提交 b299d07f 编写于 作者: W wanghaoshuang

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into crop_op

Conflicts:
	paddle/pybind/pybind.cc
	python/paddle/v2/framework/tests/op_test_util.py
......@@ -67,6 +67,9 @@ endif()
if(ANDROID)
if(${CMAKE_SYSTEM_VERSION} VERSION_LESS "16")
message(FATAL_ERROR "Unsupport standalone toolchains with Android API level lower than 16")
elseif(${CMAKE_SYSTEM_VERSION} VERSION_LESS "21")
# TODO: support glog for Android api 16 ~ 19 in the future
message(WARNING "Using the unofficial git repository <https://github.com/Xreki/glog.git> instead")
endif()
set(WITH_GPU OFF CACHE STRING
......
......@@ -6,13 +6,14 @@ RUN /bin/bash -c 'if [[ -n ${UBUNTU_MIRROR} ]]; then sed -i 's#http://archive.ub
# ENV variables
ARG ANDROID_ABI
ARG ANDROID_API
ENV ANDROID_ABI=${ANDROID_ABI:-"armeabi-v7a"}
ENV ANDROID_API=${ANDROID_API:-21}
ENV HOME=/root \
ANDROID_NDK_HOME=/opt/android-ndk-linux \
ANDROID_ARM_STANDALONE_TOOLCHAIN=/opt/arm-toolchain \
ANDROID_ARM64_STANDALONE_TOOLCHAIN=/opt/arm64-toolchain
ANDROID_TOOLCHAINS_DIR=/opt/toolchains
RUN apt-get update && \
apt-get install -y \
......@@ -42,14 +43,12 @@ RUN pip install --upgrade pip && \
pip install pre-commit
# Android NDK
RUN mkdir /opt/android-ndk-tmp && \
RUN mkdir -p ${ANDROID_TOOLCHAINS_DIR} && \
mkdir -p /opt/android-ndk-tmp && \
cd /opt/android-ndk-tmp && \
wget -q https://dl.google.com/android/repository/android-ndk-r14b-linux-x86_64.zip && \
unzip -q android-ndk-r14b-linux-x86_64.zip && \
mv android-ndk-r14b ${ANDROID_NDK_HOME} && \
${ANDROID_NDK_HOME}/build/tools/make-standalone-toolchain.sh --arch=arm --platform=android-23 --install-dir=${ANDROID_ARM_STANDALONE_TOOLCHAIN} && \
${ANDROID_NDK_HOME}/build/tools/make-standalone-toolchain.sh --arch=arm64 --platform=android-23 --install-dir=${ANDROID_ARM64_STANDALONE_TOOLCHAIN} && \
rm -rf /opt/android-ndk-tmp && \
rm -rf ${ANDROID_NDK_HOME}
rm -rf /opt/android-ndk-tmp
CMD ["bash", "/paddle/paddle/scripts/docker/build_android.sh"]
......@@ -18,9 +18,9 @@ SET(GFLAGS_SOURCES_DIR ${THIRD_PARTY_PATH}/gflags)
SET(GFLAGS_INSTALL_DIR ${THIRD_PARTY_PATH}/install/gflags)
SET(GFLAGS_INCLUDE_DIR "${GFLAGS_INSTALL_DIR}/include" CACHE PATH "gflags include directory." FORCE)
IF(WIN32)
set(GFLAGS_LIBRARIES "${GFLAGS_INSTALL_DIR}/lib/gflags.lib" CACHE FILEPATH "GFLAGS_LIBRARIES" FORCE)
set(GFLAGS_LIBRARIES "${GFLAGS_INSTALL_DIR}/lib/gflags.lib" CACHE FILEPATH "GFLAGS_LIBRARIES" FORCE)
ELSE(WIN32)
set(GFLAGS_LIBRARIES "${GFLAGS_INSTALL_DIR}/lib/libgflags.a" CACHE FILEPATH "GFLAGS_LIBRARIES" FORCE)
set(GFLAGS_LIBRARIES "${GFLAGS_INSTALL_DIR}/lib/libgflags.a" CACHE FILEPATH "GFLAGS_LIBRARIES" FORCE)
ENDIF(WIN32)
INCLUDE_DIRECTORIES(${GFLAGS_INCLUDE_DIR})
......@@ -56,3 +56,12 @@ SET_PROPERTY(TARGET gflags PROPERTY IMPORTED_LOCATION ${GFLAGS_LIBRARIES})
ADD_DEPENDENCIES(gflags extern_gflags)
LIST(APPEND external_project_dependencies gflags)
IF(WITH_C_API)
INSTALL(DIRECTORY ${GFLAGS_INCLUDE_DIR} DESTINATION third_party/gflags)
IF(ANDROID)
INSTALL(FILES ${GFLAGS_LIBRARIES} DESTINATION third_party/gflags/lib/${ANDROID_ABI})
ELSE()
INSTALL(FILES ${GFLAGS_LIBRARIES} DESTINATION third_party/gflags/lib)
ENDIF()
ENDIF()
......@@ -19,9 +19,9 @@ SET(GLOG_INSTALL_DIR ${THIRD_PARTY_PATH}/install/glog)
SET(GLOG_INCLUDE_DIR "${GLOG_INSTALL_DIR}/include" CACHE PATH "glog include directory." FORCE)
IF(WIN32)
SET(GLOG_LIBRARIES "${GLOG_INSTALL_DIR}/lib/libglog.lib" CACHE FILEPATH "glog library." FORCE)
SET(GLOG_LIBRARIES "${GLOG_INSTALL_DIR}/lib/libglog.lib" CACHE FILEPATH "glog library." FORCE)
ELSE(WIN32)
SET(GLOG_LIBRARIES "${GLOG_INSTALL_DIR}/lib/libglog.a" CACHE FILEPATH "glog library." FORCE)
SET(GLOG_LIBRARIES "${GLOG_INSTALL_DIR}/lib/libglog.a" CACHE FILEPATH "glog library." FORCE)
ENDIF(WIN32)
INCLUDE_DIRECTORIES(${GLOG_INCLUDE_DIR})
......@@ -56,3 +56,12 @@ ADD_DEPENDENCIES(glog extern_glog gflags)
LINK_LIBRARIES(glog gflags)
LIST(APPEND external_project_dependencies glog)
IF(WITH_C_API)
INSTALL(DIRECTORY ${GLOG_INCLUDE_DIR} DESTINATION third_party/glog)
IF(ANDROID)
INSTALL(FILES ${GLOG_LIBRARIES} DESTINATION third_party/glog/lib/${ANDROID_ABI})
ELSE()
INSTALL(FILES ${GLOG_LIBRARIES} DESTINATION third_party/glog/lib)
ENDIF()
ENDIF()
......@@ -73,6 +73,26 @@ IF(NOT ${CBLAS_FOUND})
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
)
IF(WITH_C_API)
INSTALL(DIRECTORY ${CBLAS_INC_DIR} DESTINATION third_party/openblas)
# Because libopenblas.a is a symbolic link of another library, thus need to
# install the whole directory.
IF(ANDROID)
SET(TMP_INSTALL_DIR third_party/openblas/lib/${ANDROID_ABI})
ELSE()
SET(TMP_INSTALL_DIR third_party/openblas/lib)
ENDIF()
INSTALL(CODE "execute_process(
COMMAND ${CMAKE_COMMAND} -E copy_directory ${CBLAS_INSTALL_DIR}/lib
destination ${CMAKE_INSTALL_PREFIX}/${TMP_INSTALL_DIR}
)"
)
INSTALL(CODE "MESSAGE(STATUS \"Installing: \"
\"${CBLAS_INSTALL_DIR}/lib -> ${CMAKE_INSTALL_PREFIX}/${TMP_INSTALL_DIR}\"
)"
)
ENDIF()
ENDIF(NOT ${CBLAS_FOUND})
MESSAGE(STATUS "BLAS library: ${CBLAS_LIBRARIES}")
......
......@@ -223,6 +223,15 @@ IF(NOT PROTOBUF_FOUND)
SET(PROTOBUF_PROTOC_LIBRARY ${extern_protobuf_PROTOC_LIBRARY}
CACHE FILEPATH "protoc library." FORCE)
IF(WITH_C_API)
INSTALL(DIRECTORY ${PROTOBUF_INCLUDE_DIR} DESTINATION third_party/protobuf)
IF(ANDROID)
INSTALL(FILES ${PROTOBUF_LIBRARY} DESTINATION third_party/protobuf/lib/${ANDROID_ABI})
ELSE()
INSTALL(FILES ${PROTOBUF_LIBRARY} DESTINATION third_party/protobuf/lib)
ENDIF()
ENDIF()
IF(CMAKE_CROSSCOMPILING)
PROMPT_PROTOBUF_LIB(protobuf_host extern_protobuf)
ELSE()
......
......@@ -49,3 +49,12 @@ ExternalProject_Add(
)
LIST(APPEND external_project_dependencies zlib)
IF(WITH_C_API)
INSTALL(DIRECTORY ${ZLIB_INCLUDE_DIR} DESTINATION third_party/zlib)
IF(ANDROID)
INSTALL(FILES ${ZLIB_LIBRARIES} DESTINATION third_party/zlib/lib/${ANDROID_ABI})
ELSE()
INSTALL(FILES ${ZLIB_LIBRARIES} DESTINATION third_party/zlib/lib)
ENDIF()
ENDIF()
......@@ -262,7 +262,7 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs,
- 生成库
无需修改 [`paddle/pybind/CMakeLists.txt`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/CMakeLists.txt)文件,`paddle/operators` 目录下新增的 `*_op.cc` 文件会被自动添加链接到生成的lib库中。
`paddle/operators` 目录下新增的 `*_op.cc` 文件会被自动添加链接到生成的lib库中。
## 实现单元测试
......@@ -354,11 +354,7 @@ class TestMulGradOp(GradientChecker):
### 编译和执行单元测试
单元测试编写完成之后,在[`python/paddle/v2/framework/tests/CMakeLists.txt`](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/CMakeLists.txt)中添加以下内容,将单元测试加入工程:
```
py_test(test_mul_op SRCS test_mul_op.py)
```
`python/paddle/v2/framework/tests` 目录下新增的 `test_*.py` 单元测试会被自动加入工程进行编译。
请注意,**不同于Op的编译测试,运行单元测试测时需要编译整个工程**,并且编译时需要打开`WITH_TESTING`, 即`cmake paddle_dir -DWITH_TESTING=ON`。编译成功后,执行下面的命令来运行单元测试:
......
......@@ -5,15 +5,13 @@
PaddlePaddle的文档包括英文文档 ``doc`` 和中文文档 ``doc_cn`` 两个部分。文档都是通过 `cmake`_ 驱动 `sphinx`_ 编译生成,生成后的文档分别存储在编译目录的 ``doc`` 和 ``doc_cn`` 两个子目录下。
如何构建PaddlePaddle的文档
==========================
如何构建文档
============
PaddlePaddle的文档构建有直接构建和基于Docker构建两种方式,我们提供了一个构建脚本build_docs.sh来进行构建。
PaddlePaddle文档需要准备的环境相对较复杂,所以我们推荐使用基于Docker来构建PaddlePaddle的文档。
PaddlePaddle的文档构建有两种方式。
使用Docker构建PaddlePaddle的文档
--------------------------------
使用Docker构建
--------------
使用Docker构建PaddlePaddle的文档,需要在系统里先安装好Docker工具包。Docker安装请参考 `Docker的官网 <https://docs.docker.com/>`_ 。安装好Docker之后可以使用源码目录下的脚本构建文档,即
......@@ -21,58 +19,46 @@ PaddlePaddle文档需要准备的环境相对较复杂,所以我们推荐使
cd TO_YOUR_PADDLE_CLONE_PATH
cd paddle/scripts/tools/build_docs
bash build_docs.sh with_docker
编译完成后,会在当前目录生成两个子目录\:
* doc 英文文档目录
* doc_cn 中文文档目录
sh build_docs.sh
编译完成之后,会在当前目录生成两个子目录\: doc(英文文档目录)和 doc_cn(中文文档目录)。
打开浏览器访问对应目录下的index.html即可访问本地文档。
直接构建PaddlePaddle的文档
--------------------------
因为PaddlePaddle的v2 api文档生成过程依赖于py_paddle Python包,用户需要首先确认py_paddle包已经安装。
.. code-block:: bash
python -c "import py_paddle"
如果提示错误,那么用户需要在本地编译安装PaddlePaddle,请参考 `源码编译文档 <http://doc.paddlepaddle.org/develop/doc/getstarted/build_and_install/build_from_source_en.html>`_ 。
注意,用户在首次编译安装PaddlePaddle时,请将WITH_DOC选项关闭。在编译安装正确之后,请再次确认py_paddle包已经安装,即可进行下一步操作。
直接构建
--------
如果提示正确,可以执行以下命令编译生成文档,即
.. code-block:: bash
cd TO_YOUR_PADDLE_CLONE_PATH
cd paddle/scripts/tools/build_docs
bash build_docs.sh local
编译完成之后,会在当前目录生成两个子目录\:
* doc 英文文档目录
* doc_cn 中文文档目录
mkdir -p build
cd build
cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_MKLDNN=OFF -DWITH_MKLML=OFF -DWITH_DOC=ON
make gen_proto_py
make paddle_docs paddle_docs_cn
编译完成之后,会在当前目录生成两个子目录\: doc(英文文档目录)和 doc_cn(中文文档目录)。
打开浏览器访问对应目录下的index.html即可访问本地文档。
如何书写PaddlePaddle的文档
==========================
如何书写文档
============
PaddlePaddle文档使用 `sphinx`_ 自动生成,用户可以参考sphinx教程进行书写。
如何更新www.paddlepaddle.org文档
================================
如何更新文档主题
================
PaddlePaddle文档主题在 `TO_YOUR_PADDLE_CLONE_PATH/doc_theme` 文件夹下,包含所有和前端网页设计相关的文件。
开发者给PaddlePaddle代码增加的注释以PR的形式提交到github中,提交方式可参见 `贡献文档 <http://doc.paddlepaddle.org/develop/doc_cn/howto/dev/contribute_to_paddle_cn.html>`_ 。
如何更新doc.paddlepaddle.org
============================
更新的文档以PR的形式提交到github中,提交方式参见 `贡献文档 <http://doc.paddlepaddle.org/develop/doc_cn/howto/dev/contribute_to_paddle_cn.html>`_ 。
目前PaddlePaddle的develop分支的文档是自动触发更新的,用户可以分别查看最新的 `中文文档 <http://doc.paddlepaddle.org/develop/doc_cn/>`_ 和
`英文文档 <http://doc.paddlepaddle.org/develop/doc/>`_ 。
.. _cmake: https://cmake.org/
.. _sphinx: http://www.sphinx-doc.org/en/1.4.8/
......@@ -64,9 +64,29 @@ link_paddle_exe(paddle_capi_shared)
install(FILES ${CAPI_HEADERS} DESTINATION include/paddle)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/config.h DESTINATION include/paddle)
if(ANDROID)
execute_process(
COMMAND ${GIT_EXECUTABLE} log --pretty=oneline -1
OUTPUT_VARIABLE GIT_COMMITS_LIST
RESULT_VARIABLE GIT_COMMITS_LIST_RESULT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
if(${GIT_COMMITS_LIST_RESULT})
set(GIT_COMMITS_LIST "No commits.")
endif()
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${capi_whole_library}
DESTINATION lib/${ANDROID_ABI})
install(TARGETS paddle_capi_shared DESTINATION lib/${ANDROID_ABI})
install(CODE "FILE(WRITE ${CMAKE_INSTALL_PREFIX}/lib/${ANDROID_ABI}/BUILD.txt
\"Compiler:\n\"
\"\\t${CMAKE_C_COMPILER}\\n\"
\"\\t${CMAKE_CXX_COMPILER}\\n\"
\"Compiler Flags:\\n\"
\"\\t${CMAKE_F_FLAGS}\\n\"
\"\\t${CMAKE_CXX_FLAGS}\\n\"
\"Android API: ${CMAKE_SYSTEM_VERSION}\\n\"
\"Lastest commit:\\n\"
\"\\t${GIT_COMMITS_LIST}\\n\"
)"
)
else(ANDROID)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${capi_whole_library} DESTINATION lib)
install(TARGETS paddle_capi_shared DESTINATION lib)
......
......@@ -9,6 +9,7 @@ cc_test(eigen_test SRCS eigen_test.cc DEPS tensor)
cc_library(lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor)
cc_test(lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor)
nv_test(lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor)
cc_test(variable_test SRCS variable_test.cc)
......
......@@ -2,11 +2,22 @@
## Motivation
In Neural Network, the backpropagation algorithm follows the chain rule, so we need to compound the gradient operators/expressions together with the chain rule. Every forward network needs a backward network to construct the full computation graph, the operator/expression's backward pass will be generated respect to forward pass.
In Neural Network, many model is solved by the the backpropagation algorithm(known as BP) at present. Technically it caculates the gradient of the loss function, then distributed back through the networks. Follows the chain rule, so we need a module chains the gradient operators/expressions together with to construct the backward pass. Every forward network needs a backward network to construct the full computation graph, the operator/expression's backward pass will be generated respect to forward pass.
## Backward Operator Registry
## Implementation
A backward network is built up with several backward operators. Backward operators take forward operators' inputs outputs, and output gradients and then calculate its input gradients.
In this design doc, we exported only one API for generating the backward pass.
```c++
std::unique_ptr<OperatorBase> Backward(const OperatorBase& forwardOp,
const std::unordered_set<std::string>& no_grad_vars);
```
The implementation behind it can be divided into two parts, **Backward Operator Creating** and **Backward Operator Building**.
### Backward Operator Registry
A backward network is built up with several backward operators. Backward operators take forward operators' inputs, outputs, and output gradients and then calculate its input gradients.
| | forward operator | backward operator
| ---------------------- | ---------------- |------------------------- |
......@@ -25,7 +36,7 @@ REGISTER_OP(mul, MulOp, MulOpMaker, mul_grad, MulOpGrad);
`mul_grad` is the type of backward operator, and `MulOpGrad` is its class name.
## Backward Opeartor Creating
### Backward Opeartor Creating
Given a certain forward operator, we can get its corresponding backward operator by calling:
......@@ -43,40 +54,47 @@ The function `BuildGradOp` will sequentially execute following processes:
4. Building backward operator with `inputs`, `outputs` and forward operator's attributes.
## Backward Network Building
A backward network is a series of backward operators. The main idea of building a backward network is creating backward operators in the inverted sequence and put them together.
### Backward Network Building
In our design, the network itself is also a kind of operator. So the operators contained by a big network may be some small network.
given a forward network, it generates the backward network. We only care about the Gradients—`OutputGradients`, `InputGradients`.
A backward network is a series of backward operators. The main idea of building a backward network is creating backward operators in the inverted sequence and append them together one by one. There is some corner case need to process specially.
1. Op
when the input forward network is an Op, return its gradient Operator Immediately.
When the input forward network is an Op, return its gradient Operator Immediately. If all of its outputs are in no gradient set, then return a special `NOP`.
2. NetOp
when the input forward network is a NetOp, it needs to call the sub NetOp/Operators backward function recursively. During the process, we need to collect the `OutputGradients` name according to the forward NetOp.
In our design, the network itself is also a kind of operator(**NetOp**). So the operators contained by a big network may be some small network. When the input forward network is a NetOp, it needs to call the sub NetOp/Operators backward function recursively. During the process, we need to collect the `OutputGradients` name according to the forward NetOp.
3. RnnOp
RnnOp is a nested stepnet operator. Backward module need to recusively call `Backward` for every stepnet.
4. Sharing Variables
**sharing variables**. As illustrated in the pictures, two operator's share the same variable name of W@GRAD, which will overwrite their sharing input variable.
