Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b3be7358
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b3be7358
编写于
1月 23, 2017
作者:
X
xutianbing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Daoyuan's comments.
上级
bc5d7bb6
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
217 addition
and
259 deletion
+217
-259
paddle/function/BufferArg.h
paddle/function/BufferArg.h
+12
-25
paddle/function/FunctionTest.h
paddle/function/FunctionTest.h
+13
-27
paddle/function/MulOp.cpp
paddle/function/MulOp.cpp
+86
-87
paddle/function/MulOp.h
paddle/function/MulOp.h
+32
-8
paddle/function/MulOpGpu.cu
paddle/function/MulOpGpu.cu
+35
-79
paddle/function/MulOpTest.cpp
paddle/function/MulOpTest.cpp
+39
-33
未找到文件。
paddle/function/BufferArg.h
浏览文件 @
b3be7358
...
...
@@ -71,24 +71,17 @@ public:
public:
BufferArg
(
ValueType
valueType
,
const
TensorShape
&
shape
,
ArgType
argType
=
UNSPECIFIED
,
bool
trans
=
false
)
ArgType
argType
=
UNSPECIFIED
)
:
buf_
(
nullptr
),
valueType_
(
valueType
),
shape_
(
shape
),
argType_
(
argType
),
trans_
(
trans
)
{}
argType_
(
argType
)
{}
BufferArg
(
void
*
buf
,
ValueType
valueType
,
const
TensorShape
&
shape
,
ArgType
argType
=
UNSPECIFIED
,
bool
trans
=
false
)
:
buf_
(
buf
),
valueType_
(
valueType
),
shape_
(
shape
),
argType_
(
argType
),
trans_
(
trans
)
{}
ArgType
argType
=
UNSPECIFIED
)
:
buf_
(
buf
),
valueType_
(
valueType
),
shape_
(
shape
),
argType_
(
argType
)
{}
BufferArg
(
void
*
buf
,
ValueType
valueType
)
:
buf_
(
buf
),
valueType_
(
valueType
)
{}
...
...
@@ -98,8 +91,7 @@ public:
const_cast
<
void
*>
(
reinterpret_cast
<
const
void
*>
(
matrix
.
getData
()))),
valueType_
(
DataType
<
real
>::
value
),
shape_
(
2
),
argType_
(
argType
),
trans_
(
matrix
.
isTransposed
())
{
argType_
(
argType
)
{
bufferType_
=
TENSOR_NORMAL
;
shape_
.
setDim
(
0
,
matrix
.
getHeight
());
shape_
.
setDim
(
1
,
matrix
.
getWidth
());
...
...
@@ -112,8 +104,7 @@ public:
const_cast
<
void
*>
(
reinterpret_cast
<
const
void
*>
(
matrix
.
getData
()))),
valueType_
(
DataType
<
real
>::
value
),
shape_
(
shape
),
argType_
(
argType
),
trans_
(
matrix
.
isTransposed
())
{
argType_
(
argType
)
{
bufferType_
=
TENSOR_NORMAL
;
CHECK_EQ
(
matrix
.
getElementCnt
(),
shape
.
getElements
());
}
...
...
@@ -145,7 +136,7 @@ public:
// CHECK(deviceType_ == DType);
CHECK_EQ
((
size_t
)
2
,
shape_
.
ndims
());
return
typename
Tensor
<
real
,
DType
>::
Matrix
(
reinterpret_cast
<
real
*>
(
buf_
),
shape_
[
0
],
shape_
[
1
]
,
trans_
);
reinterpret_cast
<
real
*>
(
buf_
),
shape_
[
0
],
shape_
[
1
]);
}
template
<
typename
VType
,
DeviceType
DType
>
...
...
@@ -169,7 +160,6 @@ public:
ValueType
valueType
()
const
{
return
valueType_
;
}
BufferType
bufferType
()
const
{
return
bufferType_
;
}
const
TensorShape
&
shape
()
const
{
return
shape_
;
}
bool
isTransposed
()
const
{
return
trans_
;
}
bool
isSparseArg
()
const
{
return
TENSOR_SPARSE
==
bufferType_
;
}
bool
isSequenceArg
()
const
{
return
TENSOR_SEQUENCE_DATA
==
bufferType_
;
}
virtual
size_t
numElements
()
const
{
return
shape_
.
getElements
();
}
...
...
@@ -183,7 +173,6 @@ protected:
TensorShape
shape_
;
BufferType
bufferType_
{
TENSOR_UNKNOWN
};
ArgType
argType_
{
UNSPECIFIED
};
bool
trans_
{
false
};
// todo(tianbing), add deviceType_
// leading dimensions. The size is dims_.size()
// Dims lds_;
...
...
@@ -277,9 +266,8 @@ public:
size_t
nnz
,
SparseFormat
format
,
SparseValueType
type
,
ArgType
argType
=
UNSPECIFIED
,
bool
trans
=
false
)
:
BufferArg
(
buf
,
valueType
,
shape
,
argType
,
trans
),
ArgType
argType
=
UNSPECIFIED
)
:
BufferArg
(
buf
,
valueType
,
shape
,
argType
),
row_
(
row
),
col_
(
col
),
nnz_
(
nnz
),
...
...
@@ -302,9 +290,8 @@ public:
size_t
nnz
,
SparseFormat
format
,
SparseValueType
type
,
ArgType
argType
=
UNSPECIFIED
,
bool
trans
=
false
)
:
BufferArg
(
valueType
,
shape
,
argType
,
trans
),
ArgType
argType
=
UNSPECIFIED
)
:
BufferArg
(
valueType
,
shape
,
argType
),
/// len of row_ : height + 1 (CSR), buf_ == nullptr
row_
(
format
==
SPARSE_CSR
?
BufferArg
(
VALUE_TYPE_INT32
,
TensorShape
{
shape
[
0
]
+
1
})
...
...
