# [[1j , (2+3j) , (4+5j) ],
# [(6+7j) , (8+9j) , (10+11j)]])
"""
"""
if
in_dygraph_mode
():
if
in_dygraph_mode
():
return
_C_ops
.
as_complex
(
x
)
return
_C_ops
.
as_complex
(
x
)
...
@@ -4279,15 +4310,16 @@ def as_real(x, name=None):
...
@@ -4279,15 +4310,16 @@ def as_real(x, name=None):
x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
x = paddle.arange(12, dtype=paddle.float32).reshape([2, 3, 2])
y = paddle.as_complex(x)
y = paddle.as_complex(x)
z = paddle.as_real(y)
z = paddle.as_real(y)
print(z
.numpy()
)
print(z)
# [[[ 0. 1.]
# Tensor(shape=[2, 3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# [ 2. 3.]
# [[[0. , 1. ],
# [ 4. 5.]]
# [2. , 3. ],
# [4. , 5. ]],
#
[[ 6. 7.]
#
[[6. , 7. ],
#
[ 8. 9.]
#
[8. , 9. ],
#
[10. 11.]]]
#
[10., 11.]]])
"""
"""
if
in_dygraph_mode
():
if
in_dygraph_mode
():
return
_C_ops
.
as_real
(
x
)
return
_C_ops
.
as_real
(
x
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录