<p align="center">
<img src="./images/duplicate_op.png" width="50%" ><br/>
**shared variable**. As illustrated in the pictures, two operator's `Output` `Gradient` will overwrite their shared input variable.
​ pic 1. Sharing variables in operators.
<p align="center">
<img src="./images/duplicate_op.png" width="50%" ><br/>
</p>
1. Shared variable in operators.
​ Sharing variable between operators or same input variable used in multiple operators leads to a duplicate gradient variable. As demo show above, we need to rename gradient name recursively and add a generic add operator to replace the overwrite links.
</p>
<p align="center">
<img src="images/duplicate_op2.png" width="40%" ><br/>
Share variable between operators or same input variable used in multiple operators leads to a duplicate gradient variable. As demo show above, we need to rename gradient name recursively and add a generic add operator replace the overwrite links.
​ pic 2. Replace sharing variable's gradient with `Add` operator.
<p align="center">
<img src="images/duplicate_op2.png" width="50%" ><br/>
</p>
2. Replace shared variable's gradient with `Add` operator.
​ Because our framework finds variables accord to their names, we need to rename the output links. We add a suffix of number to represent its position in clockwise.
</p>
5. Part of Gradient is Zero.
In the whole graph, there is some case of that one operator's gradient is not needed, but its input's gradient is a dependency link of other operator, we need to fill a same shape gradient matrix in the position. In our implement, we insert a special `fillZeroLike` operator.
​ Then collect the sub graph `OutputGradients`/`InputGradients` as the NetOp's and return it.
Follow these rules above, then collect the sub graph `OutputGradients`/`InputGradients` as the NetOp's and return it.
......@@ -18,8 +18,10 @@
#ifndef PADDLE_ONLY_CPU
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/system/cuda/experimental/pinned_allocator.h>
#endif
#include <glog/logging.h>
#include "paddle/framework/ddim.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/enforce.h"
......@@ -32,7 +34,8 @@ template <typename T>
using Vector = std::vector<T>;
#else
template <typename T>
using Vector = thrust::host_vector<T>;
using Vector = thrust::host_vector<
T, thrust::system::cuda::experimental::pinned_allocator<T>>;
#endif
using LoD = std::vector<Vector<size_t>>;
......
/*
Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include <cuda.h>
#include <cuda_runtime.h>
#include "paddle/framework/lod_tensor.h"
#include "paddle/platform/assert.h"
#include <gtest/gtest.h>
__global__ void test(size_t* a, int size) {
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < size;
i += blockDim.x * gridDim.x) {
a[i] *= 2;
}
}
TEST(LoDTensor, LoDInGPU) {
paddle::framework::Tensor tensor;
paddle::framework::LoDTensor lod_tensor;
paddle::platform::GPUPlace place(0);
paddle::framework::LoD src_lod;
src_lod.push_back(std::vector<size_t>{0, 2, 4, 6, 8, 10, 12, 14});
tensor.Resize({14, 16});
tensor.mutable_data<float>(place);
lod_tensor.set_lod(src_lod);
lod_tensor.set_tensor(&tensor);
CHECK_EQ(lod_tensor.lod_element(0, 2), 4);
CHECK_EQ(lod_tensor.lod_element(0, 4), 8);
auto lod = lod_tensor.lod();
test<<<1, 8>>>(lod[0].data(), lod[0].size());
cudaDeviceSynchronize();
for (size_t i = 0; i < src_lod[0].size(); ++i) {
CHECK_EQ(lod[0].data()[i], src_lod[0].data()[i] * 2);
}
}
......@@ -81,6 +81,9 @@ class Tensor {
/*! Return the dimensions of the memory block. */
inline const DDim& dims() const;
/*! Return the numel of the memory block. */
inline int64_t numel() const;
/*! Resize the dimensions of the memory block. */
inline Tensor& Resize(const DDim& dims);
......@@ -162,6 +165,12 @@ class Tensor {
/*! points to dimensions of memory block. */
DDim dims_;
/**
* A cache of the number of elements in a tensor.
* Would be 0 for an uninitialized tensor.
*/
int64_t numel_;
/**
* @brief A PlaceHolder may be shared by more than one tensor.
*
......
......@@ -24,7 +24,7 @@ inline void Tensor::check_memory_size() const {
PADDLE_ENFORCE_NOT_NULL(
holder_, "Tenosr holds no memory. Call Tensor::mutable_data first.");
PADDLE_ENFORCE_GE(
holder_->size(), product(dims_) * sizeof(T) + offset_,
holder_->size(), numel() * sizeof(T) + offset_,
"Tensor's dims_ is out of bound. Call Tensor::mutable_data "
"first to re-allocate memory.\n"
"or maybe the required data-type mismatches the data already stored.");
......@@ -54,11 +54,11 @@ inline T* Tensor::mutable_data(DDim dims, platform::Place place) {
template <typename T>
inline T* Tensor::mutable_data(platform::Place place) {
static_assert(std::is_pod<T>::value, "T must be POD");
PADDLE_ENFORCE_GT(product(dims_), 0,
PADDLE_ENFORCE_GT(numel(), 0,
"Tensor's numel must be larger than zero to call "
"Tensor::mutable_data. Call Tensor::set_dim first.");
/* some versions of boost::variant don't have operator!= */
int64_t size = product(dims_) * sizeof(T);
int64_t size = numel() * sizeof(T);
if (holder_ == nullptr || !(holder_->place() == place) ||
holder_->size() < size + offset_) {
if (platform::is_cpu_place(place)) {
......@@ -97,7 +97,7 @@ inline void Tensor::CopyFrom(const Tensor& src,
auto dst_ptr = static_cast<void*>(mutable_data<T>(dst_place));
auto size = product(src.dims_) * sizeof(T);
auto size = src.numel() * sizeof(T);
if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr,
......@@ -131,7 +131,7 @@ inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const {
PADDLE_ENFORCE_LT(begin_idx, end_idx,
"Begin index must be less than end index.");
PADDLE_ENFORCE_NE(dims_[0], 1, "Can not slice a tensor with dims_[0] = 1.");
size_t base = product(dims_) / dims_[0];
size_t base = numel() / dims_[0];
Tensor dst;
dst.holder_ = holder_;
DDim dst_dims = dims_;
......@@ -143,11 +143,14 @@ inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const {
inline Tensor& Tensor::Resize(const DDim& dims) {
dims_ = dims;
numel_ = product(dims_);
return *this;
}
inline const DDim& Tensor::dims() const { return dims_; }
inline int64_t Tensor::numel() const { return numel_; }
template <typename T>
inline Tensor ReshapeToMatrix(const Tensor& src, int num_col_dims) {
Tensor res;
......
......@@ -594,7 +594,7 @@ struct StridePadding {
float32x4_t s1 = vdupq_n_f32(0.f);
for (int s = 0; s < step; s++) {
float32x4_t s0 = vld1q_f32(input);
float32x4x2_t v = {s0, s1};
float32x4x2_t v = {{s0, s1}};
vst2q_f32(inputPadding, v);
input += 4;
inputPadding += 8;
......
......@@ -53,27 +53,27 @@ bool DeConv3DLayer::init(const LayerMap &layerMap,
size_t DeConv3DLayer::getSize() {
CHECK_NE(inputLayers_.size(), 0UL);
outputH_.clear();
outputW_.clear();
outputD_.clear();
imgSizeW_.clear();
imgSizeH_.clear();
imgSizeD_.clear();
N_.clear();
NOut_.clear();
size_t layerSize = 0;
for (size_t i = 0; i < inputLayers_.size(); ++i) {
outputW_.push_back(
imageSize(imgSizeW_[i], filterSize_[i], padding_[i], stride_[i], true));
outputH_.push_back(imageSize(
imgSizeH_[i], filterSizeY_[i], paddingY_[i], strideY_[i], true));
outputD_.push_back(imageSize(
imgSizeD_[i], filterSizeZ_[i], paddingZ_[i], strideZ_[i], true));
NOut_.push_back(outputD_[i] * outputH_[i] * outputW_[i]);
N_.push_back(imgSizeD_[i] * imgSizeH_[i] * imgSizeW_[i]);
imgSizeW_.push_back(
imageSize(outputW_[i], filterSize_[i], padding_[i], stride_[i], true));
imgSizeH_.push_back(imageSize(
outputH_[i], filterSizeY_[i], paddingY_[i], strideY_[i], true));
imgSizeD_.push_back(imageSize(
outputD_[i], filterSizeZ_[i], paddingZ_[i], strideZ_[i], true));
NOut_.push_back(imgSizeD_[i] * imgSizeH_[i] * imgSizeW_[i]);
N_.push_back(outputD_[i] * outputH_[i] * outputW_[i]);
CHECK(layerSize == 0 || N_[i] * size_t(numFilters_) == layerSize);
layerSize += NOut_[i] * numFilters_;
}
getOutput().setFrameHeight(outputH_[0]);
getOutput().setFrameWidth(outputW_[0]);
getOutput().setFrameDepth(outputD_[0]);
getOutput().setFrameHeight(imgSizeH_[0]);
getOutput().setFrameWidth(imgSizeW_[0]);
getOutput().setFrameDepth(imgSizeD_[0]);
return layerSize;
}
......@@ -103,9 +103,9 @@ void DeConv3DLayer::forward(PassType passType) {
}
colBuf_->col2Vol(outMat->getData() + n * outMat->getStride(),
numFilters_,
outputD_[i],
outputH_[i],
outputW_[i],
imgSizeD_[i],
imgSizeH_[i],
imgSizeW_[i],
filterSizeZ_[i],
filterSizeY_[i],
filterSize_[i],
......@@ -144,9 +144,9 @@ void DeConv3DLayer::backward(const UpdateCallback &callback) {
colBuf_->vol2Col(
getOutputGrad()->getData() + n * getOutputGrad()->getStride(),
numFilters_,
outputD_[i],
outputH_[i],
outputW_[i],
imgSizeD_[i],
imgSizeH_[i],
imgSizeW_[i],
filterSizeZ_[i],
filterSizeY_[i],
filterSize_[i],
......
......@@ -49,6 +49,12 @@ struct LayerState {
};
typedef std::shared_ptr<LayerState> LayerStatePtr;
/// Paddle device ID, MKLDNN is -2, CPU is -1
enum PADDLE_DEVICE_ID {
MKLDNN_DEVICE = -2,
CPU_DEVICE = -1,
};
/**
* @brief Base class for layer.
* Define necessary variables and functions for every layer.
......@@ -59,11 +65,6 @@ protected:
LayerConfig config_;
/// whether to use GPU
bool useGpu_;
/// Paddle device ID, MKLDNN is -2, CPU is -1
enum PADDLE_DEVICE_ID {
MKLDNN_DEVICE = -2,
CPU_DEVICE = -1,
};
/// Device Id. MKLDNN is -2, CPU is -1, and GPU is 0, 1, 2 ...
int deviceId_;
/// Input layers
......
......@@ -14,7 +14,6 @@ limitations under the License. */
#include "MKLDNNFcLayer.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
using namespace mkldnn; // NOLINT
typedef memory::format format;
......@@ -40,6 +39,8 @@ bool MKLDNNFcLayer::init(const LayerMap& layerMap,
oc_ = getSize();
oh_ = 1;
ow_ = 1;
ih_ = 1;
iw_ = 1;
// input size can not change in FC
iLayerSize_ = inputLayers_[0]->getSize();
......@@ -77,111 +78,86 @@ void MKLDNNFcLayer::convertWeightsToPaddle() {
wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim);
}
void MKLDNNFcLayer::convertOutputToOtherDevice() {
copyOutputInfoToOtherDevice();
// find other cpu device and reorder output to cpu device
int cnt = 0;
for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
if (outputOtherDevice_[i].deviceId == CPU_DEVICE) {
// fc cpu output value do not need convert
// just share point
outputOtherDevice_[i].value = output_.value;
++cnt;
}
}
if (cnt > 1) {
LOG(WARNING) << "should not have more than one CPU devie";
}
}
void MKLDNNFcLayer::reshape(
int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) {
reshapeInput(bs, ih, iw);
void MKLDNNFcLayer::reshape() {
const Argument& input = getInput(0, getPrev(0)->getDeviceId());
int batchSize = input.getBatchSize();
if (bs_ == batchSize) {
return;
}
bs_ = batchSize;
ih_ = input.getFrameHeight();
iw_ = input.getFrameWidth();
if (ih_ == 0) {
ih_ = 1;
}
if (iw_ == 0) {
iw_ = 1;
}
CHECK_EQ(iLayerSize_, inputLayers_[0]->getSize());
ic_ = iLayerSize_ / (ih_ * iw_);
CHECK_EQ(size_t(ic_ * ih_ * iw_), iLayerSize_) << "not divisible";
CHECK_EQ(size_t(oc_), getSize());
printSizeInfo();
ic = iLayerSize_ / (ih * iw);
CHECK_EQ(size_t(ic * ih * iw), iLayerSize_) << "not divisible";
CHECK_EQ(size_t(oc), getSize());
// reset output
output_.setFrameHeight(oh_);
output_.setFrameWidth(ow_);
resetOutput(bs_, oc_);
reshapeOutput(oh, ow);
resizeOutput(bs, oc);
// reset mkldnn forward
resetFwd();
needResetBwd_ = true;
convertWeightsFromPaddle();
printSizeInfo();
}
void MKLDNNFcLayer::resetFwd() {
void MKLDNNFcLayer::resetFwd(std::vector<mkldnn::primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
pipeline.clear();
bool hasBias = biases_ && biases_->getW();
const MatrixPtr& wgt = weight_->getW();
const MatrixPtr& bias = hasBias ? biases_->getW() : nullptr;
const MatrixPtr& out = output_.value;
const MatrixPtr& wgtVal = weight_->getW();
const MatrixPtr& biasVal = hasBias ? biases_->getW() : nullptr;
const MatrixPtr& outVal = output_.value;
if (inputIsOnlyMKLDNN()) {
const MatrixPtr& in = getInputValue(0);
inVal_ = std::dynamic_pointer_cast<MKLDNNMatrix>(in);
CHECK(inVal_) << "Input should be MKLDNNMatrix";
const MatrixPtr& inVal = getInputValue(0);
in = std::dynamic_pointer_cast<MKLDNNMatrix>(inVal);
CHECK(in) << "Input should be MKLDNNMatrix";
} else {
CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet";
const MatrixPtr& in = getInputValue(0, CPU_DEVICE);
inVal_ = MKLDNNMatrix::create(
in, memory::dims{bs_, ic_, ih_, iw_}, format::nchw, engine_);
}
inVal_->downSpatial();
wgtVal_ = MKLDNNMatrix::create(
wgt, memory::dims{oc_, ic_, ih_, iw_}, format::oihw, engine_);
wgtVal_->downSpatial();
biasVal_ =
hasBias ? MKLDNNMatrix::create(bias, {oc_}, format::x, engine_) : nullptr;
outVal_ = MKLDNNMatrix::create(out, {bs_, oc_}, format::nc, engine_);
const MatrixPtr& inVal = getInputValue(0, CPU_DEVICE);
in = MKLDNNMatrix::create(
inVal, memory::dims{bs_, ic_, ih_, iw_}, format::nchw, engine_);
}
in->downSpatial();
wgt = MKLDNNMatrix::create(
wgtVal, memory::dims{oc_, ic_, ih_, iw_}, format::oihw, engine_);
wgt->downSpatial();
bias = hasBias ? MKLDNNMatrix::create(biasVal, {oc_}, format::x, engine_)
: nullptr;
out = MKLDNNMatrix::create(outVal, {bs_, oc_}, format::nc, engine_);
// change original output value to mkldnn output value
output_.value = std::dynamic_pointer_cast<Matrix>(outVal_);
output_.value = std::dynamic_pointer_cast<Matrix>(out);
if (!outputIsOnlyMKLDNN()) {
convertOutputToOtherDevice();
// fc cpu output value do not need create convert
// just share point
getOutput(CPU_DEVICE).value->setData(output_.value->getData());
}
// create forward handle
prop_kind pk = prop_kind::forward;
fc_fwd::desc fwdDesc = hasBias ? fc_fwd::desc(pk,
inVal_->getMemoryDesc(),
wgtVal_->getMemoryDesc(),
biasVal_->getMemoryDesc(),
outVal_->getMemoryDesc())
in->getMemoryDesc(),
wgt->getMemoryDesc(),
bias->getMemoryDesc(),
out->getMemoryDesc())
: fc_fwd::desc(pk,
inVal_->getMemoryDesc(),
wgtVal_->getMemoryDesc(),
outVal_->getMemoryDesc());
in->getMemoryDesc(),
wgt->getMemoryDesc(),
out->getMemoryDesc());
fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
if (hasBias) {
fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *biasVal_, *outVal_));
fwd_.reset(new fc_fwd(fwdPD, *in, *wgt, *bias, *out));
} else {
fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *outVal_));
fwd_.reset(new fc_fwd(fwdPD, *in, *wgt, *out));
}
printValueFormatFlow();
pipelineFwd_.clear();
pipelineFwd_.push_back(*fwd_);
pipeline.push_back(*fwd_);
}
void MKLDNNFcLayer::resetBwd() {
void MKLDNNFcLayer::resetBwd(std::vector<mkldnn::primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
pipeline.clear();
if (!needResetBwd_) {
return;
}
......@@ -190,8 +166,8 @@ void MKLDNNFcLayer::resetBwd() {
/// backward weight
CHECK(inVal_) << "Should have input value";
const MatrixPtr& wgt = weight_->getWGrad();
const MatrixPtr& bias = hasBias ? biases_->getWGrad() : nullptr;
const MatrixPtr& wgtGrad = weight_->getWGrad();
const MatrixPtr& biasGrad = hasBias ? biases_->getWGrad() : nullptr;
// TODO(TJ): merge outgrad
int device = outputIsOnlyMKLDNN() ? MKLDNN_DEVICE : CPU_DEVICE;
......@@ -202,101 +178,66 @@ void MKLDNNFcLayer::resetBwd() {
// for CPU device:
// fc do not need to convert from cpu device since output is always nc format
// only need create from cpu device
const MatrixPtr& out = getOutput(device).grad;
outGrad_ = MKLDNNMatrix::create(out, outVal_->getPrimitiveDesc());
wgtGrad_ = MKLDNNMatrix::create(wgt, wgtVal_->getPrimitiveDesc());
biasGrad_ = hasBias ? MKLDNNMatrix::create(bias, biasVal_->getPrimitiveDesc())
: nullptr;
const MatrixPtr& outGrad = getOutput(device).grad;
out = MKLDNNMatrix::create(outGrad, outVal_->getPrimitiveDesc());
wgt = MKLDNNMatrix::create(wgtGrad, wgtVal_->getPrimitiveDesc());
bias = hasBias ? MKLDNNMatrix::create(biasGrad, biasVal_->getPrimitiveDesc())
: nullptr;
// create memory primitive desc
fc_fwd::desc fwdDesc = fc_fwd::desc(prop_kind::forward,
inVal_->getMemoryDesc(),
wgtGrad_->getMemoryDesc(),
outGrad_->getMemoryDesc());
wgt->getMemoryDesc(),
out->getMemoryDesc());
fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
fc_bwdWgt::desc bwdWgtDesc = hasBias
? fc_bwdWgt::desc(inVal_->getMemoryDesc(),
wgtGrad_->getMemoryDesc(),
biasGrad_->getMemoryDesc(),
outGrad_->getMemoryDesc())
wgt->getMemoryDesc(),
bias->getMemoryDesc(),
out->getMemoryDesc())
: fc_bwdWgt::desc(inVal_->getMemoryDesc(),
wgtGrad_->getMemoryDesc(),
outGrad_->getMemoryDesc());
wgt->getMemoryDesc(),
out->getMemoryDesc());
fc_bwdWgt::primitive_desc bwdWgtPD =
fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, fwdPD);
if (hasBias) {
bwdWgt_.reset(
new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_, *biasGrad_));
bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *out, *wgt, *bias));
} else {
bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_));
bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *out, *wgt));
}
pipelineBwd_.clear();
pipelineBwd_.push_back(*bwdWgt_);
pipeline.push_back(*bwdWgt_);
/// backward data
device = inputIsOnlyMKLDNN() ? MKLDNN_DEVICE : CPU_DEVICE;
const MatrixPtr& in = getInputGrad(0, device);
if (in == nullptr) {