@@ -343,7 +330,7 @@ public:
nnz_
,
type_
,
format_
,
trans_
);
false
);
}
~
SparseMatrixArg
()
{}
...
...
paddle/function/FunctionTest.h
浏览文件 @
b3be7358
...
...
@@ -64,22 +64,14 @@ public:
cpuMemory_
.
emplace_back
(
std
::
make_shared
<
CpuMemoryHandle
>
(
size
));
gpuMemory_
.
emplace_back
(
std
::
make_shared
<
GpuMemoryHandle
>
(
size
));
cpuInputs_
.
emplace_back
(
std
::
make_shared
<
BufferArg
>
(
cpuMemory_
.
back
()
->
getBuf
(),
input
.
valueType
(),
input
.
shape
(),
UNSPECIFIED
,
input
.
isTransposed
()));
gpuInputs_
.
emplace_back
(
std
::
make_shared
<
BufferArg
>
(
gpuMemory_
.
back
()
->
getBuf
(),
input
.
valueType
(),
input
.
shape
(),
UNSPECIFIED
,
input
.
isTransposed
()));
cpuInputs_
.
emplace_back
(
std
::
make_shared
<
BufferArg
>
(
cpuMemory_
.
back
()
->
getBuf
(),
input
.
valueType
(),
input
.
shape
()));
gpuInputs_
.
emplace_back
(
std
::
make_shared
<
BufferArg
>
(
gpuMemory_
.
back
()
->
getBuf
(),
input
.
valueType
(),
input
.
shape
()));
}
// output need only contains shape, do not contains data.
void
addOutputs
(
const
BufferArg
&
output
,
ArgType
argType
=
A
SSIGN
_TO
)
{
void
addOutputs
(
const
BufferArg
&
output
,
ArgType
argType
=
A
DD
_TO
)
{
size_t
size
=
output
.
shape
().
getElements
()
*
sizeOfValuType
(
output
.
valueType
());
cpuMemory_
.
emplace_back
(
std
::
make_shared
<
CpuMemoryHandle
>
(
size
));
...
...
@@ -89,16 +81,14 @@ public:
cpuMemory_
.
back
()
->
getBuf
(),
output
.
valueType
(),
output
.
shape
(),
// todo(tianbing), argType = output.getArgType(), but default ASSIGN_TO
argType
,
output
.
isTransposed
()));
// todo(tianbing), argType = output.getArgType(), but default ADD_TO
argType
));
gpuOutputs_
.
emplace_back
(
std
::
make_shared
<
BufferArg
>
(
gpuMemory_
.
back
()
->
getBuf
(),
output
.
valueType
(),
output
.
shape
(),
// todo(tianbing), argType = output.getArgType(), but default ASSIGN_TO
argType
,
output
.
isTransposed
()));
// todo(tianbing), argType = output.getArgType(), but default ADD_TO
argType
));
}
/// add and init output sparse matrix
...
...
@@ -107,15 +97,13 @@ public:
output
.
shape
()[
1
],
output
.
nnz
(),
output
.
dataType
(),
output
.
dataFormat
(),
output
.
isTransposed
());
output
.
dataFormat
());
gpuSparse_
=
std
::
make_shared
<
GpuSparseMatrix
>
(
output
.
shape
()[
0
],
output
.
shape
()[
1
],
output
.
nnz
(),
output
.
dataType
(),
output
.
dataFormat
(),
output
.
isTransposed
());
output
.
dataFormat
());
/// init sparse matrix
hl_stream_t
stream
(
HPPL_STREAM_1
);
...
...
@@ -154,15 +142,13 @@ public:
input
.
shape
()[
1
],
input
.
nnz
(),
input
.
dataType
(),
input
.
dataFormat
(),
input
.
isTransposed
());
input
.
dataFormat
());
gpuSparse_
=
std
::
make_shared
<
GpuSparseMatrix
>
(
input
.
shape
()[
0
],
input
.
shape
()[
1
],
input
.
nnz
(),
input
.
dataType
(),
input
.
dataFormat
(),
input
.
isTransposed
());
input
.
dataFormat
());
/// init sparse matrix
hl_stream_t
stream
(
HPPL_STREAM_1
);
...
...
paddle/function/MulOp.cpp
浏览文件 @
b3be7358
...
...
@@ -46,21 +46,11 @@ void MulOp<DEVICE_TYPE_CPU>(CpuSparseMatrix& out,
const
CpuMatrix
&
a
,
const
CpuMatrix
&
b
,
real
scaleAB
,
real
scaleT
)
{
CHECK
(
!
out
.
isTransposed
())
<<
"Not supported"
;
real
scaleT
,
bool
aTrans
,
bool
bTrans
,
bool
cTrans
)
{
CHECK_EQ
(
out
.
getValueType
(),
FLOAT_VALUE
);
CHECK
(
!
a
.
isTransposed
()
||
!
b
.
isTransposed
())
<<
"Not support both a and b are transpose matrices"
;
size_t
height
=
out
.
getHeight
();
size_t
width
=
out
.
getWidth
();
size_t
aRow
=
!
a
.
isTransposed
()
?
a
.
getHeight
()
:
a
.
getWidth
();
size_t
aCol
=
!
a
.
isTransposed
()
?
a
.
getWidth
()
:
a
.
getHeight
();
size_t
bRow
=
!
b
.
isTransposed
()
?
b
.
getHeight
()
:
b
.
getWidth
();
size_t
bCol
=
!
b
.
isTransposed
()
?
b
.
getWidth
()
:
b
.
getHeight
();
/// C = A * B, for matrix format
CHECK
(
aCol
==
bRow
&&
aRow
==
height
&&
bCol
==
width
);
if
(
scaleT
==
0
)
{
out
.
zeroMem
();
}
...
...