const MatrixPtr& inGrad = inputLayers_[0]->getOutput().grad;
if (inGrad == nullptr) {
return;
}
if (getInput(0, device).getAllCount() > 1) {
// TODO(TJ): use outputMaps_ ways when merge outgrad done
if (getInput(0, MKLDNN_DEVICE).getAllCount() > 1) {
// TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done
} else {
inGrad_ = MKLDNNMatrix::create(in, inVal_->getPrimitiveDesc());
in = MKLDNNMatrix::create(inGrad, inVal_->getPrimitiveDesc());
}
fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(inVal_->getMemoryDesc(),
wgtGrad_->getMemoryDesc(),
outGrad_->getMemoryDesc());
fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(
inVal_->getMemoryDesc(), wgt->getMemoryDesc(), out->getMemoryDesc());
fc_bwdData::primitive_desc bwdDataPD =
fc_bwdData::primitive_desc(bwdDataDesc, engine_, fwdPD);
CHECK(wgtVal_) << "Should have weight memory";
bwdData_.reset(new fc_bwdData(bwdDataPD, *outGrad_, *wgtVal_, *inGrad_));
bwdData_.reset(new fc_bwdData(bwdDataPD, *out, *wgtVal_, *in));
printGradFormatFlow();
pipelineBwd_.push_back(*bwdData_);
pipeline.push_back(*bwdData_);
}
void MKLDNNFcLayer::forward(PassType passType) {
Layer::forward(passType);
reshape();
{
REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str());
syncInputValue();
// just submit forward pipeline
stream_->submit(pipelineFwd_);
}
/* activation */ {
REGISTER_TIMER_INFO("FwActTimer", getName().c_str());
forwardActivation();
}
void MKLDNNFcLayer::updateInputData() {
inVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
}
void MKLDNNFcLayer::backward(const UpdateCallback& callback) {
/* Do derivation */ {
REGISTER_TIMER_INFO("BpActTimer", getName().c_str());
backwardActivation();
}
{
REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str());
resetBwd();
syncOutputGrad();
// just sumbmit backward pipeline
stream_->submit(pipelineBwd_);
}
{
REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
weight_->getParameterPtr()->incUpdate(callback);
if (biases_ && biases_->getWGrad()) {
biases_->getParameterPtr()->incUpdate(callback);
}
void MKLDNNFcLayer::updateWeights(const UpdateCallback& callback) {
weight_->getParameterPtr()->incUpdate(callback);
if (biases_ && biases_->getWGrad()) {
biases_->getParameterPtr()->incUpdate(callback);
}
}
} // namespace paddle
......@@ -45,35 +45,28 @@ public:
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void convertWeightsFromPaddle() override;
void reshape(
int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override;
void convertWeightsToPaddle() override;
void resetFwd(std::vector<mkldnn::primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) override;
void forward(PassType passType) override;
void resetBwd(std::vector<mkldnn::primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) override;
void backward(const UpdateCallback& callback) override;
void updateInputData() override;
protected:
/**
* reshape the input image sizes
* and reset output buffer size
* and reset mkldnn forward
*/
void reshape();
/**
* reset the forward primitve and memory
* only would be called when input size changes
*/
void resetFwd();
/**
* reset the backward primitve and memory for mkldnn fc
* only would be called when needed
*/
void resetBwd();
void convertOutputToOtherDevice() override;
void updateWeights(const UpdateCallback& callback) override;
void convertWeightsFromPaddle() override;
void convertWeightsToPaddle() override;
};
} // namespace paddle
......@@ -19,6 +19,7 @@ limitations under the License. */
#include "MKLDNNBase.h"
#include "mkldnn.hpp"
#include "paddle/math/MKLDNNMatrix.h"
#include "paddle/utils/Stat.h"
DECLARE_bool(use_mkldnn);
......@@ -33,6 +34,8 @@ typedef std::shared_ptr<MKLDNNLayer> MKLDNNLayerPtr;
*/
class MKLDNNLayer : public Layer {
protected:
// input value element count
size_t inputElemenCnt_;
// batch size
int bs_;
// input image channel, height and width
......@@ -52,7 +55,7 @@ protected:
std::vector<mkldnn::primitive> pipelineFwd_;
std::vector<mkldnn::primitive> pipelineBwd_;
// MKLDNNMatrixPtr
// MKLDNNMatrixPtr with internal format
MKLDNNMatrixPtr inVal_;
MKLDNNMatrixPtr inGrad_;
MKLDNNMatrixPtr outVal_;
......@@ -65,6 +68,7 @@ protected:
public:
explicit MKLDNNLayer(const LayerConfig& config)
: Layer(config),
inputElemenCnt_(0),
bs_(0),
ic_(0),
ih_(0),
......@@ -95,12 +99,104 @@ public:
if (!Layer::init(layerMap, parameterMap)) {
return false;
}
checkCPUOutputsNumber();
stream_.reset(new MKLDNNStream());
engine_ = CPUEngine::Instance().getEngine();
return true;
}
void forward(PassType passType) override {
passType_ = passType;
{
REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str());
CHECK(!inputLayers_.empty());
copySeqInfoToOutputs();
size_t elemenCnt = inputLayers_[0]->getOutput().value->getElementCnt();
if (inputElemenCnt_ != elemenCnt) {
// reset when input total sizes changed, not only the batchsize
inputElemenCnt_ = elemenCnt;
reshape(bs_, ic_, ih_, iw_, oc_, oh_, ow_);
resetFwd(pipelineFwd_, inVal_, wgtVal_, biasVal_, outVal_);
convertWeightsFromPaddle();
needResetBwd_ = true;
}
if (inputLayers_[0]->getType() == "data") {
updateInputData();
}
stream_->submit(pipelineFwd_);
}
/* activation */ {
REGISTER_TIMER_INFO("FwActTimer", getName().c_str());
forwardActivation();
}
}
void backward(const UpdateCallback& callback) override {
/* Do derivation */ {
REGISTER_TIMER_INFO("BpActTimer", getName().c_str());
backwardActivation();
}
{
REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str());
if (needResetBwd_) {
resetBwd(pipelineBwd_, inGrad_, wgtGrad_, biasGrad_, outGrad_);
needResetBwd_ = false;
}
stream_->submit(pipelineBwd_);
}
{
REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
updateWeights(callback);
}
}
/**
* reshape the input image sizes
* and reset output image and buffer size
* output channel can not be changed
*/
virtual void reshape(
int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) = 0;
/**
* reset the mkldnn forward primitve and memory
* only would be called when input size changes
*/
virtual void resetFwd(std::vector<mkldnn::primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) = 0;
/**
* reset the mkldnn backward primitve and memory for mkldnn fc
* only would be called when needed
*/
virtual void resetBwd(std::vector<mkldnn::primitive>& pipeline,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) = 0;
/**
* Update input value data when input layer is "data" type.
* Since the input value data address might be changed.
*/
virtual void updateInputData() {}
/**
* Update weights and biases if necessary.
*/
virtual void updateWeights(const UpdateCallback& callback) {}
/**
* convert weight from paddle format to mkldnn format
* weight_ will be override
......@@ -114,10 +210,38 @@ public:
virtual void convertWeightsToPaddle() {}
/**
* convert MKLDNN output to other device.
* only support CPU device yet
* add this interface as public for unit test
*/
void addOutputArgument(int deviceId) { Layer::addOutputArgument(deviceId); }
protected:
/**
* reshape the input image sizes and input batchsize
*/
virtual void convertOutputToOtherDevice() {}
virtual void reshapeInput(int& batchsize, int& height, int& width) {
const Argument& input = inputLayers_[0]->getOutput();
batchsize = input.getBatchSize();
int h = input.getFrameHeight();
int w = input.getFrameWidth();
if (h != 0) {
height = h;
}
if (w != 0) {
width = w;
}
}
/**
* reshape output image sizes
*/
virtual void reshapeOutput(size_t height, size_t width) {
output_.setFrameHeight(height);
output_.setFrameWidth(width);
for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
outputOtherDevice_[i].setFrameHeight(height);
outputOtherDevice_[i].setFrameWidth(width);
}
}
/**
* print info about sizes
......@@ -133,8 +257,8 @@ public:
*/
virtual void printValueFormatFlow() {
if (inVal_ && outVal_) {
VLOG(MKLDNN_FMTS) << "value format flow --- " << inVal_->getFormat()
<< " >>> " << outVal_->getFormat();
VLOG(MKLDNN_FMTS) << inVal_->getFormat() << " >>> "
<< outVal_->getFormat();
}
}
......@@ -143,29 +267,12 @@ public:
*/
virtual void printGradFormatFlow() {
if (inGrad_ && outGrad_) {
VLOG(MKLDNN_FMTS) << "grad format flow --- " << inGrad_->getFormat()
<< " <<< " << outGrad_->getFormat();
VLOG(MKLDNN_FMTS) << inGrad_->getFormat() << " <<< "
<< outGrad_->getFormat();
}
}
protected:
/**
* copy image size and sequence info to other device
* @note: can not directly use Layer::copyOutputToOtherDevice since here only
* copy base info and do not copy data value
*/
void copyOutputInfoToOtherDevice() {
for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
outputOtherDevice_[i].setFrameHeight(output_.getFrameHeight());
outputOtherDevice_[i].setFrameWidth(output_.getFrameWidth());
outputOtherDevice_[i].sequenceStartPositions =
output_.sequenceStartPositions;
outputOtherDevice_[i].subSequenceStartPositions =
output_.subSequenceStartPositions;
outputOtherDevice_[i].cpuSequenceDims = output_.cpuSequenceDims;
}
}
/**
* If input only has MKLDNN device.
* Otherwise, only support the previous layer using CPU device.
......@@ -193,37 +300,12 @@ protected:
return outputOtherDevice_.size() == 0;
}
/**
* Sync input value data
*/
void syncInputValue() {
if (inputIsOnlyMKLDNN()) {
return;
}
real* iData = getInputValue(0, CPU_DEVICE)->getData();
// update input data
// since it might be changed if this is after data layer
inVal_->updateData(iData);
}
/**
* Sync output grad data
*/
void syncOutputGrad() {
if (outputIsOnlyMKLDNN()) {
return;
}
// update diff
real* oDiff = getOutput(CPU_DEVICE).grad->getData();
outGrad_->updateData(oDiff);
}
/**
* Set deviceId of this layer.
*/
void setDevice(int id) { deviceId_ = id; }
private:
/**
* Set deviceId of the params used in this layer.
*/
......@@ -247,6 +329,42 @@ protected:
parameter->setDevice(id);
}
}
/**
* Check the cpu device number of outputOtherDevice_.
* should have only one at most.
*/
void checkCPUOutputsNumber(int max = 1) {
int cnt = 0;
for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
if (outputOtherDevice_[i].deviceId == CPU_DEVICE) {
++cnt;
}
}
CHECK_LE(cnt, max) << "too much CPU devies";
}
/**
* copy SeqInfo from input layer to this output and other output devices.
* @note: do not use getInput(0) since it used this deviceId_,
* use "inputLayers_[0]->getOutput()" instead.
*/
void copySeqInfoToOutputs() {
if (inputLayers_.empty() || !needSequenceInfo_) {
return;
}
const Argument& input = inputLayers_[0]->getOutput();
output_.sequenceStartPositions = input.sequenceStartPositions;
output_.subSequenceStartPositions = input.subSequenceStartPositions;
output_.cpuSequenceDims = input.cpuSequenceDims;
for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
outputOtherDevice_[i].sequenceStartPositions =
output_.sequenceStartPositions;
outputOtherDevice_[i].subSequenceStartPositions =
output_.subSequenceStartPositions;
outputOtherDevice_[i].cpuSequenceDims = output_.cpuSequenceDims;
}
}
};
} // namespace paddle
......@@ -83,8 +83,7 @@ void SwitchOrderLayer::forward(PassType passType) {
setOutDims();
resetOutput(outDims_[0], outDims_[1] * outDims_[2] * outDims_[3]);
if (heightAxis_.size() > 0) {
getOutputValue()->reshape(reshapeHeight_, reshapeWidth_);
getOutputGrad()->reshape(reshapeHeight_, reshapeWidth_);
resetOutput(reshapeHeight_, reshapeWidth_);
}
// switch NCHW to NHWC
......
......@@ -63,8 +63,12 @@ void MKLDNNTester::reset(const TestConfig& dnn,
initTestLayer(
configs_[i], &(layerMaps_[i]), &(parameters_[i]), &(testLayers_[i]));
}
dnnLayer_ = testLayers_[DNN];
refLayer_ = testLayers_[REF];
dnnLayer_ = std::dynamic_pointer_cast<MKLDNNLayer>(testLayers_[DNN]);
CHECK(dnnLayer_);
// for comparison with Paddle reference results,
// need manually add cpu device output for test
dnnLayer_->addOutputArgument(CPU_DEVICE);
EXPECT_EQ(dataLayers_[DNN].size(), dataLayers_[REF].size());
EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());
......@@ -109,20 +113,22 @@ void MKLDNNTester::randomBotDatas() {
void MKLDNNTester::randomTopDiffs() {
refLayer_->getOutputGrad()->randomizeUniform();
dnnLayer_->getOutputGrad()->copyFrom(*(refLayer_->getOutputGrad()));
VLOG(lvl_) << "Random dom Backward Input, TopDiff: ";
dnnLayer_->getOutput(CPU_DEVICE)
.grad->copyFrom(*(refLayer_->getOutputGrad()));
VLOG(lvl_) << "Random Backward Input, TopDiff: ";
printMatrix(refLayer_->getOutputGrad());
}
void MKLDNNTester::checkForward() {
printTopDatas();
double delta = compareMatrix(testLayers_[DNN]->getOutputValue(),
testLayers_[REF]->getOutputValue());
VLOG(MKLDNN_ALL) << "Check Forward";
printTopDatas();
double delta = compareMatrix(dnnLayer_->getOutput(-1).value,
refLayer_->getOutputValue());
EXPECT_LE(fabs(delta), eps_);
}
void MKLDNNTester::checkBackwardData() {
VLOG(MKLDNN_ALL) << "Check Backward Data";
// TODO(TJ): uncomment me when batch norm ready
// const bool isBN = dnnLayer_->getType() == "mkldnn_batch_norm";
for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
......@@ -144,14 +150,12 @@ void MKLDNNTester::checkBackwardData() {
}
void MKLDNNTester::checkBackwardWgts() {
VLOG(MKLDNN_ALL) << "Check Backward Weight";
CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
vector<VectorPtr> dnnWgts; // used to temply save mkldnn weights
saveWgt(parameters_[DNN], dnnWgts);
const MKLDNNLayerPtr dnnlayer =
std::dynamic_pointer_cast<MKLDNNLayer>(dnnLayer_);
CHECK(dnnlayer);
dnnlayer->convertWeightsToPaddle();
dnnLayer_->convertWeightsToPaddle();
for (size_t i = 0; i < parameters_[DNN].size(); ++i) {
const VectorPtr& dnn = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
const VectorPtr& ref = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
......@@ -189,38 +193,38 @@ void MKLDNNTester::restoreWgt(const vector<VectorPtr>& from,
}
// clear parameters grad
void MKLDNNTester::clearWgtDiffs() {
void MKLDNNTester::clearWgtDiffs(size_t id) {
CHECK_LE(id, parameters_.size());
for (size_t n = 0; n < parameters_.size(); ++n) {
for (size_t i = 0; i < parameters_[n].size(); ++i) {
const VectorPtr& grad = parameters_[n][i]->getBuf(PARAMETER_GRADIENT);
if (grad) {
grad->zeroMem();
if (id == n || id == parameters_.size()) {
for (size_t i = 0; i < parameters_[n].size(); ++i) {
const VectorPtr& grad = parameters_[n][i]->getBuf(PARAMETER_GRADIENT);
if (grad) {
grad->zeroMem();
}
}
}
}
}
void MKLDNNTester::clearBotDiffs() {
// dnn and ref
void MKLDNNTester::clearBotDiffs(size_t id) {
CHECK_LE(id, dataLayers_.size());
for (size_t n = 0; n < dataLayers_.size(); ++n) {
// all inputs layers
for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
dataLayers_[n][i]->getOutputGrad()->zeroMem();
if (id == n || id == dataLayers_.size()) {
// clear inputs layers of this specific layer
for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
dataLayers_[n][i]->getOutputGrad()->zeroMem();
}
}
}
}
void MKLDNNTester::clearBotDiffs(int n) {
CHECK_LT(n, NUM);
// all inputs layers
for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
dataLayers_[n][i]->getOutputGrad()->zeroMem();
}
}
void MKLDNNTester::clearTopDatas() {
void MKLDNNTester::clearTopDatas(size_t id) {
CHECK_LE(id, testLayers_.size());
for (size_t i = 0; i < testLayers_.size(); ++i) {
testLayers_[i]->getOutputValue()->zeroMem();
if (id == i || id == testLayers_.size()) {
testLayers_[i]->getOutputValue()->zeroMem();
}
}
}
......@@ -300,16 +304,24 @@ void MKLDNNTester::runOnce() {
checkForward();
// test backward
// simple updater
UpdateCallback updateCallback = [](Parameter* para) {
auto& grad = para->getBuf(PARAMETER_GRADIENT);
auto& value = para->getBuf(PARAMETER_VALUE);
real lr = 1e-3;
value->add(*grad, lr);
};
randomTopDiffs();
dnnLayer_->backward(nullptr);
refLayer_->backward(nullptr);
dnnLayer_->backward(updateCallback);
refLayer_->backward(updateCallback);
checkBackwardData();
checkBackwardWgts();
// clear buffers
// ref code will addto the diff, dnn code will writeto it
// and clearTopDatas() and clearWgtDiffs() should be coverd by test layers
// and clearTopDatas(REF) should be coverd by ref layers
clearBotDiffs(REF);
clearWgtDiffs(REF);
}
void MKLDNNTester::run(const TestConfig& dnn,
......
......@@ -18,6 +18,7 @@ limitations under the License. */
#include <vector>
#include "LayerGradUtil.h"
#include "paddle/gserver/layers/MKLDNNBase.h"
#include "paddle/gserver/layers/MKLDNNLayer.h"
namespace paddle {
......@@ -40,7 +41,8 @@ protected:
vector<LayerMap> layerMaps_;
vector<vector<ParameterPtr>> parameters_;
vector<LayerPtr> testLayers_;
LayerPtr dnnLayer_, refLayer_;
LayerPtr refLayer_;
MKLDNNLayerPtr dnnLayer_;
/// run some iterations, all the result should pass
size_t iter_;
......@@ -88,10 +90,10 @@ private:
void checkBackwardData();
void checkBackwardWgts();
void clearWgtDiffs();
void clearBotDiffs();
void clearBotDiffs(int n); // clear specific layer
void clearTopDatas();
// clear specific layer, clear all when id equals NUM
void clearWgtDiffs(size_t id = NUM);
void clearBotDiffs(size_t id = NUM);
void clearTopDatas(size_t id = NUM);
void printTopDatas();
void printMatrix(const MatrixPtr& m);
......