@@ -69,12 +59,14 @@ void MulOp<DEVICE_TYPE_CPU>(CpuSparseMatrix& out,
real
*
C
=
out
.
getValue
();
int
*
rows
=
out
.
getRows
();
int
*
cols
=
out
.
getCols
();
size_t
width
=
out
.
getWidth
();
size_t
height
=
out
.
getHeight
();
/// SPARSE_CSC, {a any, b not trans}
if
(
out
.
getFormat
()
==
SPARSE_CSC
)
{
/// b not trans and a any
CHECK
(
!
b
.
isTransposed
()
);
size_t
m
=
!
a
.
isTransposed
()
?
a
.
getWidth
()
:
a
.
getHeight
();
CHECK
(
!
b
Trans
);
size_t
m
=
!
a
Trans
?
a
.
getWidth
()
:
a
.
getHeight
();
for
(
size_t
i
=
0
;
i
<
width
;
i
++
)
{
size_t
start
=
out
.
getColStartIdx
(
i
);
size_t
end
=
out
.
getColStartIdx
(
i
+
1
);
...
...
@@ -82,9 +74,8 @@ void MulOp<DEVICE_TYPE_CPU>(CpuSparseMatrix& out,
real
sum
=
0
;
size_t
rowIdx
=
rows
[
j
];
for
(
size_t
k
=
0
;
k
<
m
;
k
++
)
{
sum
+=
(
!
a
.
isTransposed
()
?
A
[
rowIdx
*
m
+
k
]
:
A
[
k
*
height
+
rowIdx
])
*
B
[
k
*
width
+
i
];
sum
+=
(
!
aTrans
?
A
[
rowIdx
*
m
+
k
]
:
A
[
k
*
height
+
rowIdx
])
*
B
[
k
*
width
+
i
];
}
C
[
j
]
=
scaleAB
*
sum
+
scaleT
*
C
[
j
];
}
...
...
@@ -95,7 +86,7 @@ void MulOp<DEVICE_TYPE_CPU>(CpuSparseMatrix& out,
/// SPARSE_CSR, {a any, b not trans} or {a not trans, b trans}
if
(
out
.
getFormat
()
==
SPARSE_CSR
)
{
/// a and b can not both transpose
CHECK
(
!
(
a
.
isTransposed
()
&&
b
.
isTransposed
()
));
CHECK
(
!
(
a
Trans
&&
bTrans
));
size_t
m
=
a
.
getWidth
();
for
(
size_t
i
=
0
;
i
<
height
;
i
++
)
{
size_t
start
=
out
.
getRowStartIdx
(
i
);
...
...
@@ -104,9 +95,8 @@ void MulOp<DEVICE_TYPE_CPU>(CpuSparseMatrix& out,
real
sum
=
0
;
size_t
colIdx
=
cols
[
j
];
for
(
size_t
k
=
0
;
k
<
m
;
k
++
)
{
sum
+=
(
!
a
.
isTransposed
()
?
A
[
i
*
m
+
k
]
:
A
[
k
*
height
+
i
])
*
(
!
b
.
isTransposed
()
?
B
[
k
*
width
+
colIdx
]
:
B
[
colIdx
*
m
+
k
]);
sum
+=
(
!
aTrans
?
A
[
i
*
m
+
k
]
:
A
[
k
*
height
+
i
])
*
(
!
bTrans
?
B
[
k
*
width
+
colIdx
]
:
B
[
colIdx
*
m
+
k
]);
}
C
[
j
]
=
scaleAB
*
sum
+
scaleT
*
C
[
j
];
}
...
...
@@ -120,25 +110,15 @@ void MulOp<DEVICE_TYPE_CPU>(CpuMatrix& out,
const
CpuMatrix
&
a
,
const
CpuMatrix
&
b
,
real
scaleAB
,
real
scaleT
)
{
CHECK
(
!
out
.
isTransposed
())
<<
"out matrix transpose not supported"
;
CBLAS_TRANSPOSE
aTrans
=
a
.
isTransposed
()
?
CblasTrans
:
CblasNoTrans
;
size_t
aRow
=
a
.
isTransposed
()
?
a
.
getWidth
()
:
a
.
getHeight
();
size_t
aCol
=
a
.
isTransposed
()
?
a
.
getHeight
()
:
a
.
getWidth
();
CBLAS_TRANSPOSE
bTrans
=
b
.
isTransposed
()
?
CblasTrans
:
CblasNoTrans
;
size_t
bRow
=
b
.
isTransposed
()
?
b
.
getWidth
()
:
b
.
getHeight
();
size_t
bCol
=
b
.
isTransposed
()
?
b
.
getHeight
()
:
b
.
getWidth
();
/// C = A * B, for matrix format
CHECK_EQ
(
aCol
,
bRow
);
CHECK_EQ
(
aRow
,
out
.
getHeight
());
CHECK_EQ
(
bCol
,
out
.
getWidth
());
GEMM
(
aTrans
,
bTrans
,
real
scaleT
,
bool
aTrans
,
bool
bTrans
,
bool
cTrans
)
{
GEMM
(
aTrans
?
CblasTrans
:
CblasNoTrans
,
bTrans
?
CblasTrans
:
CblasNoTrans
,
out
.
getHeight
(),
out
.
getWidth
(),
aCol
,
!
aTrans
?
a
.
getWidth
()
:
a
.
getHeight
()
,
scaleAB
,
a
.
getData
(),
a
.
getStride
(),
...
...
@@ -154,21 +134,12 @@ void MulOp<DEVICE_TYPE_CPU>(CpuMatrix& out,
const
CpuSparseMatrix
&
a
,
const
CpuMatrix
&
b
,
real
scaleAB
,
real
scaleT
)
{
CHECK
(
!
out
.
isTransposed
())
<<
"Not supported"
;
CHECK
(
!
b
.
isTransposed
())
<<
"Not supported"
;
CHECK
(
scaleT
==
0
||
scaleT
==
1
)
<<
"Not support"
;
CHECK_EQ
(
scaleAB
,
static_cast
<
real
>
(
1.0
))
<<
"Not supported"
;
CHECK_EQ
(
a
.
getFormat
(),
SPARSE_CSR
)
<<
"Not supported"
;
if
(
!
a
.
isTransposed
())
{
CHECK
(
b
.
getHeight
()
==
a
.
getWidth
()
&&
a
.
getHeight
()
==
out
.
getHeight
()
&&
b
.
getWidth
()
==
out
.
getWidth
());
}
else
{
CHECK
(
b
.
getHeight
()
==
a
.
getHeight
()
&&
a
.
getWidth
()
==
out
.
getHeight
()
&&
b
.
getWidth
()
==
out
.
getWidth
());
}
real
scaleT
,
bool
aTrans
,
bool
bTrans
,
bool
cTrans
)
{
CHECK_EQ
(
a
.
getFormat
(),
SPARSE_CSR
)
<<
"Not supported SPARSE_CSR format for a"
;
if
(
scaleT
==
0
)
{
out
.
zeroMem
();
}
...
...
@@ -185,9 +156,9 @@ void MulOp<DEVICE_TYPE_CPU>(CpuMatrix& out,
const
int
start
=
a
.
getRowStartIdx
(
i
);
const
int
end
=
a
.
getRowStartIdx
(
i
+
1
);
for
(
int
j
=
start
;
j
<
end
;
++
j
)
{
vecAddTo
(
!
a
.
isTransposed
()
?
out
.
getRow
(
i
)
:
out
.
getRow
(
cols
[
j
]),
!
a
.
isTransposed
()
?
const_cast
<
CpuMatrix
&>
(
b
).
getRow
(
cols
[
j
])
:
const_cast
<
CpuMatrix
&>
(
b
).
getRow
(
i
),
vecAddTo
(
!
a
Trans
?
out
.
getRow
(
i
)
:
out
.
getRow
(
cols
[
j
]),
!
a
Trans
?
const_cast
<
CpuMatrix
&>
(
b
).
getRow
(
cols
[
j
])
:
const_cast
<
CpuMatrix
&>
(
b
).
getRow
(
i
),
(
a
.
getValueType
()
==
FLOAT_VALUE
)
?
values
[
j
]
:
(
real
)
1.0
,
out
.
getWidth
());
}
...
...
@@ -199,19 +170,10 @@ void MulOp<DEVICE_TYPE_CPU>(CpuMatrix& out,
const
CpuMatrix
&
a
,
const
CpuSparseMatrix
&
b
,
real
scaleAB
,
real
scaleT
)
{
CHECK
(
!
out
.
trans_
)
<<
"Not supported"
;
CHECK
(
!
a
.
isTransposed
())
<<
"Not supported"
;
CHECK
(
scaleT
==
0
||
scaleT
==
1
);
CHECK_EQ
(
scaleAB
,
static_cast
<
real
>
(
1.0
));
if
(
!
b
.
isTransposed
())
{
/// b is not Transpose
CHECK
(
b
.
getHeight
()
==
a
.
getWidth
()
&&
a
.
getHeight
()
==
out
.
getHeight
()
&&
b
.
getWidth
()
==
out
.
getWidth
());
}
else
{
CHECK
(
b
.
getHeight
()
==
out
.
getWidth
()
&&
a
.
getHeight
()
==
out
.
getHeight
()
&&
b
.
getWidth
()
==
a
.
getWidth
());
}
real
scaleT
,
bool
aTrans
,
bool
bTrans
,
bool
cTrans
)
{
if
(
scaleT
==
0
)
{
out
.
zeroMem
();
}
...
...
@@ -227,8 +189,8 @@ void MulOp<DEVICE_TYPE_CPU>(CpuMatrix& out,
int
start
=
b
.
getColStartIdx
(
j
);
int
end
=
b
.
getColStartIdx
(
j
+
1
);
for
(
int
i
=
start
;
i
<
end
;
++
i
)
{
colVecAddTo
(
!
b
.
isTransposed
()
?
C
+
j
:
C
+
rows
[
i
],
!
b
.
isTransposed
()
?
A
+
rows
[
i
]
:
A
+
j
,
colVecAddTo
(
!
b
Trans
?
C
+
j
:
C
+
rows
[
i
],
!
b
Trans
?
A
+
rows
[
i
]
:
A
+
j
,
(
b
.
getValueType
()
==
NO_VALUE
)
?
(
real
)
1.0
:
B
[
i
],
out
.
getHeight
(),
out
.
getWidth
(),
...
...
@@ -244,8 +206,8 @@ void MulOp<DEVICE_TYPE_CPU>(CpuMatrix& out,
int
start
=
b
.
getRowStartIdx
(
j
);
int
end
=
b
.
getRowStartIdx
(
j
+
1
);
for
(
int
i
=
start
;
i
<
end
;
++
i
)
{
colVecAddTo
(
!
b
.
isTransposed
()
?
C
+
cols
[
i
]
:
C
+
j
,
!
b
.
isTransposed
()
?
A
+
j
:
A
+
cols
[
i
],
colVecAddTo
(
!
b
Trans
?
C
+
cols
[
i
]
:
C
+
j
,
!
b
Trans
?
A
+
j
:
A
+
cols
[
i
],
(
b
.
getValueType
()
==
NO_VALUE
)
?
(
real
)
1.0
:
B
[
i
],
out
.
getHeight
(),
out
.
getWidth
(),
...
...