......@@ -2302,26 +2302,27 @@ void test3DDeConvLayer(const string& type, bool trans, bool useGpu) {
conv->set_stride(2);
conv->set_stride_y(2);
conv->set_stride_z(2);
conv->set_img_size(IMAGE_SIZE);
conv->set_img_size_y(IMAGE_SIZE_Y);
conv->set_img_size_z(IMAGE_SIZE_Z);
conv->set_output_x(imageSize(conv->img_size(),
conv->set_output_x(IMAGE_SIZE);
conv->set_output_y(IMAGE_SIZE_Y);
conv->set_output_z(IMAGE_SIZE_Z);
conv->set_img_size(imageSize(conv->output_x(),
conv->filter_size(),
conv->padding(),
conv->stride(),
true));
conv->set_output_y(imageSize(conv->img_size_y(),
conv->filter_size_y(),
conv->padding_y(),
conv->stride_y(),
true));
conv->set_output_z(imageSize(conv->img_size_z(),
conv->filter_size_z(),
conv->padding_z(),
conv->stride_z(),
true));
config.layerConfig.set_size(conv->output_x() * conv->output_y() *
conv->output_z() * NUM_FILTERS);
conv->set_img_size_y(imageSize(conv->output_y(),
conv->filter_size_y(),
conv->padding_y(),
conv->stride_y(),
true));
conv->set_img_size_z(imageSize(conv->output_z(),
conv->filter_size_z(),
conv->padding_z(),
conv->stride_z(),
true));
config.layerConfig.set_size(conv->img_size() * conv->img_size_y() *
conv->img_size_z() * NUM_FILTERS);
conv->set_groups(1);
conv->set_filter_channels(conv->channels() / conv->groups());
config.inputDefs.push_back(
......
......@@ -33,14 +33,12 @@ MKLDNNMatrixPtr MKLDNNMatrix::create(MatrixPtr m, memory::primitive_desc pd) {
size_t width = cnts / dims[0];
m = Matrix::create(height, width, false, false);
}
CHECK(m) << " Matrix should not be empty";
CpuMatrixPtr cpuMatrix = std::dynamic_pointer_cast<CpuMatrix>(m);
CHECK(cpuMatrix) << "Only support create from CPU matrix yet";
CHECK_EQ(cnts, m->getElementCnt()) << "Count size does not match";
return std::make_shared<MKLDNNMatrix>(
m->getData(), m->getHeight(), m->getWidth(), pd);
CHECK_EQ(cpuMatrix->getElementCnt(), cnts) << "Count size does not match";
return std::make_shared<MKLDNNMatrix>(cpuMatrix, pd);
}
MKLDNNMatrixPtr MKLDNNMatrix::create(MatrixPtr m,
......@@ -138,7 +136,7 @@ void MKLDNNMatrix::downSpatial() {
mkldnn_primitive_create(&result, pd.get(), nullptr, nullptr),
"could not create a memory primitive");
reset(result);
set_data_handle(getData());
set_data_handle(data_);
}
} // namespace paddle
......@@ -30,11 +30,10 @@ typedef std::shared_ptr<MKLDNNMatrix> MKLDNNMatrixPtr;
*/
class MKLDNNMatrix : public CpuMatrix, public mkldnn::memory {
public:
MKLDNNMatrix(real* data,
size_t height,
size_t width,
mkldnn::memory::primitive_desc pd)
: CpuMatrix(data, height, width, false), mkldnn::memory(pd, data) {}
MKLDNNMatrix(CpuMatrixPtr m, mkldnn::memory::primitive_desc pd)
: CpuMatrix(m->getData(), m->getHeight(), m->getWidth(), false),
mkldnn::memory(pd, m->getData()),
m_(m) {}
~MKLDNNMatrix() {}
......@@ -81,11 +80,29 @@ public:
void downSpatial();
/**
* Update the memory data handle.
* set the memory data handle.
* Caution: This will not check the buffer size of the data,
* it should be coverd by user.
*/
void updateData(void* data) { set_data_handle(data); }
void setData(real* data) {
set_data_handle(data);
CpuMatrix::setData(data);
m_.reset();
}
/**
* override Matrix::getData
* check data before return
*/
real* getData() override {
CHECK_EQ((void*)data_, get_data_handle());
return data_;
}
const real* getData() const override {
CHECK_EQ((void*)data_, get_data_handle());
return data_;
}
/**
* Get primitive descriptor.
......@@ -143,6 +160,10 @@ protected:
memory::format srcFmt,
memory::format dstFmt,
memory::dims dm);
private:
// save the CpuMatrixPtr in case the buffer released outside
CpuMatrixPtr m_;
};
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/concat_op.h"
#include <vector>
namespace paddle {
namespace operators {
using framework::Tensor;
class ConcatOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto ins = ctx.MultiInput<framework::Tensor>("X");
auto *out = ctx.Output<framework::Tensor>("Out");
size_t axis = static_cast<size_t>(ctx.Attr<int>("axis"));
size_t n = ins.size();
PADDLE_ENFORCE_GT(n, 1, "Input tensors count should > 1.");
auto out_dims = ins[0]->dims();
size_t in_zero_dims_size = out_dims.size();
for (size_t i = 1; i < n; i++) {
for (size_t j = 0; j < in_zero_dims_size; j++) {
if (j == axis) {
out_dims[axis] += ins[i]->dims()[j];
continue;
}
PADDLE_ENFORCE_EQ(out_dims[j], ins[i]->dims()[j],
"Input tensors should have the same "
"elements except the specify axis.")
}
}
out->Resize(out_dims);
}
};
class ConcatOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ConcatOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "the input tensors of concat operator.").AsDuplicable();
AddOutput("Out", "the output tensor of concat operator.");
AddComment(R"DOC(
Join the input tensors along with the axis.
Examples:
Input[0] = [[1,2],[3,4]]
Input[1] = [[5,6]]
axis = 0
Output = [[1,2],
[3,4],
[5,6]]
)DOC");
AddAttr<int>("axis", "The axis which the inputs will be joined with.")
.SetDefault(0);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(concat, ops::ConcatOp, ops::ConcatOpMaker)
REGISTER_OP_CPU_KERNEL(concat,
ops::ConcatKernel<paddle::platform::CPUPlace, float>)
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/concat_op.h"
namespace ops = paddle::operators;
// TODO(Yancey1989) Add GPU kernel
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename Place, typename T>
class ConcatKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto ins = ctx.MultiInput<framework::Tensor>("X");
auto* out = ctx.Output<framework::Tensor>("Out");
int64_t axis = static_cast<int64_t>(ctx.Attr<int>("axis"));
size_t n = ins.size();
size_t output_axis_dim = 0;
size_t before = 1, after = 1;
for (size_t i = 0; i < n; i++) {
output_axis_dim += ins[i]->dims()[axis];
}
auto& input_zero = ins[0];
for (int64_t i = 0; i < input_zero->dims().size(); i++) {
if (i == axis) {
continue;
}
if (i < axis) {
before *= input_zero->dims()[i];
} else {
after *= input_zero->dims()[i];
}
}
size_t output_offset = 0;
for (size_t i = 0; i < n; i++) {
auto& in = ins[i];
auto axis_dim = in->dims()[axis];
for (size_t j = 0; j < before; j++) {
size_t len = axis_dim * after * sizeof(T);
const T* src = in->data<T>() + axis_dim * after * j;
T* out_data = out->mutable_data<T>(platform::CPUPlace());
T* dest = out_data + output_offset + output_axis_dim * after * j;
memcpy(dest, src, len);
}
output_offset += axis_dim * after;
}
}
};
} // namespace operators
} // namespace paddle
......@@ -42,7 +42,7 @@ class CosSimKernel : public framework::OpKernel {
output_y_norm->mutable_data<T>(context.GetPlace());
auto dims = input_x->dims();
int size = static_cast<int>(framework::product(dims));
int64_t size = input_x->numel();
auto new_dims = framework::make_ddim({dims[0], size / dims[0]});
auto x = EigenMatrix<T>::From(*input_x, new_dims);
auto y = EigenMatrix<T>::From(*input_y, new_dims);
......@@ -72,7 +72,7 @@ class CosSimGradKernel : public framework::OpKernel {
auto* input_grad_z = context.Input<Tensor>(framework::GradVarName("Out"));
auto dims = input_x->dims();
int size = static_cast<int>(framework::product(dims));
int64_t size = input_x->numel();
auto new_dims = framework::make_ddim({dims[0], size / dims[0]});
auto x = EigenMatrix<T>::From(*input_x, new_dims);
auto y = EigenMatrix<T>::From(*input_y, new_dims);
......
......@@ -118,6 +118,23 @@ class CropOpGrad : public framework::OperatorWithKernel {
}
};
int64_t transIndex(std::vector<int64_t> out_shape, std::vector<int64_t> x_shape,
std::vector<std::pair<int, int>> crop_rules, size_t index) {
int64_t dim_size = out_shape.size();
std::vector<int64_t> pos(dim_size);
for (int64_t i = out_shape.size() - 1; i >= 0; --i) {
pos[i] = (index % out_shape[i]) + crop_rules[i].first;
index = index / out_shape[i];
}
size_t result = pos[0];
for (size_t i = 1; i < x_shape.size(); ++i) {
result = result * x_shape[i] + pos[i];
}
return result;
}
template <typename T>
class CropCPUKernel : public framework::OpKernel {
public:
......
......@@ -26,23 +26,6 @@ using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
using Tensor = framework::Tensor;
int64_t transIndex(std::vector<int64_t> out_shape, std::vector<int64_t> x_shape,
std::vector<std::pair<int, int>> crop_rules, size_t index) {
int64_t dim_size = out_shape.size();
int64_t pos[dim_size];
for (int64_t i = out_shape.size() - 1; i >= 0; --i) {
pos[i] = (index % out_shape[i]) + crop_rules[i].first;
index = index / out_shape[i];
}
size_t result = pos[0];
for (size_t i = 1; i < x_shape.size(); ++i) {
result = result * x_shape[i] + pos[i];
}
return result;
}
template <typename Place, typename T, size_t D>
void CropGradFunction(const framework::ExecutionContext& context) {
auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/elementwise_mul_op.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
class ElementWiseMulOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) should not be null");
auto x_dim = ctx.Input<Tensor>("X")->dims();
auto y_dim = ctx.Input<Tensor>("Y")->dims();
PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
"Rank of first input must >= rank of second input.")
ctx.Output<Tensor>("Out")->Resize(x_dim);
}
};
class ElementWiseMulOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ElementWiseMulOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The first input of elementwise mul op");
AddInput("Y", "The second input of elementwise mul op");
AddAttr<int>("axis",
R"DOC(
When shape(Y) does not equal shape(X),Y will be broadcasted
to match the shape of X and axis should be dimension index Y in X
)DOC")
.SetDefault(-1)
.EqualGreaterThan(-1);
AddOutput("Out", "The output of elementwise mul op");
AddComment(R"DOC(
Limited elementwise multiple operator.The equation is: Out = X ⊙ Y.
1. The shape of Y should be same with X or
2. Y's shape is a subset of X.
Y will be broadcasted to match the shape of X and axis should be dimension index Y in X.
example:
shape(X) = (2, 3, 4, 5), shape(Y) = (,)
shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
)DOC");
}
};
class ElementWiseMulOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto y_dims = ctx.Input<Tensor>("Y")->dims();
auto out_dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *y_grad = ctx.Output<Tensor>(framework::GradVarName("Y"));
PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
"Rank of first input must >= rank of second input.")
if (x_grad) {
x_grad->Resize(x_dims);
}
if (y_grad) {
y_grad->Resize(y_dims);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(elementwise_mul, ops::ElementWiseMulOp, ops::ElementWiseMulOpMaker,
elementwise_mul_grad, ops::ElementWiseMulOpGrad);
REGISTER_OP_CPU_KERNEL(
elementwise_mul,
ops::ElementWiseMulKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
elementwise_mul_grad,
ops::ElementWiseMulGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/elementwise_mul_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
elementwise_mul,
ops::ElementWiseMulKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
elementwise_mul_grad,
ops::ElementWiseMulGradKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <iostream>
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
namespace paddle {
namespace operators {
/*
* Out = X ⊙ Y
* 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
* pre=2, n=3*4, post=5
* 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
* pre=2*3, n=4*5, post=1
*/
inline void get_mid_dims(const framework::DDim& x_dims,
const framework::DDim& y_dims, const int axis,
int& pre, int& n, int& post) {
pre = 1;
n = 1;
post = 1;
for (int i = 0; i < axis; ++i) {
pre *= x_dims[i];
}
for (int i = 0; i < y_dims.size(); ++i) {
PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i],
"Broadcast dimension mismatch.");
n *= y_dims[i];
}
for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
post *= x_dims[i];
}
}
template <typename Place, typename T>
class ElementWiseMulKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
using Tensor = framework::Tensor;
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* z = ctx.Output<Tensor>("Out");
z->mutable_data<T>(ctx.GetPlace());
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto z_e = framework::EigenVector<T>::Flatten(*z);
auto x_dims = x->dims();
auto y_dims = y->dims();
PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
"Rank of first input must >= rank of second input.")
if (x_dims == y_dims || product(y_dims) == 1) {
z_e.device(ctx.GetEigenDevice<Place>()) = x_e * y_e;
return;
}
int axis = ctx.Attr<int>("axis");
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
"Axis should be in range [0, x_dims)");
int pre, n, post;
get_mid_dims(x_dims, y_dims, axis, pre, n, post);
if (post == 1) {
auto y_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
.broadcast(Eigen::DSizes<int, 2>(pre, 1))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
z_e.device(ctx.GetEigenDevice<Place>()) = x_e * y_bcast;
return;
} else {
auto y_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
z_e.device(ctx.GetEigenDevice<Place>()) = x_e * y_bcast;
return;
}
}
};
template <typename Place, typename T>
class ElementWiseMulGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
using Tensor = framework::Tensor;
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dout_e = framework::EigenVector<T>::Flatten(*dout);
auto x_dims = x->dims();
auto y_dims = y->dims();
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
if (dx) {
dx->mutable_data<T>(ctx.GetPlace());
}
if (dy) {
dy->mutable_data<T>(ctx.GetPlace());
}
if (x_dims == y_dims || product(y_dims) == 1) {
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(ctx.GetEigenDevice<Place>()) = dout_e * y_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(ctx.GetEigenDevice<Place>()) = x_e * dout_e;
}
return;
}
int axis = ctx.Attr<int>("axis");
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
int pre, n, post;
get_mid_dims(x_dims, y_dims, axis, pre, n, post);
// TODO(gongweibao): wrap reshape to a function.
if (post == 1) {
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
.broadcast(Eigen::DSizes<int, 2>(pre, 1))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(ctx.GetEigenDevice<Place>()) = dout_e * y_e_bcast;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(ctx.GetEigenDevice<Place>()) =
(x_e * dout_e)
.reshape(Eigen::DSizes<int, 2>(pre, n))
.sum(Eigen::array<int, 1>{{0}});
}
return;
} else {
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(ctx.GetEigenDevice<Place>()) = dout_e * y_e_bcast;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(ctx.GetEigenDevice<Place>()) =
(x_e * dout_e)
.reshape(Eigen::DSizes<int, 3>(pre, n, post))
.sum(Eigen::array<int, 2>{{0, 2}});
}
return;
}
}
};
} // namespace operators
} // namespace paddle
......@@ -31,7 +31,7 @@ class CPUGaussianRandomKernel : public framework::OpKernel {
}
engine.seed(seed);
std::normal_distribution<T> dist(mean, std);
int64_t size = framework::product(tensor->dims());
int64_t size = tensor->numel();
for (int64_t i = 0; i < size; ++i) {
data[i] = dist(engine);
}
......
......@@ -50,8 +50,8 @@ class GPUGaussianRandomKernel : public framework::OpKernel {
T mean = static_cast<T>(context.Attr<float>("mean"));
T std = static_cast<T>(context.Attr<float>("std"));
thrust::counting_iterator<unsigned int> index_sequence_begin(0);
ssize_t N = framework::product(tensor->dims());
thrust::transform(index_sequence_begin, index_sequence_begin + N,
int64_t size = tensor->numel();
thrust::transform(index_sequence_begin, index_sequence_begin + size,
thrust::device_ptr<T>(data),
GaussianGenerator<T>(mean, std, seed));
}
......
......@@ -70,7 +70,7 @@ class LookupTableCUDAKernel : public framework::OpKernel {
size_t N = table_t->dims()[0];
size_t D = table_t->dims()[1];
size_t K = product(ids_t->dims());
size_t K = ids_t->numel();
auto ids = ids_t->data<int32_t>();
auto table = table_t->data<T>();
auto output = output_t->mutable_data<T>(context.GetPlace());
......@@ -91,7 +91,7 @@ class LookupTableGradCUDAKernel : public framework::OpKernel {
int N = d_table_t->dims()[0];
int D = d_table_t->dims()[1];
int K = product(ids_t->dims());
int K = ids_t->numel();
const int32_t* ids = ids_t->data<int32_t>();
const T* d_output = d_output_t->data<T>();
T* d_table = d_table_t->mutable_data<T>(context.GetPlace());
......
......@@ -35,7 +35,7 @@ class LookupTableKernel : public framework::OpKernel {
auto ids = ids_t->data<int32_t>();
auto table = table_t->data<T>();
auto output = output_t->mutable_data<T>(context.GetPlace());
for (ssize_t i = 0; i < product(ids_t->dims()); ++i) {
for (int64_t i = 0; i < ids_t->numel(); ++i) {
PADDLE_ENFORCE_LT(ids[i], N);
PADDLE_ENFORCE_GE(ids[i], 0);
memcpy(output + i * D, table + ids[i] * D, D * sizeof(T));
......@@ -61,7 +61,7 @@ class LookupTableGradKernel : public framework::OpKernel {
t.device(context.GetEigenDevice<platform::CPUPlace>()) =
t.constant(static_cast<T>(0));
for (ssize_t i = 0; i < product(ids_t->dims()); ++i) {
for (int64_t i = 0; i < ids_t->numel(); ++i) {
PADDLE_ENFORCE_LT(ids[i], N);
PADDLE_ENFORCE_GE(ids[i], 0);
for (int j = 0; j < D; ++j) {
......
......@@ -119,4 +119,4 @@ TEST(math, im2col) {
#ifndef PADDLE_ONLY_CPU
testIm2col<paddle::platform::GPUPlace>();
#endif
}
\ No newline at end of file
}
......@@ -49,12 +49,11 @@ class MeanGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto OG = context.Input<Tensor>(framework::GradVarName("Out"));
PADDLE_ENFORCE(framework::product(OG->dims()) == 1,
"Mean Gradient should be scalar");
PADDLE_ENFORCE(OG->numel() == 1, "Mean Gradient should be scalar");
auto IG = context.Output<Tensor>(framework::GradVarName("X"));
IG->mutable_data<T>(context.GetPlace());
T ig_size = (T)framework::product(IG->dims());
T ig_size = static_cast<T>(IG->numel());
Eigen::DSizes<int, 1> bcast(ig_size);
EigenVector<T>::Flatten(*IG).device(context.GetEigenDevice<Place>()) =
......
......@@ -31,8 +31,7 @@ class MinusOp : public framework::OperatorWithKernel {
auto *right_tensor = ctx.Input<framework::Tensor>("Y");
PADDLE_ENFORCE_EQ(
framework::product(left_tensor->dims()),
framework::product(right_tensor->dims()),
left_tensor->numel(), right_tensor->numel(),
"Minus operator must take two tensor with same num of elements");
ctx.Output<framework::Tensor>("Out")->Resize(left_tensor->dims());
}
......
## Operator's Parameter Name Convention
To make the operator document itself more clear, we recommend operator names obey the listing conventions.