@@ -270,16 +232,43 @@ public:
void
init
(
const
FuncConfig
&
config
)
override
{
alpha_
=
config
.
get
<
real
>
(
"scaleAB"
);
beta_
=
config
.
get
<
real
>
(
"scaleT"
);
aTrans_
=
config
.
get
<
bool
>
(
"aTrans"
);
bTrans_
=
config
.
get
<
bool
>
(
"bTrans"
);
cTrans_
=
config
.
get
<
bool
>
(
"cTrans"
);
}
void
calc
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
)
override
{
CHECK
(
!
cTrans_
)
<<
"output matrix should not be transposed"
;
CHECK
(
!
aTrans_
||
!
bTrans_
)
<<
"Not support both a and b are transpose matrices"
;
CHECK_EQ
((
size_t
)
2
,
inputs
.
size
());
CHECK_EQ
((
size_t
)
1
,
outputs
.
size
());
CHECK
(
inputs
[
0
].
data
()
&&
inputs
[
1
].
data
()
&&
outputs
[
0
].
data
());
CHECK_EQ
(
inputs
[
0
].
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
inputs
[
1
].
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
outputs
[
0
].
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
outputs
[
0
].
getArgType
(),
ADD_TO
);
size_t
aRow
=
!
aTrans_
?
inputs
[
0
].
shape
()[
0
]
:
inputs
[
0
].
shape
()[
1
];
size_t
aCol
=
!
aTrans_
?
inputs
[
0
].
shape
()[
1
]
:
inputs
[
0
].
shape
()[
0
];
size_t
bRow
=
!
bTrans_
?
inputs
[
1
].
shape
()[
0
]
:
inputs
[
1
].
shape
()[
1
];
size_t
bCol
=
!
bTrans_
?
inputs
[
1
].
shape
()[
1
]
:
inputs
[
1
].
shape
()[
0
];
/// C = A * B, or C += A * B, for matrix format
CHECK_EQ
(
aCol
,
bRow
);
CHECK_EQ
(
aRow
,
outputs
[
0
].
shape
()[
0
]);
CHECK_EQ
(
bCol
,
outputs
[
0
].
shape
()[
1
]);
/// only support C = A * B or C += A * B
CHECK_EQ
(
alpha_
,
static_cast
<
real
>
(
1.0
));
CHECK
((
beta_
==
0
&&
outputs
[
0
].
getArgType
()
==
ASSIGN_TO
)
||
(
beta_
==
1
&&
outputs
[
0
].
getArgType
()
==
ADD_TO
));
/// support dense = not both sparse * sparse
/// or sparse = dense * dense
CHECK
((
!
outputs
[
0
].
isSparseArg
()
&&
!
(
inputs
[
0
].
isSparseArg
()
&&
inputs
[
1
].
isSparseArg
()))
||
(
outputs
[
0
].
isSparseArg
()
&&
!
inputs
[
0
].
isSparseArg
()
&&
!
inputs
[
1
].
isSparseArg
()));
auto
outMat
=
outputs
[
0
].
matrix
<
Device
>
();
/// matrix = matrix * matrix
...
...
@@ -289,29 +278,40 @@ public:
inputs
[
0
].
matrix
<
Device
>
(),
inputs
[
1
].
matrix
<
Device
>
(),
alpha_
,
beta_
);
beta_
,
aTrans_
,
bTrans_
,
cTrans_
);
return
;
}
/// matrix = matrix * sparse matrix
if
(
!
inputs
[
0
].
isSparseArg
()
&&
inputs
[
1
].
isSparseArg
()
&&
!
outputs
[
0
].
isSparseArg
())
{
CHECK
(
!
aTrans_
)
<<
"Not supported a transpose"
;
MulOp
<
Device
>
(
outMat
,
inputs
[
0
].
matrix
<
Device
>
(),
inputs
[
1
].
sparse
().
SparseMatrix
<
Device
>
(),
alpha_
,
beta_
);
beta_
,
aTrans_
,
bTrans_
,
cTrans_
);
return
;
}
/// matrix = sparse matrix * matrix
if
(
inputs
[
0
].
isSparseArg
()
&&
!
inputs
[
1
].
isSparseArg
()
&&
!
outputs
[
0
].
isSparseArg
())
{
CHECK
(
!
bTrans_
)
<<
"Not supported b transpose"
;
MulOp
<
Device
>
(
outMat
,
inputs
[
0
].
sparse
().
SparseMatrix
<
Device
>
(),
inputs
[
1
].
matrix
<
Device
>
(),
alpha_
,
beta_
);
beta_
,
aTrans_
,
bTrans_
,
cTrans_
);
return
;
}
...
...
@@ -319,18 +319,14 @@ public:
auto
outSparseMat
=
outputs
[
0
].
sparse
().
SparseMatrix
<
Device
>
();
if
(
!
inputs
[
0
].
isSparseArg
()
&&
!
inputs
[
1
].
isSparseArg
()
&&
outputs
[
0
].
isSparseArg
())
{
/*
LOG(INFO) << "input0";
inputs[0].matrix<Device>().print(std::cout);
LOG(INFO) << "input1";
inputs[1].matrix<Device>().print(std::cout);
LOG(INFO) << "output sparse matrix";
outSparseMat.print(std::cout); */
MulOp
<
Device
>
(
outSparseMat
,
inputs
[
0
].
matrix
<
Device
>
(),
inputs
[
1
].
matrix
<
Device
>
(),
alpha_
,
beta_
);
beta_
,
aTrans_
,
bTrans_
,
cTrans_
);
return
;
}
}
...
...
@@ -338,6 +334,9 @@ public:
private:
real
alpha_
;
real
beta_
;
bool
aTrans_
;
bool
bTrans_
;
bool
cTrans_
;
};
REGISTER_TYPED_FUNC
(
MulOp
,
CPU
,
MulFunc
);
...
...
paddle/function/MulOp.h
浏览文件 @
b3be7358
...
...
@@ -26,55 +26,79 @@ void MulOp(CpuMatrix& out,
const
CpuMatrix
&
a
,
const
CpuMatrix
&
b
,
real
scaleAB
,
real
scaleT
);
real
scaleT
,
bool
aTrans
,
bool
bTrans
,
bool
cTrans
);
template
<
DeviceType
DType
>
void
MulOp
(
CpuMatrix
&
out
,
const
CpuSparseMatrix
&
a
,
const
CpuMatrix
&
b
,
real
scaleAB
,
real
scaleT
);
real
scaleT
,
bool
aTrans
,
bool
bTrans
,
bool
cTrans
);
template
<
DeviceType
DType
>
void
MulOp
(
CpuMatrix
&
out
,
const
CpuMatrix
&
a
,
const
CpuSparseMatrix
&
b
,
real
scaleAB
,
real
scaleT
);
real
scaleT
,
bool
aTrans
,
bool
bTrans
,
bool
cTrans
);
template
<
DeviceType
DType
>
void
MulOp
(
CpuSparseMatrix
&
out
,
const
CpuMatrix
&
a
,
const
CpuMatrix
&
b
,
real
scaleAB
,
real
scaleT
);
real
scaleT
,
bool
aTrans
,
bool
bTrans
,
bool
cTrans
);
template
<
DeviceType
DType
>
void
MulOp
(
GpuMatrix
&
out
,
const
GpuMatrix
&
a
,
const
GpuMatrix
&
b
,
real
scaleAB
,
real
scaleT
);
real
scaleT
,
bool
aTrans
,
bool
bTrans
,
bool
cTrans
);
template
<
DeviceType
DType
>
void
MulOp
(
GpuMatrix
&
out
,
const
GpuSparseMatrix
&
a
,
const
GpuMatrix
&
b
,
real
scaleAB
,
real
scaleT
);
real
scaleT
,
bool
aTrans
,
bool
bTrans
,
bool
cTrans
);
template
<
DeviceType
DType
>
void
MulOp
(
GpuMatrix
&
out
,
const
GpuMatrix
&
a
,
const
GpuSparseMatrix
&
b
,
real
scaleAB
,
real
scaleT
);
real
scaleT
,
bool
aTrans
,
bool
bTrans
,
bool
cTrans
);
template
<
DeviceType
DType
>
void
MulOp
(
GpuSparseMatrix
&
out
,
const
GpuMatrix
&
a
,
const
GpuMatrix
&
b
,
real
scaleAB
,
real
scaleT
);
real
scaleT
,
bool
aTrans
,
bool
bTrans
,
bool
cTrans
);
}
// namespace paddle
paddle/function/MulOpGpu.cu
浏览文件 @
b3be7358
...
...
@@ -27,38 +27,22 @@ void MulOp<DEVICE_TYPE_GPU>(GpuMatrix& out,
const
GpuMatrix
&
a
,
const
GpuMatrix
&
b
,
real
scaleAB
,
real
scaleT
)
{
CHECK
(
!
out
.
isTransposed
())
<<
"Transpose not supported for out matrix"
;
if
(
!
a
.
isTransposed
()
&&
!
b
.
isTransposed
())
{
/// a : M * K, b: K * N
CHECK
(
out
.
getWidth
()
==
b
.
getWidth
()
&&
out
.
getHeight
()
==
a
.
getHeight
()
&&
a
.
getWidth
()
==
b
.
getHeight
());
}
else
if
(
a
.
isTransposed
()
&&
!
b
.
isTransposed
())
{
/// a : K * M, b : K * N
CHECK
(
out
.
getWidth
()
==
b
.
getWidth
()
&&
out
.
getHeight
()
==
a
.
getWidth
()
&&
a
.
getHeight
()
==
b
.
getHeight
());
}
else
if
(
!
a
.
isTransposed
()
&&
b
.
isTransposed
())
{
/// a: M * K, b : N * K
CHECK
(
out
.
getWidth
()
==
b
.
getHeight
()
&&
out
.
getHeight
()
==
a
.
getHeight
()
&&
a
.
getWidth
()
==
b
.
getWidth
());
}
else
{
LOG
(
FATAL
)
<<
"Not support for both a and b are Transposed Matrices"
;
}
real
scaleT
,
bool
aTrans
,
bool
bTrans
,
bool
cTrans
)
{
CHECK
(
a
.
useGpu_
&&
b
.
useGpu_
)
<<
"matrix device type not match"
;
real
*
aData
=
const_cast
<
real
*>
(
a
.
getData
());
real
*
bData
=
const_cast
<
real
*>
(
b
.
getData
());
real
*
outData
=
const_cast
<
real
*>
(
out
.
getData
());
hl_matrix_mul
(
aData
,
!
a
.
isTransposed
()
?
HPPL_OP_N
:
HPPL_OP_T
,
!
a
Trans
?
HPPL_OP_N
:
HPPL_OP_T
,
bData
,
!
b
.
isTransposed
()
?
HPPL_OP_N
:
HPPL_OP_T
,
!
b
Trans
?
HPPL_OP_N
:
HPPL_OP_T
,
outData
,
out
.
getHeight
(),
out
.
getWidth
(),
!
a
.
isTransposed
()
?
a
.
getWidth
()
:
a
.
getHeight
(),
!
a
Trans
?
a
.
getWidth
()
:
a
.
getHeight
(),
scaleAB
,
scaleT
,
a
.
getStride
(),
...
...
@@ -75,27 +59,19 @@ void MulOp<DEVICE_TYPE_GPU>(GpuMatrix& out,
const
GpuSparseMatrix
&
a
,
const
GpuMatrix
&
b
,
real
scaleAB
,
real
scaleT
)
{
real
scaleT
,
bool
aTrans
,
bool
bTrans
,
bool
cTrans
)
{
CHECK
(
out
.
isContiguous
());
CHECK
(
b
.
isContiguous
());
CHECK
(
b
.
useGpu_
)
<<
"Matrix type are not equal"
;
CHECK
(
!
out
.
isTransposed
()
&&
!
b
.
isTransposed
())
<<
"not supported"
;
if
(
!
a
.
isTransposed
())
{
/// a: M * K, b: K * N
CHECK
(
out
.
getWidth
()
==
b
.
getWidth
()
&&
out
.
getHeight
()
==
a
.
getHeight
()
&&
a
.
getWidth
()
==
b
.
getHeight
())
<<
"Matrix dimensions are not equal"
;
}
else
{
/// a: K * M, transpose, b: K * N
CHECK
(
out
.
getWidth
()
==
b
.
getWidth
()
&&
out
.
getHeight
()
==
a
.
getWidth
()
&&
a
.
getHeight
()
==
b
.
getHeight
())
<<
"Matrix dimensions are not equal"
;
}
CHECK
(
a
.
useGpu_
&&
b
.
useGpu_
)
<<
"matrix device type not match"
;
hl_trans_op_t
aTrans
=
a
.
isTransposed
()
?