### OpProtoMaker names
When defining an operator in Paddle, a corresponding [OpProtoMaker](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L170) (TODO: OpProtoMaker Doc)need to be defined. All the Input/Output and Attributes will write into the [OpProto](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L61) , and will be used in client language to create operator.
- Input/Output.
- Input/Output names follow the **CamelCase**. e.g. `X`, `Y`, `Matrix`, `LastAxisInMatrix`. Input/Output much more like Variables, we prefer to meaningful English words.
- If an operator's Input/Output are tensors in math, not match to any meaningful words, input name should starts from `X`. e.g. `X`, `Y`, and output name should starts from `Out`. e.g. `Out`. This rule intends making operators which have few inputs/outputs unified.
- Attribute.
- Attribute name follows the **camelCase**. e.g. `x`, `y`, `axis`, `rowwiseMatrix`. Also, attribute name prefers to meaningful English words.
- Comments.
- Input/Output/Attr comment follow the format of **(type,default value) usage**, corresponding to which type it can be and how it will be used in the operator. e.g. Attribute in Accumulator`"gamma" `,`(float, default 1.0) Accumulation multiplier`.
- Operator comment format of` R"DOC(your comment here)DOC"`. You should explain the input/output of the operator first. If there is math calculation in this operator, you should write the equation in the comment. e.g. `Out = X + Y`.
- Order.
- Follow the order of Input/Output, then Attribute, then Comments. See the example in best practice.
### Best Practice
Here we give some examples to show how these rules will be used.
- The operator has one input, one output. e.g.`relu`, inputs: `X`, outputs: `Out`.
- The operator has two input, one output. e.g. `rowwise_add`, inputs : `X`, `Y`, outputs : `Out`.
- The operator contains attribute. e.g. `cosine`, inputs : `X`, `axis`, outputs : `Out`.
We give a full example of Accumulator Operator.
```c++
class AccumulateOpMaker : public framework::OpProtoAndCheckerMaker {
public:
AccumulateOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "(Tensor) The input tensor that has to be accumulated to the output tensor. If the output size is not the same as input size, the output tensor is first reshaped and initialized to zero, and only then, accumulation is done.");
AddOutput("Out", "(Tensor) Accumulated output tensor");
AddAttr<float>("gamma", "(float, default 1.0) Accumulation multiplier");
AddComment(R"DOC(
Accumulate operator accumulates the input tensor to the output tensor. If the
output tensor already has the right size, we add to it; otherwise, we first
initialize the output tensor to all zeros, and then do accumulation. Any
further calls to the operator, given that no one else fiddles with the output
in the interim, will do simple accumulations.
Accumulation is done as shown:
Out = 1*X + gamma*Out
where X is the input tensor, Y is the output tensor and gamma is the multiplier
argument.
)DOC");
}
};
```
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/pad_op.h"
namespace paddle {
namespace operators {
using framework::Tensor;
class PadOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto x_dim = ctx.Input<Tensor>("X")->dims();
auto paddings = Attr<std::vector<int>>("paddings");
PADDLE_ENFORCE_EQ(x_dim.size() * 2, int64_t(paddings.size()),
"Size of paddings should be equal to 2 * dimension size "
"of input tensor.");
std::vector<int64_t> out_dims(x_dim.size());
for (int i = 0; i < x_dim.size(); ++i) {
out_dims[i] = x_dim[i] + paddings[i * 2] + paddings[i * 2 + 1];
}
ctx.Output<Tensor>("Out")->Resize(framework::make_ddim(out_dims));
}
};
class PadOpMaker : public framework::OpProtoAndCheckerMaker {
public:
PadOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"The input of pad op. "
"The input should be a k-D tensor(k > 0 and k < 7)");
AddOutput("Out",
"The output of pad op."
"A tensor with the same shape as X.")
.NotInGradient();
AddComment(R"DOC(
Pad input into output, as specified by paddings and pad_value. The input should be a k-D tensor(k > 0 and k < 7). As an example:
Given:
X = [[1, 2],
[3, 4]]
and
paddings = [0, 1, 1, 2]
and
pad_value = 0
then we get
Out = [[0, 1, 2, 0, 0]
[0, 3, 4, 0, 0]
[0, 0, 0, 0, 0]]
)DOC");
AddAttr<std::vector<int>>(
"paddings",
"A list<int> to describes padding rules for each dimension."
" For 2-D image tensor, paddings=[0, 1, 2, 3] means"
" padding 0 row to top, 1 row to bottom, 2 columns to left"
" and 3 columns to right.Size of paddings should be equal to"
" 2 * dimension size of input tensor.");
AddAttr<float>("pad_value",
"(float) default to 0; "
"The value to fill padded areas.")
.SetDefault(0.0f);
}
};
class PadOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
if (x_grad != nullptr) {
x_grad->Resize(x_dims);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(pad, ops::PadOp, ops::PadOpMaker, pad_grad, ops::PadOpGrad);
REGISTER_OP_CPU_KERNEL(pad, ops::PadKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pad_grad,
ops::PadGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/pad_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(pad, ops::PadKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(pad_grad,
ops::PadGradKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename Place, typename T, size_t D>
void PadFunction(const framework::ExecutionContext& context) {
auto pads = context.Attr<std::vector<int>>("paddings");
Eigen::array<std::pair<int, int>, D> paddings;
for (size_t i = 0; i < paddings.size(); ++i) {
paddings[i].first = pads[i * 2];
paddings[i].second = pads[i * 2 + 1];
}
T pad_value = context.Attr<T>("pad_value");
auto* x = context.Input<Tensor>("X");
auto* out = context.Output<Tensor>("Out");
out->mutable_data<T>(context.GetPlace());
auto x_tensor = EigenTensor<T, D>::From(*x);
auto out_tensor = EigenTensor<T, D>::From(*out);
auto place = context.GetEigenDevice<Place>();
out_tensor.device(place) = x_tensor.pad(paddings, pad_value);
}
template <typename Place, typename T>
class PadKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
int rank = context.Input<Tensor>("X")->dims().size();
switch (rank) {
case 1:
PadFunction<Place, T, 1>(context);
break;
case 2:
PadFunction<Place, T, 2>(context);
break;
case 3:
PadFunction<Place, T, 3>(context);
break;
case 4:
PadFunction<Place, T, 4>(context);
break;
case 5:
PadFunction<Place, T, 5>(context);
break;
case 6:
PadFunction<Place, T, 6>(context);
break;
default:
PADDLE_THROW(
"PadOp only support tensors with no more than 6 dimensions.");
}
}
};
template <typename Place, typename T, size_t D>
void PadGradFunction(const framework::ExecutionContext& context) {
auto pads = context.Attr<std::vector<int>>("paddings");
Eigen::array<std::pair<int, int>, D> paddings;
for (size_t i = 0; i < paddings.size(); ++i) {
paddings[i].first = -pads[i * 2];
paddings[i].second = -pads[i * 2 + 1];
}
auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));
if (d_x != nullptr) {
d_x->mutable_data<T>(context.GetPlace());
auto d_x_tensor = EigenTensor<T, D>::From(*d_x);
auto d_out_tensor = EigenTensor<T, D>::From(*d_out);
auto place = context.GetEigenDevice<Place>();
d_x_tensor.device(place) = d_out_tensor.pad(paddings, 0);
}
}
template <typename Place, typename T>
class PadGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
size_t rank =
context.Input<Tensor>(framework::GradVarName("Out"))->dims().size();
switch (rank) {
case 1:
PadGradFunction<Place, T, 1>(context);
break;
case 2:
PadGradFunction<Place, T, 2>(context);
break;
case 3:
PadGradFunction<Place, T, 3>(context);
break;
case 4:
PadGradFunction<Place, T, 4>(context);
break;
case 5:
PadGradFunction<Place, T, 5>(context);
break;
case 6:
PadGradFunction<Place, T, 6>(context);
break;
default:
PADDLE_THROW(
"PadOp only support tensors with no more than 6 dimensions.");
}
}
};
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/reshape_op.h"
namespace paddle {
namespace operators {
class ReshapeOp : public framework::OperatorWithKernel {
public:
ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
// input check
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) shouldn't be null");
auto shape = ctx.Attr<std::vector<int>>("shape");
PADDLE_ENFORCE(shape.size() > 0, "Attr(shape) shouldn't be empty.");
for (auto dim : shape) {
PADDLE_ENFORCE(dim > 0, "Each dimension of shape must be positive.");
}
// capacity check
int64_t capacity =
std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>());
auto *in = ctx.Input<framework::Tensor>("X");
int64_t in_size = framework::product(in->dims());
PADDLE_ENFORCE_EQ(capacity, in_size,
"The size of Input(X) mismatches with Attr(shape).");
// resize output
std::vector<int64_t> shape_int64(shape.size(), 0);
std::transform(shape.begin(), shape.end(), shape_int64.begin(),
[](int a) { return static_cast<int64_t>(a); });
auto out_dims = framework::make_ddim(shape_int64);
ctx.Output<framework::Tensor>("Out")->Resize(out_dims);
}
};
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ReshapeOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The input tensor of reshape operator.");
AddOutput("Out", "The output tensor of reshape operator.");
AddAttr<std::vector<int>>("shape", "Target shape of reshape operator.");
AddComment(R"DOC(Reshape operator
Reshape Input(X) into the shape specified by Attr(shape).
An example:
Given a 2-D tensor X with 2 rows and 2 columns
[[1, 2], [3, 4]]
with target shape = [1, 4], the reshape operator will transform
the tensor X into a 1-D tensor:
[1, 2, 3, 4]
)DOC");
}
};
class ReshapeGradOp : public framework::OperatorWithKernel {
public:
ReshapeGradOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) shouldn't be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) shouldn't be null.");
auto dims = ctx.Input<framework::Tensor>("X")->dims();
auto *d_in = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
d_in->Resize(dims);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(reshape, ops::ReshapeOp, ops::ReshapeOpMaker, reshape_grad,
ops::ReshapeGradOp);
REGISTER_OP_CPU_KERNEL(reshape,
ops::ReshapeKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
reshape_grad, ops::ReshapeGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/reshape_op.h"
REGISTER_OP_GPU_KERNEL(
reshape,
paddle::operators::ReshapeKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
reshape_grad,
paddle::operators::ReshapeGradKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename Place, typename T>
class ReshapeKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const {
auto* out = ctx.Output<framework::Tensor>("Out");
auto* in = ctx.Input<framework::Tensor>("X");
out->mutable_data<T>(ctx.GetPlace());
auto shape = ctx.Attr<std::vector<int>>("shape");
std::vector<int64_t> shape_int64(shape.size(), 0);
std::transform(shape.begin(), shape.end(), shape_int64.begin(),
[](int a) { return static_cast<int64_t>(a); });
auto out_dims = framework::make_ddim(shape_int64);
out->CopyFrom<T>(*in, ctx.GetPlace());
out->Resize(out_dims);
}
};
template <typename Place, typename T>
class ReshapeGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const {
auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
d_x->mutable_data<T>(ctx.GetPlace());
auto in_dims = d_x->dims();
d_x->CopyFrom<T>(*d_out, ctx.GetPlace());
d_x->Resize(in_dims);
}
};
} // namespace operators
} // namespace paddle
......@@ -41,8 +41,7 @@ class SquaredL2DistanceOp : public framework::OperatorWithKernel {
int rank = framework::arity(x_dims);
PADDLE_ENFORCE_GE(rank, 2, "Tensor rank should be at least equal to 2.");
PADDLE_ENFORCE_EQ(framework::product(x_dims) / x_dims[0],
framework::product(y_dims) / y_dims[0],
PADDLE_ENFORCE_EQ(x->numel() / x_dims[0], y->numel() / y_dims[0],
"Product of dimensions expcet the first dimension of "
"input and target must be equal.");
PADDLE_ENFORCE(y_dims[0] == 1 || y_dims[0] == x_dims[0],
......@@ -50,8 +49,7 @@ class SquaredL2DistanceOp : public framework::OperatorWithKernel {
"or to 1.");
ctx.Output<Tensor>("sub_result")
->Resize({static_cast<int>(x_dims[0]),
static_cast<int>(framework::product(x_dims) / x_dims[0])});
->Resize({x_dims[0], x->numel() / x_dims[0]});
ctx.Output<Tensor>("Out")->Resize({x_dims[0], 1});
}
};
......
......@@ -39,7 +39,7 @@ class SquaredL2DistanceKernel : public framework::OpKernel {
auto in0_dims = in0->dims();
auto in1_dims = in1->dims();
int cols = framework::product(in0_dims) / in0_dims[0];
int cols = in0->numel() / in0_dims[0];
// reduce dimensions except the first
auto x =
EigenMatrix<T>::From(*in0, framework::make_ddim({in0_dims[0], cols}));
......@@ -82,7 +82,7 @@ class SquaredL2DistanceGradKernel : public framework::OpKernel {
auto x_dims = x_g->dims();
auto y_dims = y_g->dims();
int cols = framework::product(x_dims) / x_dims[0];
int cols = x_g->numel() / x_dims[0];
// calculate gradient
auto grad_mat = 2 *
(out_grad.broadcast(Eigen::array<int, 2>({{1, cols}}))) *
......
......@@ -35,7 +35,7 @@ class CPUUniformRandomKernel : public framework::OpKernel {
std::uniform_real_distribution<T> dist(
static_cast<T>(context.Attr<float>("min")),
static_cast<T>(context.Attr<float>("max")));
int64_t size = framework::product(tensor->dims());
int64_t size = tensor->numel();
for (int64_t i = 0; i < size; ++i) {
data[i] = dist(engine);
}
......
......@@ -53,8 +53,8 @@ class GPUUniformRandomKernel : public framework::OpKernel {
T min = static_cast<T>(context.Attr<float>("min"));
T max = static_cast<T>(context.Attr<float>("max"));
thrust::counting_iterator<unsigned int> index_sequence_begin(0);
ssize_t N = framework::product(tensor->dims());
thrust::transform(index_sequence_begin, index_sequence_begin + N,
int64_t size = tensor->numel();
thrust::transform(index_sequence_begin, index_sequence_begin + size,
thrust::device_ptr<T>(data),
UniformGenerator<T>(min, max, seed));
}
......
......@@ -17,6 +17,7 @@ limitations under the License. */
#include <vector>
#include "paddle/framework/backward.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/recurrent_op.h"
......@@ -34,6 +35,7 @@ USE_OP(add);
USE_OP(onehot_cross_entropy);
USE_OP(sgd);
USE_OP(mul);
USE_OP(elementwise_mul);
USE_OP(mean);
USE_OP(sigmoid);
USE_OP(softmax);
......@@ -48,16 +50,21 @@ USE_NO_KERNEL_OP(identity);
USE_OP(minus);
USE_OP(cos_sim);
USE_CPU_ONLY_OP(gather);
USE_OP(pad);
USE_CPU_ONLY_OP(scatter);
USE_OP(crop);
USE_CPU_ONLY_OP(concat);
USE_OP(top_k);
USE_OP(squared_l2_distance);
USE_OP(sum);
USE_OP(reshape);
namespace paddle {
namespace framework {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;
static size_t UniqueIntegerGenerator() {
static std::atomic<size_t> generator;
......@@ -117,6 +124,60 @@ PYBIND11_PLUGIN(core) {
return self.data<float>()[offset];
});
py::class_<LoDTensor>(m, "LoDTensor", R"DOC(LoD(Leval of Ddetails) Tensor.
The tensor and LoD info should be created before creating the LoDTensor, then
call the set_tensor and set_lod functions to set them.
)DOC")
.def("__init__",
[](LoDTensor &instance,
const std::vector<std::vector<size_t>> &lod,
Tensor *t) {
#ifdef PADDLE_ONLY_CPU
new (&instance) LoDTensor(lod, t);
#else
paddle::framework::LoD new_lod;
new_lod.reserve(lod.size());
std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
new (&instance) LoDTensor(new_lod, t);
#endif
})
.def("set_tensor",
[](LoDTensor &self, Tensor *tensor) { self.set_tensor(tensor); })
.def("set_lod",
[](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
#ifdef PADDLE_ONLY_CPU
self.set_lod(lod);
#else
paddle::framework::LoD new_lod;
new_lod.reserve(lod.size());
std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
self.set_lod(new_lod);
#endif
})
.def("tensor",
[](LoDTensor &self) -> Tensor & { return self.tensor(); },
py::return_value_policy::reference)
.def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
#ifdef PADDLE_ONLY_CPU
return self.lod();
#else
auto lod = self.lod();
std::vector<std::vector<size_t>> new_lod;
new_lod.reserve(lod.size());
std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
[](paddle::framework::Vector<size_t> item) ->
std::vector<size_t> {
std::vector<size_t> v;
v.reserve(item.size());
std::copy(item.begin(), item.end(), std::back_inserter(v));
return v;
});
return new_lod;
#endif
});
py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
All parameter, weight, gradient are variables in Paddle.
......@@ -128,6 +189,11 @@ All parameter, weight, gradient are variables in Paddle.
.def("get_tensor",
[](Variable &self) -> Tensor * { return self.GetMutable<Tensor>(); },
py::return_value_policy::reference)
.def("get_lod_tensor",
[](Variable &self) -> LoDTensor * {
return self.GetMutable<LoDTensor>();
},
py::return_value_policy::reference)
.def("get_net",
[](Variable &self) -> operators::NetOp * {
return self.GetMutable<operators::NetOp>();
......
......@@ -2,8 +2,30 @@
set -xe
if [ $ANDROID_ABI == "arm64-v8a" ]; then
ANDROID_ARCH=arm64
else # armeabi, armeabi-v7a
ANDROID_ARCH=arm
fi
ANDROID_STANDALONE_TOOLCHAIN=$ANDROID_TOOLCHAINS_DIR/$ANDROID_ARCH-android-$ANDROID_API
cat <<EOF
============================================
Generating the standalone toolchain ...
${ANDROID_NDK_HOME}/build/tools/make-standalone-toolchain.sh
--arch=$ANDROID_ARCH
--platform=android-$ANDROID_API
--install-dir=${ANDROID_STANDALONE_TOOLCHAIN}
============================================
EOF
${ANDROID_NDK_HOME}/build/tools/make-standalone-toolchain.sh \
--arch=$ANDROID_ARCH \
--platform=android-$ANDROID_API \
--install-dir=$ANDROID_STANDALONE_TOOLCHAIN
BUILD_ROOT=/paddle/build_android
DEST_ROOT=/paddle/install
DEST_ROOT=/paddle/install_android
rm -rf $BUILD_ROOT 2>/dev/null || true
mkdir -p $BUILD_ROOT
......@@ -11,7 +33,7 @@ cd $BUILD_ROOT
if [ $ANDROID_ABI == "armeabi-v7a" ]; then
cmake -DCMAKE_SYSTEM_NAME=Android \
-DANDROID_STANDALONE_TOOLCHAIN=$ANDROID_ARM_STANDALONE_TOOLCHAIN \
-DANDROID_STANDALONE_TOOLCHAIN=$ANDROID_STANDALONE_TOOLCHAIN \
-DANDROID_ABI=$ANDROID_ABI \
-DANDROID_ARM_NEON=ON \
-DANDROID_ARM_MODE=ON \
......@@ -26,7 +48,7 @@ if [ $ANDROID_ABI == "armeabi-v7a" ]; then
..
elif [ $ANDROID_ABI == "arm64-v8a" ]; then
cmake -DCMAKE_SYSTEM_NAME=Android \
-DANDROID_STANDALONE_TOOLCHAIN=$ANDROID_ARM64_STANDALONE_TOOLCHAIN \
-DANDROID_STANDALONE_TOOLCHAIN=$ANDROID_STANDALONE_TOOLCHAIN \
-DANDROID_ABI=$ANDROID_ABI \
-DANDROID_ARM_MODE=ON \
-DHOST_C_COMPILER=/usr/bin/gcc \
......@@ -40,12 +62,12 @@ elif [ $ANDROID_ABI == "arm64-v8a" ]; then
..
elif [ $ANDROID_ABI == "armeabi" ]; then
cmake -DCMAKE_SYSTEM_NAME=Android \
-DANDROID_STANDALONE_TOOLCHAIN=$ANDROID_ARM_STANDALONE_TOOLCHAIN \
-DANDROID_STANDALONE_TOOLCHAIN=$ANDROID_STANDALONE_TOOLCHAIN \
-DANDROID_ABI=$ANDROID_ABI \
-DANDROID_ARM_MODE=ON \
-DHOST_C_COMPILER=/usr/bin/gcc \
-DHOST_CXX_COMPILER=/usr/bin/g++ \
-DCMAKE_INSTALL_PREFIX=/paddle/install \
-DCMAKE_INSTALL_PREFIX=$DEST_ROOT \
-DCMAKE_BUILD_TYPE=Release \
-DWITH_C_API=ON \
-DWITH_SWIG_PY=OFF \
......@@ -55,5 +77,10 @@ else
echo "Invalid ANDROID_ABI: $ANDROID_ABI"
fi
cat <<EOF
============================================
Building in $BUILD_ROOT ...