HPPL_OP_T
:
HPPL_OP_N
;
hl_sparse_matrix_s
aData
=
a
.
sMatrix_
.
get
();
real
*
bData
=
const_cast
<
real
*>
(
b
.
getData
());
real
*
outData
=
const_cast
<
real
*>
(
out
.
getData
());
hl_matrix_csr_mul_dense
(
aData
,
aTrans
,
aTrans
?
HPPL_OP_T
:
HPPL_OP_N
,
bData
,
HPPL_OP_N
,
outData
,
...
...
@@ -115,25 +91,14 @@ void MulOp<DEVICE_TYPE_GPU>(GpuMatrix& out,
const
GpuMatrix
&
a
,
const
GpuSparseMatrix
&
b
,
real
scaleAB
,
real
scaleT
)
{
real
scaleT
,
bool
aTrans
,
bool
bTrans
,
bool
cTrans
)
{
CHECK
(
out
.
isContiguous
());
CHECK
(
a
.
isContiguous
());
CHECK
(
a
.
useGpu_
)
<<
"Matrix type are not equal"
;
if
(
!
b
.
isTransposed
())
{
/// a : M * K, b : K * N
CHECK
(
out
.
getWidth
()
==
b
.
getWidth
()
&&
out
.
getHeight
()
==
a
.
getHeight
()
&&
a
.
getWidth
()
==
b
.
getHeight
())
<<
"Matrix dimensions are not equal"
;
}
else
{
/// a : M * K, b : N * K, transpose
CHECK
(
out
.
getWidth
()
==
b
.
getHeight
()
&&
out
.
getHeight
()
==
a
.
getHeight
()
&&
a
.
getWidth
()
==
b
.
getWidth
())
<<
"Matrix dimensions are not equal"
;
}
CHECK
(
a
.
useGpu_
&&
b
.
useGpu_
)
<<
"matrix device type not match"
;
hl_trans_op_t
bTrans
=
b
.
isTransposed
()
?
HPPL_OP_T
:
HPPL_OP_N
;
hl_sparse_matrix_s
bData
=
b
.
sMatrix_
.
get
();
real
*
aData
=
const_cast
<
real
*>
(
a
.
getData
());
real
*
outData
=
const_cast
<
real
*>
(
out
.
getData
());
...
...
@@ -142,7 +107,7 @@ void MulOp<DEVICE_TYPE_GPU>(GpuMatrix& out,
hl_matrix_dense_mul_csc
(
aData
,
HPPL_OP_N
,
bData
,
bTrans
,
bTrans
?
HPPL_OP_T
:
HPPL_OP_N
,
outData
,
out
.
getHeight
(),
out
.
getWidth
(),
...
...
@@ -153,7 +118,7 @@ void MulOp<DEVICE_TYPE_GPU>(GpuMatrix& out,
hl_matrix_dense_mul_csr
(
aData
,
HPPL_OP_N
,
bData
,
bTrans
,
bTrans
?
HPPL_OP_T
:
HPPL_OP_N
,
outData
,
out
.
getHeight
(),
out
.
getWidth
(),
...
...
@@ -168,35 +133,26 @@ void MulOp<DEVICE_TYPE_GPU>(GpuSparseMatrix& out,
const
GpuMatrix
&
a
,
const
GpuMatrix
&
b
,
real
scaleAB
,
real
scaleT
)
{
real
scaleT
,
bool
aTrans
,
bool
bTrans
,
bool
cTrans
)
{
CHECK
(
a
.
useGpu_
&&
b
.
useGpu_
)
<<
"matrix device type not match"
;
CHECK
(
!
out
.
isTransposed
())
<<
"Transpose is not supported for out matrix"
;
if
(
!
a
.
isTransposed
()
&&
!
b
.
isTransposed
())
{
CHECK
(
out
.
getHeight
()
==
a
.
getHeight
()
&&
out
.
getWidth
()
==
b
.
getWidth
()
&&
a
.
getWidth
()
==
b
.
getHeight
());
}
else
if
(
a
.
isTransposed
()
&&
!
b
.
isTransposed
())
{
CHECK
(
out
.
getHeight
()
==
a
.
getWidth
()
&&
out
.
getWidth
()
==
b
.
getWidth
()
&&
a
.
getHeight
()
==
b
.
getHeight
());
}
else
if
(
!
a
.
isTransposed
()
&&
b
.
isTransposed
())
{
CHECK
(
out
.
getHeight
()
==
a
.
getHeight
()
&&
out
.
getWidth
()
==
b
.
getHeight
()
&&
a
.
getWidth
()
==
b
.
getWidth
());
}
else
{
LOG
(
FATAL
)
<<
"Not support for both a and b are Transposed Matrices"
;
}
hl_trans_op_t
aTrans
=
a
.
isTransposed
()
?
HPPL_OP_T
:
HPPL_OP_N
;
hl_trans_op_t
bTrans
=
b
.
isTransposed
()
?
HPPL_OP_T
:
HPPL_OP_N
;
int
dimK
=
!
b
.
isTransposed
()
?
b
.
getHeight
()
:
b
.
getWidth
();
real
*
aData
=
const_cast
<
real
*>
(
a
.
getData
());
real
*
bData
=
const_cast
<
real
*>
(
b
.
getData
());
hl_sparse_matrix_s
outData
=
out
.
sMatrix_
.
get
();
hl_sparse_matrix_mul
(
aData
,
aTrans
,
bData
,
bTrans
,
outData
,
out
.
getHeight
(),
out
.
getWidth
(),
dimK
,
scaleAB
,
scaleT
);
hl_sparse_matrix_mul
(
aData
,
aTrans
?