============================================
EOF
make -j `nproc`
make install -j `nproc`
......@@ -2034,6 +2034,7 @@ class ParameterReluLayer(LayerBase):
config_assert(input_layer.size % partial_sum == 0,
"a wrong setting for partial_sum")
self.set_layer_size(input_layer.size)
self.config.partial_sum = partial_sum
self.create_input_parameter(0, input_layer.size / partial_sum)
......
......@@ -169,6 +169,7 @@ class LayerType(object):
EXCONV_LAYER = 'exconv'
EXCONVTRANS_LAYER = 'exconvt'
CUDNNCONV_LAYER = 'cudnn_conv'
CUDNNCONVTRANS_LAYER = 'cudnn_convt'
POOL_LAYER = 'pool'
POOL3D_LAYER = 'pool3d'
BATCH_NORM_LAYER = 'batch_norm'
......
......@@ -14,6 +14,29 @@ layers {
input_layer_name: "input"
input_parameter_name: "___prelu_layer_0__.w0"
}
partial_sum: 1
}
layers {
name: "__prelu_layer_1__"
type: "prelu"
size: 300
active_type: ""
inputs {
input_layer_name: "input"
input_parameter_name: "___prelu_layer_1__.w0"
}
partial_sum: 1
}
layers {
name: "__prelu_layer_2__"
type: "prelu"
size: 300
active_type: ""
inputs {
input_layer_name: "input"
input_parameter_name: "___prelu_layer_2__.w0"
}
partial_sum: 5
}
parameters {
name: "___prelu_layer_0__.w0"
......@@ -23,14 +46,32 @@ parameters {
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___prelu_layer_1__.w0"
size: 300
initial_mean: 0.0
initial_std: 0.057735026919
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___prelu_layer_2__.w0"
size: 60
initial_mean: 0.0
initial_std: 0.129099444874
initial_strategy: 0
initial_smart: true
}
input_layer_names: "input"
output_layer_names: "__prelu_layer_0__"
output_layer_names: "__prelu_layer_2__"
sub_models {
name: "root"
layer_names: "input"
layer_names: "__prelu_layer_0__"
layer_names: "__prelu_layer_1__"
layer_names: "__prelu_layer_2__"
input_layer_names: "input"
output_layer_names: "__prelu_layer_0__"
output_layer_names: "__prelu_layer_2__"
is_recurrent_layer_group: false
}
......@@ -2,5 +2,7 @@ from paddle.trainer_config_helpers import *
data = data_layer(name='input', size=300)
prelu = prelu_layer(input=data)
prelu = prelu_layer(input=data, partial_sum=1)
prelu = prelu_layer(input=data, partial_sum=5)
outputs(prelu)
......@@ -43,7 +43,6 @@ class OpDescCreationMethod(object):
if len(args) != 0:
raise ValueError("Only keyword arguments are supported.")
op_desc = framework_pb2.OpDesc()
for input_parameter in self.__op_proto__.inputs:
input_arguments = kwargs.get(input_parameter.name, [])
if is_str(input_arguments):
......@@ -98,7 +97,7 @@ class OpDescCreationMethod(object):
new_attr.strings.extend(user_defined_attr)
elif attr.type == framework_pb2.INT_PAIRS:
for p in user_defined_attr:
pair = new_attr.pairs.add()
pair = new_attr.int_pairs.add()
pair.first = p[0]
pair.second = p[1]
else:
......
py_test(test_net SRCS test_net.py)
py_test(test_scope SRCS test_scope.py)
py_test(test_tensor SRCS test_tensor.py)
py_test(test_mul_op SRCS test_mul_op.py)
py_test(test_cos_sim_op SRCS test_cos_sim_op.py)
py_test(test_mean_op SRCS test_mean_op.py)
py_test(test_protobuf SRCS test_protobuf.py)
py_test(test_add_two_op SRCS test_add_two_op.py)
py_test(test_sigmoid_op SRCS test_sigmoid_op.py)
py_test(test_softmax_op SRCS test_softmax_op.py)
py_test(test_cross_entropy_op SRCS test_cross_entropy_op.py)
py_test(test_gather_op SRCS test_gather_op.py)
py_test(test_scatter_op SRCS test_scatter_op.py)
py_test(test_fill_zeros_like_op SRCS test_fill_zeros_like_op.py)
py_test(test_top_k_op SRCS test_top_k_op.py)
py_test(gradient_checker SRCS gradient_checker.py)
py_test(test_rowwise_add_op SRCS test_rowwise_add_op.py)
py_test(test_default_scope_funcs SRCS test_default_scope_funcs.py)
py_test(test_operator SRCS test_operator.py)
py_test(test_gaussian_random_op SRCS test_gaussian_random_op.py)
py_test(test_uniform_random_op SRCS test_uniform_random_op.py)
py_test(test_recurrent_op SRCS test_recurrent_op.py)
py_test(test_sgd_op SRCS test_sgd_op.py)
py_test(test_gradient_checker SRCS test_gradient_checker.py)
py_test(test_lookup_table SRCS test_lookup_table.py)
py_test(test_scale_and_identity_op SRCS test_scale_and_identity_op.py)
py_test(test_sum_op SRCS test_sum_op.py)
py_test(mnist SRCS mnist.py)
py_test(test_squared_l2_distance_op SRCS test_squared_l2_distance_op.py)
file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
foreach(src ${TEST_OPS})
py_test(${src} SRCS ${src}.py)
endforeach()
import unittest
import numpy
import itertools
import paddle.v2.framework.core as core
from paddle.v2.framework.op import Operator
__all__ = ['get_numeric_gradient']
def create_op(op_type):
# TODO need to set attrs
kwargs = dict()
for in_name in Operator.get_op_input_names(op_type):
kwargs[in_name] = in_name
for out_name in Operator.get_op_output_names(op_type):
kwargs[out_name] = out_name
return Operator(op_type, **kwargs)
def grad_var_name(var_name):
return var_name + "@GRAD"
def empty_var_name():
return "@EMPTY@"
def get_numeric_gradient(op,
input_values,
output_name,
input_to_check,
delta=0.005,
local_scope=None,
in_place=False):
"""
Get Numeric Gradient for an operator's input.
:param op: C++ operator instance, could be an network
:param input_values: The input variables. Should be an dictionary, key is
variable name. Value is numpy array.
:param output_name: The final output variable name.
:param input_to_check: The input variable need to get gradient.
:param delta: The perturbation value for numeric gradient method. The
smaller delta is, the more accurate result will get. But if that delta is
too small, it could occur numerical stability problem.
:param local_scope: The local scope used for get_numeric_gradient.
:return: The gradient array in numpy format.
"""
if local_scope is None:
local_scope = core.Scope()
# Create all input variable in local_scope
for var_name in input_values:
var = local_scope.new_var(var_name)
tensor = var.get_tensor()
tensor.set_dims(input_values[var_name].shape)
tensor.alloc_float(core.CPUPlace())
tensor.set(input_values[var_name], core.CPUPlace())
# Create all output variable in local_scope
opts = op.outputs()
for key in opts:
for output in opts[key]:
if local_scope.find_var(output) is None:
local_scope.new_var(output).get_tensor()
op.infer_shape(local_scope)
# allocate output memory
for key in opts:
for output in opts[key]:
local_scope.find_var(output).get_tensor().alloc_float(core.CPUPlace(
))
cpu_ctx = core.DeviceContext.create(core.CPUPlace())
def get_output():
op.run(local_scope, cpu_ctx)
return numpy.array(local_scope.find_var(output_name).get_tensor()).sum()
def product(dim):
return reduce(lambda a, b: a * b, dim, 1)
def restore_inputs():
for var_name in input_values:
tensor_ = local_scope.find_var(var_name).get_tensor()
tensor_.set(numpy.copy(input_values[var_name]), core.CPUPlace())
# get the input tensor that we want to get it's numeric gradient.
tensor_to_check = local_scope.find_var(input_to_check).get_tensor()
tensor_size = product(tensor_to_check.get_dims())
# prepare a numpy array to store the gradient.
gradient_flat = numpy.zeros(shape=(tensor_size, ), dtype='float32')
# we only compute gradient of one element each time.
# we use a for loop to compute the gradient of every element.
for i in xrange(tensor_size):
if in_place:
restore_inputs()
# get one input element throw it's index i.
origin = tensor_to_check.get_float_element(i)
# add delta to it, run op and then get the sum of the result tensor.
x_pos = origin + delta
tensor_to_check.set_float_element(i, x_pos)
y_pos = get_output()
# plus delta to this element, run op and get the sum of the result tensor.
if in_place:
restore_inputs()
x_neg = origin - delta
tensor_to_check.set_float_element(i, x_neg)
y_neg = get_output()
# restore old value
tensor_to_check.set_float_element(i, origin)
# compute the gradient of this element and store it into a numpy array.
gradient_flat[i] = (y_pos - y_neg) / delta / 2
# reshape the gradient result to the shape of the source tensor.
return gradient_flat.reshape(tensor_to_check.get_dims())
class GradientChecker(unittest.TestCase):
def __get_gradient(self, forward_op, backward_op, input_value, grad_names,
place):
"""Get the input gradients after running forward and backward operators
on the given places.
:param forward_op: forward operator
:type forward_op: Operator
:param backward_op: backward operator
:type backward_op: Operator
:param input_value: input values.
:type input_value: dict{string:numpy.array}
:param grad_names: the names of returned input gradients.
:type input_value: a list of string
:param place: the device type.
:type place: CPUPlace or GPUPlace
:return: the input grdients of given grad_names.
:rtype: a list of numpy.array
"""
scope = core.Scope()
ctx = core.DeviceContext.create(place)
inputs = forward_op.inputs()
in_names = [item for k in inputs for item in inputs[k]]
outputs = forward_op.outputs()
out_names = [item for k in outputs for item in outputs[k]]
# create input var and set value
for name, value in input_value.iteritems():
if name not in in_names:
raise ValueError(name + "does not exist in Op's inputs.")
var = scope.new_var(name).get_tensor()
var.set_dims(value.shape)
var.set(value, place)
# run forward op
for out_name in out_names:
scope.new_var(out_name)
forward_op.infer_shape(scope)
forward_op.run(scope, ctx)
# set output var's shape
# set output grad to ones
for name in out_names:
out_tensor = scope.find_var(name).get_tensor()
grad_tensor = scope.new_var(grad_var_name(name)).get_tensor()
grad_tensor.set_dims(out_tensor.shape())
data = numpy.ones(out_tensor.shape(), dtype=numpy.float32)
grad_tensor.set(data, place)
# run backward op
backward_outs = backward_op.outputs()
backward_names = [
item for key in backward_outs for item in backward_outs[key]
]
for name in backward_names:
scope.new_var(name)
backward_op.infer_shape(scope)
backward_op.run(scope, ctx)
outs = [
numpy.array(scope.find_var(name).get_tensor())
for name in grad_names
]
return outs
def compare_grad(self, forward_op, input_value, no_grad_set=None):
""" Compare the input gradients between CPU and GPU for the given forward
operator.
:param forward_op: forward operator
:type forward_op: Operator
:param input_value: input values.
:type input_value: dict{string:numpy.array}
:param no_grad_set: the set of variables names without gradients.
:type no_grad_set: a set of string
:raises: AssertionError, there is different gradient value.
"""
if no_grad_set is None:
no_grad_set = set()
backward_op = core.Operator.backward(forward_op, no_grad_set)
# return if not compile with GPU or not implementing GPU kernel
if not (core.is_compile_gpu() and backward_op.support_gpu()):
return
outputs = backward_op.outputs()
out_names = [item for k in outputs for item in outputs[k]]
out_names = filter(lambda x: x != empty_var_name(), out_names)
cpu_grads = self.__get_gradient(forward_op, backward_op, input_value,
out_names, core.CPUPlace())
gpu_grads = self.__get_gradient(forward_op, backward_op, input_value,
out_names, core.GPUPlace(0))
for c_grad, g_grad, name in itertools.izip(cpu_grads, gpu_grads,
out_names):
self.assertTrue(
numpy.allclose(
c_grad, g_grad, atol=1e-4),
"output name: " + name + " has diff")
def __assert_is_close(self, numeric_grads, analytic_grads, names,
max_relative_error, msg_prefix):
"""Use relative error for the comparison.
:param numeric_grads: the numerical graidents.
:type numeric_grads: a list of numpy.array
:param analytic_grads: the analytical graidents.
:type analytic_grads: a list of numpy.array
:param name: the names of gradients, used to print for debug.
:type names: a list of string
:param msg_prefix: string info, used to print for debug.
:type msf_prefix: string
"""
for a, b, name in itertools.izip(numeric_grads, analytic_grads, names):
abs_a = numpy.abs(a)
# if abs_a is nearly zero, then use abs error for a, not relative
# error.
abs_a[abs_a < 1e-3] = 1
diff_mat = numpy.abs(a - b) / abs_a
max_diff = numpy.max(diff_mat)
def err_msg():
offset = numpy.argmax(diff_mat > max_relative_error)
return "%s Variable %s max gradient diff %f over limit %f, the first " \
"error element is %d" % (
msg_prefix, name, max_diff, max_relative_error, offset)
self.assertLessEqual(max_diff, max_relative_error, err_msg())
def check_grad(self,
forward_op,
input_vars,
inputs_to_check,
output_name,
no_grad_set=None,
only_cpu=False,
in_place=False,
max_relative_error=0.005):
"""
:param forward_op: used to create backward_op
:param input_vars: numpy value of input variable. The following
computation will use these variables.
:param inputs_to_check: inputs var names that should check gradient.
:param output_name: the output variable name of forward network.
:param max_relative_error: The relative tolerance parameter.
:param no_grad_set: used when create backward ops
:param only_cpu: only compute and check gradient on cpu kernel.
:return:
"""
if no_grad_set is None:
no_grad_set = set()
no_tmp_out = forward_op.no_intermediate_outputs()
if len(no_tmp_out) != 1:
raise ValueError("non temp out_names should be 1")
inputs = forward_op.inputs()
in_names = [item for k in inputs for item in inputs[k]]
for no_grad in no_grad_set:
if no_grad not in in_names:
raise ValueError("no_grad should be in in_names")
if no_grad in inputs_to_check:
raise ValueError("no_grad should not be in inputs_to_check")
backward_op = core.Operator.backward(forward_op, no_grad_set)
places = [core.CPUPlace()]
if not only_cpu and core.is_compile_gpu() and backward_op.support_gpu():
places.append(core.GPUPlace(0))
# get numerical gradients
numeric_grads = [
get_numeric_gradient(
forward_op, input_vars, output_name, name, in_place=in_place)
for name in inputs_to_check
]
check_names = [grad_var_name(name) for name in inputs_to_check]
for place in places:
analytic_grads = self.__get_gradient(forward_op, backward_op,
input_vars, check_names, place)
self.__assert_is_close(numeric_grads, analytic_grads, check_names,
max_relative_error,
"Gradient Check On %s" % str(place))
......@@ -9,7 +9,7 @@ def grad_var_name(var_name):
return var_name + "@GRAD"
def create_op(scope, op_type, inputs, outputs, attrs=None):
def create_op(scope, op_type, inputs, outputs, attrs):
kwargs = dict()
for in_name, in_dup in Operator.get_op_inputs(op_type):
......@@ -17,7 +17,7 @@ def create_op(scope, op_type, inputs, outputs, attrs=None):
kwargs[in_name] = []
if in_dup:
sub_in = inputs[in_name]
for sub_in_name in sub_in:
for sub_in_name, _ in sub_in:
var = scope.new_var(sub_in_name)
kwargs[in_name].append(sub_in_name)
else:
......@@ -29,15 +29,16 @@ def create_op(scope, op_type, inputs, outputs, attrs=None):
kwargs[out_name] = []
if out_dup:
sub_in = outputs[out_name]
for sun_in_name in sub_in:
var = scope.new_var(sun_in_name)
kwargs[out_name].append(sun_in_name)
for sub_in_name, _ in sub_in:
var = scope.new_var(sub_in_name)
kwargs[out_name].append(sub_in_name)
else:
var = scope.new_var(out_name)
kwargs[out_name].append(out_name)
for attr_name in Operator.get_op_attr_names(op_type):
kwargs[attr_name] = attrs[attr_name]
if attr_name in attrs:
kwargs[attr_name] = attrs[attr_name]
return Operator(op_type, **kwargs)
......@@ -46,12 +47,11 @@ def set_input(scope, op, inputs, place):
if in_name in inputs:
if in_dup:
sub_in = inputs[in_name]
for sub_in_name in sub_in:
for sub_in_name, sub_in_array in sub_in:
var = scope.find_var(sub_in_name)
tensor = var.get_tensor()
arr = sub_in[sub_in_name]
tensor.set_dims(arr.shape)
tensor.set(arr, place)
tensor.set_dims(sub_in_array.shape)
tensor.set(sub_in_array, place)
else:
var = scope.find_var(in_name)
tensor = var.get_tensor()
......@@ -65,7 +65,7 @@ def set_output_grad(scope, op, outputs, place):
if out_name in outputs:
if out_dup:
sub_out = outputs[out_name]
for sub_out_name in sub_out:
for sub_out_name, _ in sub_out:
out_tensor = scope.find_var(sub_out_name).get_tensor()
grad_tensor = scope.new_var(grad_var_name(
sub_out_name)).get_tensor()
......@@ -85,7 +85,7 @@ def get_numeric_gradient(scope,
op,
inputs,
input_to_check,
output_name,
output_names,
delta=0.005,
in_place=False):
......@@ -100,8 +100,11 @@ def get_numeric_gradient(scope,
ctx = core.DeviceContext.create(core.CPUPlace())
def get_output():
op.run(scope, ctx)
return np.array(scope.find_var(output_name).get_tensor()).sum()
sum = 0.0
for output_name in output_names:
op.run(scope, ctx)
sum += np.array(scope.find_var(output_name).get_tensor()).sum()
return sum
tensor_to_check = scope.find_var(input_to_check).get_tensor()
tensor_size = product(tensor_to_check.get_dims())
......@@ -110,7 +113,7 @@ def get_numeric_gradient(scope,
# we use a for loop to compute the gradient of every element.
for i in xrange(tensor_size):
if in_place:
set_input(op, inputs, core.CPUPlace())
set_input(scope, op, inputs, core.CPUPlace())
# get one input element throw it's index i.
origin = tensor_to_check.get_float_element(i)
......@@ -120,7 +123,7 @@ def get_numeric_gradient(scope,
y_pos = get_output()
if in_place:
set_input(op, inputs, core.CPUPlace())
set_input(scope, op, inputs, core.CPUPlace())
x_neg = origin - delta
tensor_to_check.set_float_element(i, x_neg)
......@@ -168,7 +171,10 @@ def get_gradient(scope, op, inputs, outputs, grad_name, place,
class OpTest(unittest.TestCase):
def check_output_with_place(self, place):
self.scope = core.Scope()
self.op = create_op(self.scope, self.op_type, self.inputs, self.outputs)
op_inputs = self.inputs if hasattr(self, "inputs") else dict()
op_attrs = self.attrs if hasattr(self, "attrs") else dict()
self.op = create_op(self.scope, self.op_type, op_inputs, self.outputs,
op_attrs)
if isinstance(place, core.GPUPlace) and not self.op.support_gpu():
return
set_input(self.scope, self.op, self.inputs, place)
......@@ -222,22 +228,28 @@ class OpTest(unittest.TestCase):
def check_grad(self,
inputs_to_check,
output_name,
output_names,
no_grad_set=None,
in_place=False,
max_relative_error=0.005):
self.scope = core.Scope()
self.op = create_op(self.scope, self.op_type, self.inputs, self.outputs)
op_inputs = self.inputs if hasattr(self, "inputs") else dict()
op_attrs = self.attrs if hasattr(self, "attrs") else dict()
self.op = create_op(self.scope, self.op_type, op_inputs, self.outputs,
op_attrs)
if no_grad_set is None:
no_grad_set = set()
if not type(output_names) is list:
output_names = [output_names]
numeric_grads = [
get_numeric_gradient(
self.scope,
self.op,
self.inputs,
input_to_check,
output_name,
output_names,
in_place=in_place) for input_to_check in inputs_to_check
]
grad_names = [
......