HPPL_OP_T
:
HPPL_OP_N
,
bData
,
bTrans
?
HPPL_OP_T
:
HPPL_OP_N
,
outData
,
out
.
getHeight
(),
out
.
getWidth
(),
!
bTrans
?
b
.
getHeight
()
:
b
.
getWidth
(),
scaleAB
,
scaleT
);
}
}
// namespace paddle
paddle/function/MulOpTest.cpp
浏览文件 @
b3be7358
...
...
@@ -39,18 +39,21 @@ void testFuncDDDMatrix(
size_t
widthC
=
dimN
;
// init Test object
FunctionCompare
test
(
"MulOp"
,
FuncConfig
().
set
(
"scaleAB"
,
alpha
).
set
(
"scaleT"
,
beta
));
FuncConfig
()
.
set
(
"scaleAB"
,
alpha
)
.
set
(
"scaleT"
,
beta
)
.
set
(
"aTrans"
,
transa
)
.
set
(
"bTrans"
,
transb
)
.
set
(
"cTrans"
,
false
));
// prepare input arguments
/// matrix A : HA * WA
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
heightA
,
widthA
},
UNSPECIFIED
,
transa
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
heightA
,
widthA
}));
/// matrix B: HB * WB
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
heightB
,
widthB
},
UNSPECIFIED
,
transb
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
heightB
,
widthB
}));
/// output matrix C: HC * WC
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
heightC
,
widthC
}),
ADD
_TO
);
beta
==
1.0
?
ADD_TO
:
ASSIGN
_TO
);
// run Function
test
.
run
();
}
...
...
@@ -88,21 +91,22 @@ void testFuncDSparseDMatrix(
real
beta
=
1.0
;
// init Test object
FunctionCompare
test
(
"MulOp"
,
FuncConfig
().
set
(
"scaleAB"
,
alpha
).
set
(
"scaleT"
,
beta
));
FuncConfig
()
.
set
(
"scaleAB"
,
alpha
)
.
set
(
"scaleT"
,
beta
)
.
set
(
"aTrans"
,
false
)
.
set
(
"bTrans"
,
false
)
.
set
(
"cTrans"
,
false
));
// prepare input arguments
/// sparse matrix A : M * K
test
.
addInputs
(
SparseMatrixArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
dimM
,
dimK
},
nnz
,
FORMAT
,
FLOAT_VALUE
,
UNSPECIFIED
,
false
));
test
.
addInputs
(
SparseMatrixArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
dimM
,
dimK
},
nnz
,
FORMAT
,
FLOAT_VALUE
));
/// matrix B: K * N
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
dimK
,
dimN
}));
/// output matrix C: M * N
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
dimM
,
dimN
}),
ADD_TO
);
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
dimM
,
dimN
}),
beta
==
1.0
?
ADD_TO
:
ASSIGN_TO
);
// run Function
test
.
run
();
}
...
...
@@ -138,22 +142,23 @@ void testFuncDDSparseMatrix(
real
beta
=
1.0
;
// init Test object
FunctionCompare
test
(
"MulOp"
,
FuncConfig
().
set
(
"scaleAB"
,
alpha
).
set
(
"scaleT"
,
beta
));
FuncConfig
()
.
set
(
"scaleAB"
,
alpha
)
.
set
(
"scaleT"
,
beta
)
.
set
(
"aTrans"
,
false
)
.
set
(
"bTrans"
,
false
)
.
set
(
"cTrans"
,
false
));
// prepare input arguments
/// matrix A : M * K
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
dimM
,
dimK
}));
/// matrix B: K * N
test
.
addInputs
(
SparseMatrixArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
dimK
,
dimN
},
nnz
,
FORMAT
,
FLOAT_VALUE
,
UNSPECIFIED
,
false
));
test
.
addInputs
(
SparseMatrixArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
dimK
,
dimN
},
nnz
,
FORMAT
,
FLOAT_VALUE
));
/// output matrix C: M * N
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
dimM
,
dimN
}),
ADD_TO
);
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
dimM
,
dimN
}),
beta
==
1.0
?
ADD_TO
:
ASSIGN_TO
);
// run Function
test
.
run
();
}
...
...
@@ -189,7 +194,12 @@ void testFuncSparseDDMatrix(
real
beta
=
1.0
;
// init Test object
FunctionCompare
test
(
"MulOp"
,
FuncConfig
().
set
(
"scaleAB"
,
alpha
).
set
(
"scaleT"
,
beta
));
FuncConfig
()
.
set
(
"scaleAB"
,
alpha
)
.
set
(
"scaleT"
,
beta
)
.
set
(
"aTrans"
,
false
)
.
set
(
"bTrans"
,
false
)
.
set
(
"cTrans"
,
false
));
// prepare input arguments
/// matrix A : M * K
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
dimM
,
dimK
}));
...
...
@@ -198,14 +208,10 @@ void testFuncSparseDDMatrix(
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
dimK
,
dimN
}));
/// output sparse matrix C: M * N
test
.
addOutputs
(
SparseMatrixArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
dimM
,
dimN
},
nnz
,
FORMAT
,
FLOAT_VALUE
,
UNSPECIFIED
,
false
),
ADD_TO
);
test
.
addOutputs
(
SparseMatrixArg
(
VALUE_TYPE_FLOAT
,
TensorShape
{
dimM
,
dimN
},
nnz
,
FORMAT
,
FLOAT_VALUE
),
beta
==
1.0
?
ADD_TO
:
ASSIGN_TO
);
// run Function
test
.
run
();
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录