import unittest
import numpy as np
from op_test import OpTest
import numpy
import paddle.v2.framework.core as core
from paddle.v2.framework.op import Operator
from op_test_util import OpTestMeta
class TestAddOp(unittest.TestCase):
__metaclass__ = OpTestMeta
class TestAddOp(OpTest):
def setUp(self):
self.type = "add"
self.op_type = "add"
self.inputs = {
'X': numpy.random.random((102, 105)).astype("float32"),
'Y': numpy.random.random((102, 105)).astype("float32")
'X': np.random.random((102, 105)).astype("float32"),
'Y': np.random.random((102, 105)).astype("float32")
}
self.outputs = {'Out': self.inputs['X'] + self.inputs['Y']}
def test_check_output(self):
self.check_output()
if __name__ == '__main__':
if __name__ == "__main__":
unittest.main()
import unittest
import numpy as np
from op_test import OpTest
class TestConcatOp(OpTest):
def setUp(self):
self.op_type = "concat"
x0 = np.random.random((2, 3, 2, 5)).astype('float32')
x1 = np.random.random((2, 3, 3, 5)).astype('float32')
x2 = np.random.random((2, 3, 4, 5)).astype('float32')
axis = 2
self.inputs = {'X': [('x0', x0), ('x1', x1), ('x2', x2)]}
self.attrs = {'axis': axis}
self.outputs = {'Out': np.concatenate((x0, x1, x2), axis=axis)}
def test_check_output(self):
self.check_output()
if __name__ == '__main__':
unittest.main()
import unittest
import numpy as np
from gradient_checker import GradientChecker, create_op
from op_test_util import OpTestMeta
from op_test import OpTest
class TestCosSimOp(unittest.TestCase):
__metaclass__ = OpTestMeta
class TestCosSimOp(OpTest):
def setUp(self):
self.type = "cos_sim"
self.op_type = "cos_sim"
self.inputs = {
'X': np.random.random((32, 64)).astype("float32"),
'Y': np.random.random((32, 64)).astype("float32")
'X': np.random.random((10, 5)).astype("float32"),
'Y': np.random.random((10, 5)).astype("float32")
}
expect_x_norm = np.linalg.norm(self.inputs['X'], axis=1)
expect_y_norm = np.linalg.norm(self.inputs['Y'], axis=1)
......@@ -23,38 +20,20 @@ class TestCosSimOp(unittest.TestCase):
'Out': np.expand_dims(expect_out, 1)
}
def test_check_output(self):
self.check_output()
class TestCosSimGradOp(GradientChecker):
def setUp(self):
self.op = create_op("cos_sim")
self.inputs = {
'X': np.random.random((10, 5)).astype("float32"),
'Y': np.random.random((10, 5)).astype("float32")
}
def test_cpu_gpu_compare(self):
self.compare_grad(self.op, self.inputs)
def test_normal(self):
self.check_grad(
self.op, self.inputs, ["X", "Y"], "Out", max_relative_error=0.05)
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.05)
def test_ignore_x(self):
def test_check_grad_ingore_x(self):
self.check_grad(
self.op,
self.inputs, ["Y"],
"Out",
max_relative_error=0.05,
no_grad_set={"X"})
['Y'], 'Out', max_relative_error=0.05, no_grad_set=set('X'))
def test_ignore_y(self):
def test_check_grad_ignore_y(self):
self.check_grad(
self.op,
self.inputs, ["X"],
"Out",
max_relative_error=0.05,
no_grad_set={"Y"})
['X'], 'Out', max_relative_error=0.05, no_grad_set=set('Y'))
if __name__ == '__main__':
if __name__ == "__main__":
unittest.main()
......@@ -26,9 +26,7 @@ def crop(data, offsets, crop_shape):
return np.array(result).reshape(crop_shape)
class TCropOp(unittest.TestCase):
__metaclass__ = OpTestMeta
class TCropOp(OpTest):
def setUp(self):
self.initTestCase()
self.type = "crop"
......
......@@ -21,7 +21,7 @@ class TestCrossEntropy(OpTest):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Y")
self.check_grad(['X'], 'Y')
if __name__ == "__main__":
......
import unittest
import numpy as np
from op_test import OpTest
class TestElementwiseMulOp_Matrix(OpTest):
def setUp(self):
self.op_type = "elementwise_mul"
""" Warning
CPU gradient check error!
'X': np.random.random((32,84)).astype("float32"),
'Y': np.random.random((32,84)).astype("float32")
"""
self.inputs = {
'X': np.random.uniform(0.1, 1, [13, 17]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [13, 17]).astype("float32")
}
self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y'))
class TestElementwiseMulOp_Vector(OpTest):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.random((32, )).astype("float32"),
'Y': np.random.random((32, )).astype("float32")
}
self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y'))
class TestElementwiseMulOp_broadcast_0(OpTest):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(2, 3, 4).astype(np.float32),
'Y': np.random.rand(2).astype(np.float32)
}
self.attrs = {'axis': 0}
self.outputs = {
'Out': self.inputs['X'] * self.inputs['Y'].reshape(2, 1, 1)
}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y'))
class TestElementwiseMulOp_broadcast_1(OpTest):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(2, 3, 4).astype(np.float32),
'Y': np.random.rand(3).astype(np.float32)
}
self.attrs = {'axis': 1}
self.outputs = {
'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 1)
}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y'))
class TestElementwiseMulOp_broadcast_2(OpTest):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(2, 3, 4).astype(np.float32),
'Y': np.random.rand(4).astype(np.float32)
}
self.outputs = {
'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 1, 4)
}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y'))
class TestElementwiseMulOp_broadcast_3(OpTest):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(2, 3, 4, 5).astype(np.float32),
'Y': np.random.rand(3, 4).astype(np.float32)
}
self.attrs = {'axis': 1}
self.outputs = {
'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 4, 1)
}
if __name__ == '__main__':
unittest.main()
import unittest
from op_test_util import OpTestMeta
import numpy
import numpy as np
from op_test import OpTest
class TestFillZerosLikeOp(unittest.TestCase):
__metaclass__ = OpTestMeta
class TestFillZerosLikeOp(OpTest):
def setUp(self):
self.type = "fill_zeros_like"
self.inputs = {'Src': numpy.random.random((219, 232)).astype("float32")}
self.outputs = {'Dst': numpy.zeros_like(self.inputs['Src'])}
self.op_type = "fill_zeros_like"
self.inputs = {'Src': np.random.random((219, 232)).astype("float32")}
self.outputs = {'Dst': np.zeros_like(self.inputs["Src"])}
def test_check_output(self):
self.check_output()
if __name__ == '__main__':
if __name__ == "__main__":
unittest.main()
import unittest
from op_test_util import OpTestMeta
from gradient_checker import GradientChecker, create_op
import numpy
import paddle.v2.framework.core as core
from paddle.v2.framework.op import Operator
import numpy as np
from op_test import OpTest
class TestGatherOp(unittest.TestCase):
__metaclass__ = OpTestMeta
class TestGatherOp(OpTest):
def setUp(self):
self.type = "gather"
xnp = numpy.random.random((10, 20)).astype("float32")
self.inputs = {
'X': xnp,
'Index': numpy.array([1, 3, 5]).astype("int32")
}
self.outputs = {'Out': self.inputs['X'][self.inputs['Index']]}
self.op_type = "gather"
xnp = np.random.random((10, 20)).astype("float32")
self.inputs = {'X': xnp, 'Index': np.array([1, 3, 5]).astype("int32")}
self.outputs = {'Out': self.inputs["X"][self.inputs["Index"]]}
def test_check_output(self):
self.check_output()
class TestGatherGradOp(GradientChecker):
def test_gather_grad(self):
op = create_op("gather")
xnp = numpy.random.random((10, 20)).astype("float32")
inputs = {'X': xnp, 'Index': numpy.array([1, 3, 5]).astype("int32")}
self.check_grad(op, inputs, set("X"), "Out")
def test_check_grad(self):
self.check_grad(['X'], 'Out')
if __name__ == "__main__":
......
......@@ -14,11 +14,11 @@ class GaussianRandomTest(unittest.TestCase):
def gaussian_random_test(self, place):
scope = core.Scope()
scope.new_var("Out").get_tensor()
scope.new_var('Out').get_tensor()
op = Operator(
"gaussian_random",
Out="Out",
Out='Out',
dims=[1000, 784],
mean=.0,
std=1.,
......@@ -27,10 +27,10 @@ class GaussianRandomTest(unittest.TestCase):
op.infer_shape(scope)
context = core.DeviceContext.create(place)
op.run(scope, context)
tensor = numpy.array(scope.find_var("Out").get_tensor())
tensor = numpy.array(scope.find_var('Out').get_tensor())
self.assertAlmostEqual(numpy.mean(tensor), .0, delta=0.1)
self.assertAlmostEqual(numpy.std(tensor), 1., delta=0.1)
if __name__ == '__main__':
if __name__ == "__main__":
unittest.main()
import unittest
import numpy
from paddle.v2.framework.op import Operator
from gradient_checker import GradientChecker
from gradient_checker import get_numeric_gradient
import numpy as np
import paddle.v2.framework.core as core
from op_test import get_numeric_gradient
from op_test import create_op
class GetNumericGradientTest(unittest.TestCase):
def test_add_op(self):
add_op = Operator("add", X="X", Y="Y", Out="Z")
x = numpy.random.random((10, 1)).astype("float32")
y = numpy.random.random((10, 1)).astype("float32")
arr = get_numeric_gradient(add_op, {"X": x, "Y": y}, "Z", "X")
x = np.random.random((10, 1)).astype("float32")
y = np.random.random((10, 1)).astype("float32")
z = x + y
scope = core.Scope()
add_op = create_op(scope, "add", {'X': x, 'Y': y}, {'Out': z}, dict())
arr = get_numeric_gradient(scope, add_op, {'X': x,
'Y': y}, 'X', ['Out'])
self.assertAlmostEqual(arr.mean(), 1.0, delta=1e-4)
def test_softmax_op(self):
def stable_softmax(x):
"""Compute the softmax of vector x in a numerically stable way."""
shiftx = x - numpy.max(x)
exps = numpy.exp(shiftx)
return exps / numpy.sum(exps)
shiftx = x - np.max(x)
exps = np.exp(shiftx)
return exps / np.sum(exps)
def label_softmax_grad(Y, dY):
dX = Y * 0.0
for i in range(Y.shape[0]):
d = numpy.dot(Y[i, :], dY[i, :])
d = np.dot(Y[i, :], dY[i, :])
dX[i, :] = Y[i, :] * (dY[i, :] - d)
return dX
softmax_op = Operator("softmax", X="X", Y="Y")
X = numpy.random.random((2, 2)).astype("float32")
Y = numpy.apply_along_axis(stable_softmax, 1, X)
dY = numpy.ones(Y.shape)
X = np.random.random((2, 2)).astype("float32")
Y = np.apply_along_axis(stable_softmax, 1, X)
dY = np.ones(Y.shape)
dX = label_softmax_grad(Y, dY)
arr = get_numeric_gradient(softmax_op, {"X": X}, "Y", "X")
numpy.testing.assert_almost_equal(arr, dX, decimal=1e-2)
scope = core.Scope()
softmax_op = create_op(scope, "softmax", {"X": X}, {"Y": Y}, dict())
arr = get_numeric_gradient(scope, softmax_op, {"X": X}, "X", "Y")
np.testing.assert_almost_equal(arr, dX, decimal=1e-2)
if __name__ == "__main__":
......
import unittest
import numpy as np
from op_test_util import OpTestMeta
from gradient_checker import GradientChecker, create_op
from op_test import OpTest
class TestLookupTableOp(unittest.TestCase):
__metaclass__ = OpTestMeta
class TestLookupTableOp(OpTest):
def setUp(self):
self.type = 'lookup_table'
table = np.random.random((17, 31)).astype('float32')
ids = np.random.randint(0, 17, 4).astype('int32')
self.op_type = "lookup_table"
table = np.random.random((17, 31)).astype("float32")
ids = np.random.randint(0, 17, 4).astype("int32")
self.inputs = {'W': table, 'Ids': ids}
self.outputs = {'Out': table[ids]}
def test_check_output(self):
self.check_output()
class TestLookupTableGradOp(GradientChecker):
def test_grad(self):
op = create_op('lookup_table')
table = np.random.random((17, 31)).astype('float32')
ids = np.random.randint(0, 17, 4).astype('int32')
inputs = {'W': table, 'Ids': ids}
# comapre gradients
self.compare_grad(op, inputs, set(['Ids']))
# check gradients
self.check_grad(op, inputs, set('W'), 'Out')
def test_check_grad(self):
self.check_grad(['W'], 'Out', no_grad_set=set('Ids'))
if __name__ == '__main__':
if __name__ == "__main__":
unittest.main()
import unittest
from op_test_util import OpTestMeta
from gradient_checker import GradientChecker, create_op
import numpy as np
from op_test import OpTest
class TestMeanOp(unittest.TestCase):
__metaclass__ = OpTestMeta
class TestMeanOp(OpTest):
def setUp(self):
self.type = "mean"
self.inputs = {'X': np.random.random((32, 784)).astype("float32")}
self.outputs = {'Out': np.mean(self.inputs['X'])}
self.op_type = "mean"
self.inputs = {'X': np.random.random((10, 10)).astype("float32")}
self.outputs = {'Out': np.mean(self.inputs["X"])}
def test_check_output(self):
self.check_output()
class MeanGradOpTest(GradientChecker):
def test_normal(self):
op = create_op("mean")
inputs = {"X": np.random.random((10, 10)).astype("float32")}
self.check_grad(op, inputs, set("X"), "Out")
def test_checkout_grad(self):
self.check_grad(['X'], 'Out')
if __name__ == '__main__':
if __name__ == "__main__":
unittest.main()
import unittest
import numpy as np
from gradient_checker import GradientChecker, create_op
from op_test_util import OpTestMeta
from op_test import OpTest
class MinusOpTest(unittest.TestCase):
__metaclass__ = OpTestMeta
class MinusOpTest(OpTest):
def setUp(self):
self.type = "minus"
self.op_type = "minus"
self.inputs = {
'X': np.random.random((32, 84)).astype("float32"),
'Y': np.random.random((32, 84)).astype("float32")
}
self.outputs = {'Out': (self.inputs['X'] - self.inputs['Y'])}
def test_check_output(self):
self.check_output()
class MinusGradTest(GradientChecker):
def test_left(self):
op = create_op("minus")
inputs = {
"X": np.random.random((10, 10)).astype("float32"),
"Y": np.random.random((10, 10)).astype("float32")
}
self.check_grad(op, inputs, ["X", 'Y'], "Out")
def test_check_grad(self):
self.check_grad(['X', 'Y'], 'Out')
if __name__ == '__main__':
if __name__ == "__main__":
unittest.main()
import unittest
import numpy as np
from gradient_checker import GradientChecker, create_op
from op_test_util import OpTestMeta
from paddle.v2.framework.op import Operator
from op_test import OpTest
class TestMulOp(unittest.TestCase):
__metaclass__ = OpTestMeta
class TestMulOp(OpTest):
def setUp(self):
self.type = "mul"
self.op_type = "mul"
self.inputs = {
'X': np.random.random((32, 84)).astype("float32"),
'Y': np.random.random((84, 100)).astype("float32")
}
self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5)
class TestMulOp2(unittest.TestCase):
__metaclass__ = OpTestMeta
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y'))
class TestMulOp2(OpTest):
def setUp(self):
self.type = "mul"
self.op_type = "mul"
self.inputs = {
'X': np.random.random((15, 4, 12, 10)).astype("float32"),
'Y': np.random.random((4, 30, 8, 2, 9)).astype("float32")
......@@ -32,72 +40,20 @@ class TestMulOp2(unittest.TestCase):
self.inputs['Y'].reshape(4 * 30, 8 * 2 * 9))
}
def test_check_output(self):
self.check_output()
class TestMulGradOp(GradientChecker):
def setUp(self):
self.op = create_op("mul")
self.inputs = {
'X': np.random.random((32, 84)).astype("float32"),
'Y': np.random.random((84, 100)).astype("float32")
}
def test_cpu_gpu_compare(self):
self.compare_grad(self.op, self.inputs)
def test_normal(self):
# mul op will enlarge the relative error
self.check_grad(
self.op, self.inputs, ["X", "Y"], "Out", max_relative_error=0.5)
def test_ignore_x(self):
self.check_grad(
self.op,
self.inputs, ["Y"],
"Out",
max_relative_error=0.5,
no_grad_set={"X"})
def test_ignore_y(self):
self.check_grad(
self.op,
self.inputs, ["X"],
"Out",
max_relative_error=0.5,
no_grad_set={"Y"})
class TestMulGradTest2(GradientChecker):
def setUp(self):
self.op = Operator(
"mul", X="X", Y="Y", Out="Out", x_num_col_dims=2, y_num_col_dims=2)
self.inputs = {
"X": np.random.random((15, 4, 12, 10)).astype("float32"),
"Y": np.random.random((4, 30, 8, 2, 9)).astype("float32")
}
def test_cpu_gpu_compare(self):
self.compare_grad(self.op, self.inputs)
def test_normal(self):
self.check_grad(
self.op, self.inputs, ["X", "Y"], "Out", max_relative_error=0.5)
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5)
def test_ignore_x(self):
def test_check_grad_ingore_x(self):
self.check_grad(
self.op,
self.inputs, ["Y"],
"Out",
max_relative_error=0.5,
no_grad_set={"X"})
['Y'], 'Out', max_relative_error=0.5, no_grad_set=set('X'))
def test_ignore_y(self):
def test_check_grad_ignore_y(self):
self.check_grad(
self.op,
self.inputs, ["X"],
"Out",
max_relative_error=0.5,
no_grad_set={"Y"})
['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y'))
if __name__ == '__main__':
if __name__ == "__main__":
unittest.main()
......@@ -35,5 +35,5 @@ Op(plain_net), inputs:{all[W, X, Y]}, outputs:{all[Out, fc.out, pre_activation]}
self.assertEqual(expected, "\n" + str(net))
if __name__ == '__main__':
if __name__ == "__main__":
unittest.main()
import unittest
import numpy as np
from op_test import OpTest
class TestPadOp(OpTest):
def setUp(self):
self.initTestCase()
self.op_type = "pad"
self.inputs = {'X': np.random.random(self.shape).astype("float32"), }
self.attrs = {}
self.attrs['paddings'] = np.array(self.paddings).flatten()
self.attrs['pad_value'] = self.pad_value
self.outputs = {
'Out': np.pad(self.inputs['X'],
self.paddings,
mode='constant',
constant_values=self.pad_value)
}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X'], 'Out')
def initTestCase(self):
self.shape = (16, 16)
self.paddings = [(0, 1), (2, 3)]
self.pad_value = 0
class TestCase1(TestPadOp):
def initTestCase(self):
self.shape = (2, 3, 4, 4)
self.paddings = [(0, 1), (2, 3), (2, 1), (1, 1)]
self.pad_value = 0.5
class TestCase2(TestPadOp):
def initTestCase(self):
self.shape = (2, 2, 2)
self.paddings = [(0, 0), (0, 0), (1, 2)]
self.pad_value = 1
class TestCase3(TestPadOp):
def initTestCase(self):
self.shape = (8)
self.paddings = [(0, 1)]
self.pad_value = 0.9
if __name__ == '__main__':
unittest.main()
import unittest
import numpy as np
from op_test import OpTest
class TestReshapeOp(OpTest):
def setUp(self):
self.op_type = "reshape"
self.inputs = {'X': np.random.random((10, 20)).astype("float32")}
self.attrs = {'shape': [10 * 20]}
self.outputs = {'Out': self.inputs['X'].reshape(self.attrs['shape'])}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
if __name__ == '__main__':
unittest.main()
import unittest
import numpy as np
from op_test_util import OpTestMeta
from gradient_checker import GradientChecker, create_op
from op_test import OpTest
class TestRowwiseAddOp(unittest.TestCase):
__metaclass__ = OpTestMeta
def setUp(self):
self.type = "rowwise_add"
self.inputs = {
'X': np.random.random((32, 84)).astype("float32"),
'b': np.random.random(84).astype("float32")
}
self.outputs = {'Out': np.add(self.inputs['X'], self.inputs['b'])}
class TestRowwiseAddOp2(unittest.TestCase):
__metaclass__ = OpTestMeta
class TestRowwiseAddOp(OpTest):
def setUp(self):
self.type = "rowwise_add"
self.op_type = "rowwise_add"
self.inputs = {
'X': np.random.random((13, 6, 7, 8)).astype("float32"),
'b': np.random.random((7, 8)).astype("float32")
'X': np.random.uniform(0.1, 1, [5, 10]).astype("float32"),
'b': np.random.uniform(0.1, 1, [10]).astype("float32")
}
self.outputs = {'Out': np.add(self.inputs['X'], self.inputs['b'])}
def test_check_output(self):
self.check_output()
class TestRowwiseAddGradOp(GradientChecker):
def setUp(self):
self.op = create_op("rowwise_add")
self.inputs = {
"X": np.random.uniform(0.1, 1, [5, 10]).astype("float32"),
"b": np.random.uniform(0.1, 1, [10]).astype("float32")
}
def test_check_grad_normal(self):
self.check_grad(['X', 'b'], 'Out')
def test_normal(self):
self.check_grad(self.op, self.inputs, ["X", "b"], "Out")
def test_check_grad_ingore_b(self):
self.check_grad(['X'], 'Out', no_grad_set=set('b'))
def test_ignore_b(self):
self.check_grad(self.op, self.inputs, ["X"], "Out", no_grad_set={"b"})
def test_check_grad_ingore_x(self):
self.check_grad(['b'], 'Out', no_grad_set=set('X'))
def test_ignore_x(self):
self.check_grad(self.op, self.inputs, ["b"], "Out", no_grad_set={"X"})
class TestRowwiseAddGradOp2(GradientChecker):
class TestRowwiseAddOp2(OpTest):
def setUp(self):
self.op = create_op("rowwise_add")
self.op_type = "rowwise_add"
self.inputs = {
"X": np.random.uniform(0.1, 1, [2, 3, 2, 5]).astype("float32"),
"b": np.random.uniform(0.1, 1, [2, 5]).astype("float32")
'X': np.random.uniform(0.1, 1, [2, 3, 2, 5]).astype("float32"),
'b': np.random.uniform(0.1, 1, [2, 5]).astype("float32")
}
self.outputs = {'Out': np.add(self.inputs['X'], self.inputs['b'])}
def test_check_output(self):
self.check_output()
def test_normal(self):
self.check_grad(self.op, self.inputs, ["X", "b"], "Out")
def test_check_grad_normal(self):
self.check_grad(['X', 'b'], 'Out')
def test_ignore_b(self):
self.check_grad(self.op, self.inputs, ["X"], "Out", no_grad_set={"b"})
def test_check_grad_ignore_b(self):
self.check_grad(['X'], 'Out', no_grad_set=set('b'))
def test_ignore_x(self):
self.check_grad(self.op, self.inputs, ["b"], "Out", no_grad_set={"X"})
def test_check_grad_ignore_x(self):
self.check_grad(['b'], 'Out', no_grad_set=set('X'))
if __name__ == '__main__':
if __name__ == "__main__":
unittest.main()
import unittest
from op_test_util import OpTestMeta
from gradient_checker import GradientChecker, create_op
import numpy as np
from paddle.v2.framework.op import Operator
from op_test import OpTest
class IdentityTest(unittest.TestCase):
__metaclass__ = OpTestMeta
class IdentityTest(OpTest):
def setUp(self):
self.type = "identity"
self.inputs = {'X': np.random.random((32, 784)).astype("float32")}
self.op_type = "identity"
self.inputs = {'X': np.random.random((10, 10)).astype("float32")}
self.outputs = {'Out': self.inputs['X']}
def test_check_output(self):
self.check_output()
class IdentityGradOpTest(GradientChecker):
def test_normal(self):
op = create_op("identity")
inputs = {"X": np.random.random((10, 10)).astype("float32")}
self.check_grad(op, inputs, set("X"), "Out")
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class ScaleTest(unittest.TestCase):
__metaclass__ = OpTestMeta
class ScaleTest(OpTest):
def setUp(self):
self.type = "scale"
self.inputs = {'X': np.random.random((32, 784)).astype("float32")}
self.op_type = "scale"
self.inputs = {'X': np.random.random((10, 10)).astype("float32")}
self.attrs = {'scale': -2.3}
self.outputs = {'Out': self.inputs['X'] * self.attrs['scale']}
def test_check_output(self):
self.check_output()
class ScaleGradTest(GradientChecker):
def test_normal(self):
op = Operator("scale", X="X", Out="Out", scale=3.2)
self.check_grad(op,
{"X": np.random.random((10, 10)).astype("float32")},
set("X"), "Out")
def test_check_grad(self):
self.check_grad(['X'], 'Out')
if __name__ == '__main__':
if __name__ == "__main__":
unittest.main()
import unittest
from op_test_util import OpTestMeta
from gradient_checker import GradientChecker, create_op
import numpy
import paddle.v2.framework.core as core
from paddle.v2.framework.op import Operator
import numpy as np
from op_test import OpTest
class TestScatterOp(unittest.TestCase):
__metaclass__ = OpTestMeta
class TestScatterOp(OpTest):
def setUp(self):
self.type = "scatter"
ref_np = numpy.ones((3, 3)).astype("float32")
index_np = numpy.array([1, 2]).astype("int32")
updates_np = numpy.random.random((2, 3)).astype("float32")
output_np = numpy.copy(ref_np)
self.op_type = "scatter"
ref_np = np.ones((3, 3)).astype("float32")
index_np = np.array([1, 2]).astype("int32")
updates_np = np.random.random((2, 3)).astype("float32")
output_np = np.copy(ref_np)
output_np[index_np] += updates_np
self.inputs = {'Ref': ref_np, 'Index': index_np, 'Updates': updates_np}
self.outputs = {'Out': output_np}
def test_check_output(self):
self.check_output()
class TestScatterGradOp(GradientChecker):
def test_scatter_grad(self):
op = create_op("scatter")
# test data setup
ref_np = numpy.ones((3, 10)).astype("float32")
index_np = numpy.array([1, 2]).astype("int32")
updates_np = numpy.random.random((2, 10)).astype("float32")
output_np = numpy.copy(ref_np)
output_np[index_np] += updates_np
inputs = {'Ref': ref_np, 'Index': index_np, 'Updates': updates_np}
self.check_grad(
op, inputs, set(["Updates", "Ref"]), "Out", in_place=True)
def test_check_grad(self):
self.check_grad(['Updates', 'Ref'], 'Out', in_place=True)
if __name__ == "__main__":
......
import unittest
import numpy
from op_test_util import OpTestMeta
import numpy as np
from op_test import OpTest
class TestSGD(unittest.TestCase):
__metaclass__ = OpTestMeta
class TestSGD(OpTest):
def setUp(self):
self.type = "sgd"
w = numpy.random.random((102, 105)).astype("float32")
g = numpy.random.random((102, 105)).astype("float32")
self.op_type = "sgd"
w = np.random.random((102, 105)).astype("float32")
g = np.random.random((102, 105)).astype("float32")
lr = 0.1
self.inputs = {'param': w, 'grad': g}
self.attrs = {'learning_rate': lr}
self.outputs = {'param_out': w - lr * g}
def test_check_output(self):
self.check_output()
if __name__ == "__main__":
unittest.main()
import unittest
import numpy as np
from gradient_checker import GradientChecker, create_op
from op_test_util import OpTestMeta
from op_test import OpTest
def stable_softmax(x):
......@@ -13,26 +10,21 @@ def stable_softmax(x):
return exps / np.sum(exps)
class TestSoftmaxOp(unittest.TestCase):
__metaclass__ = OpTestMeta
class TestSoftmaxOp(OpTest):
def setUp(self):
self.type = "softmax"
self.inputs = {"X": np.random.random((10, 10)).astype("float32")}
self.op_type = "softmax"
self.inputs = {
'X': np.random.uniform(0.1, 1, [10, 10]).astype("float32")
}
self.outputs = {
"Y": np.apply_along_axis(stable_softmax, 1, self.inputs["X"])
'Y': np.apply_along_axis(stable_softmax, 1, self.inputs['X'])
}
def test_check_output(self):
self.check_output()
class TestSoftmaxGradOp(GradientChecker):
def setUp(self):
self.op = create_op("softmax")
self.inputs = {
"X": np.random.uniform(0.1, 1, [10, 10]).astype("float32")
}
def test_softmax_grad(self):
self.check_grad(self.op, self.inputs, ["X"], "Y")
def test_check_grad(self):
self.check_grad(['X'], 'Y')
if __name__ == "__main__":
......
import unittest
from op_test_util import OpTestMeta
from gradient_checker import GradientChecker, create_op
import numpy as np
from op_test import OpTest
class TestSquaredL2DistanceOp_f0(unittest.TestCase):
__metaclass__ = OpTestMeta
class TestSquaredL2DistanceOp_f0(OpTest):
def setUp(self):
self.type = 'squared_l2_distance'
self.op_type = "squared_l2_distance"
self.inputs = {
'X': np.random.uniform(0.1, 1., (32, 64)).astype('float32'),
'Y': np.random.uniform(0.1, 1., (32, 64)).astype('float32')
'X': np.random.uniform(0.1, 0.6, (2, 3)).astype("float32"),
'Y': np.random.uniform(0.1, 0.6, (2, 3)).astype("float32")
}
sub_res = self.inputs['X'] - self.inputs['Y']
output = sub_res * sub_res
......@@ -20,15 +17,19 @@ class TestSquaredL2DistanceOp_f0(unittest.TestCase):
'Out': np.expand_dims(output.sum(1), 1)
}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X', 'Y'], 'Out')
class TestSquaredL2DistanceOp_f1(unittest.TestCase):
__metaclass__ = OpTestMeta
class TestSquaredL2DistanceOp_f1(OpTest):
def setUp(self):
self.type = 'squared_l2_distance'
self.op_type = "squared_l2_distance"
self.inputs = {
'X': np.random.uniform(0.1, 1., (32, 64)).astype('float32'),
'Y': np.random.uniform(0.1, 1., (1, 64)).astype('float32')
'X': np.random.uniform(0.1, 0.6, (2, 3)).astype("float32"),
'Y': np.random.uniform(0.1, 0.6, (1, 3)).astype("float32")
}
sub_res = self.inputs['X'] - self.inputs['Y']
output = sub_res * sub_res
......@@ -37,53 +38,34 @@ class TestSquaredL2DistanceOp_f1(unittest.TestCase):
'Out': np.expand_dims(output.sum(1), 1)
}
def test_check_output(self):
self.check_output()
class TestSquaredL2DistanceOp_f2(unittest.TestCase):
__metaclass__ = OpTestMeta
def test_check_grad(self):
self.check_grad(['X', 'Y'], 'Out')
class TestSquaredL2DistanceOp_f2(OpTest):
def setUp(self):
self.type = 'squared_l2_distance'
self.op_type = "squared_l2_distance"
self.inputs = {
'X': np.random.uniform(0.1, 1., (32, 64, 128)).astype('float32'),
'Y': np.random.uniform(0.1, 1., (1, 64, 128)).astype('float32')
'X': np.random.uniform(0.1, 0.6, (2, 3, 4)).astype("float32"),
'Y': np.random.uniform(0.1, 0.6, (1, 3, 4)).astype("float32")
}
sub_res = self.inputs['X'] - self.inputs['Y']
sub_res = sub_res.reshape((32, 64 * 128))
sub_res = sub_res.reshape((2, 3 * 4))
output = sub_res * sub_res
self.outputs = {
'sub_result': sub_res,
'Out': np.expand_dims(output.sum(1), 1)
}
def test_check_output(self):
self.check_output()
class TestSquaredL2DistanceGradOp(GradientChecker):
def test_squared_l2_distance_b0(self):
op = create_op("squared_l2_distance")
inputs = {
'X': np.random.uniform(0.1, .6, (2, 3)).astype('float32'),
'Y': np.random.uniform(0.1, .6, (2, 3)).astype('float32')
}
self.compare_grad(op, inputs)
self.check_grad(op, inputs, set(["X", "Y"]), "Out")
def test_squared_l2_distance_b1(self):
op = create_op("squared_l2_distance")
inputs = {
'X': np.random.uniform(0.1, .6, (2, 3)).astype('float32'),
'Y': np.random.uniform(0.1, .6, (1, 3)).astype('float32')
}
self.compare_grad(op, inputs)
self.check_grad(op, inputs, set(["X", "Y"]), "Out")
def test_squared_l2_distance_b2(self):
op = create_op("squared_l2_distance")
inputs = {
'X': np.random.uniform(0.1, .6, (2, 3, 4)).astype('float32'),
'Y': np.random.uniform(0.1, .6, (1, 3, 4)).astype('float32')
}
self.compare_grad(op, inputs)
self.check_grad(op, inputs, set(["X", "Y"]), "Out")
def test_check_grad(self):
self.check_grad(['X', 'Y'], 'Out')
if __name__ == '__main__':
if __name__ == "__main__":
unittest.main()
......@@ -9,7 +9,7 @@ class TestSumOp(OpTest):
x0 = np.random.random((3, 4)).astype('float32')
x1 = np.random.random((3, 4)).astype('float32')
x2 = np.random.random((3, 4)).astype('float32')
self.inputs = {"X": {"x0": x0, "x1": x1, "x2": x2}}
self.inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
y = x0 + x1 + x2
self.outputs = {'Out': y}
......@@ -17,8 +17,8 @@ class TestSumOp(OpTest):
self.check_output()
def test_check_grad(self):
self.check_grad(["x0"], "Out")
self.check_grad(['x0'], 'Out')
if __name__ == '__main__':
if __name__ == "__main__":
unittest.main()
......@@ -3,7 +3,7 @@ import unittest
import numpy
class TestScope(unittest.TestCase):
class TestTensor(unittest.TestCase):
def test_int_tensor(self):
scope = core.Scope()
var = scope.new_var("test_tensor")
......@@ -20,8 +20,8 @@ class TestScope(unittest.TestCase):
tensor.set(tensor_array, place)
tensor_array_2 = numpy.array(tensor)
self.assertEqual(1.0, tensor_array_2[3, 9])
self.assertEqual(2.0, tensor_array_2[19, 11])
self.assertEqual(1, tensor_array_2[3, 9])
self.assertEqual(2, tensor_array_2[19, 11])
def test_float_tensor(self):
scope = core.Scope()
......@@ -43,6 +43,84 @@ class TestScope(unittest.TestCase):
self.assertAlmostEqual(1.0, tensor_array_2[3, 9])
self.assertAlmostEqual(2.0, tensor_array_2[19, 11])
def test_int_lod_tensor(self):
places = [core.CPUPlace(), core.GPUPlace(0)]
for place in places:
scope = core.Scope()
var = scope.new_var("test_tensor")
var_lod = scope.new_var("test_lod_tensor")
tensor = var.get_tensor()
lod_tensor = var_lod.get_lod_tensor()
tensor.set_dims([4, 4, 6])
tensor.alloc_int(place)
array = numpy.array(tensor)
array[0, 0, 0] = 3
array[3, 3, 5] = 10
tensor.set(array, place)
lod_tensor.set_tensor(tensor)
lod_tensor.set_lod([[0, 2, 4]])
lod_v = numpy.array(lod_tensor.tensor())
self.assertTrue(numpy.alltrue(array == lod_v))
lod = lod_tensor.lod()
self.assertEqual(0, lod[0][0])
self.assertEqual(2, lod[0][1])
self.assertEqual(4, lod[0][2])
def test_float_lod_tensor(self):
places = [core.CPUPlace(), core.GPUPlace(0)]
for place in places:
scope = core.Scope()
var = scope.new_var("test_tensor")
var_lod = scope.new_var("test_lod_tensor")
tensor = var.get_tensor()
lod_tensor = var_lod.get_lod_tensor()
tensor.set_dims([5, 2, 3, 4])
tensor.alloc_float(place)
tensor_array = numpy.array(tensor)
self.assertEqual((5, 2, 3, 4), tensor_array.shape)
tensor_array[0, 0, 0, 0] = 1.0
tensor_array[0, 0, 0, 1] = 2.0
tensor.set(tensor_array, place)
lod_tensor.set_tensor(tensor)
lod_v = numpy.array(lod_tensor.tensor())
self.assertAlmostEqual(1.0, lod_v[0, 0, 0, 0])
self.assertAlmostEqual(2.0, lod_v[0, 0, 0, 1])
self.assertEqual(len(lod_tensor.lod()), 0)
lod_py = [[0, 2, 5], [0, 2, 4, 5]]
lod_tensor.set_lod(lod_py)
lod = lod_tensor.lod()
self.assertListEqual(lod_py, lod)
def test_lod_tensor_init(self):
scope = core.Scope()
var = scope.new_var("test_tensor")
place = core.CPUPlace()
tensor = var.get_tensor()
tensor.set_dims([5, 2, 3, 4])
tensor.alloc_float(place)
tensor_array = numpy.array(tensor)
tensor_array[0, 0, 0, 0] = 1.0
tensor_array[0, 0, 0, 1] = 2.0
tensor.set(tensor_array, place)
lod_py = [[0, 2, 5], [0, 2, 4, 5]]
lod_tensor = core.LoDTensor(lod_py, tensor)
lod_v = numpy.array(lod_tensor.tensor())
self.assertAlmostEqual(1.0, lod_v[0, 0, 0, 0])
self.assertAlmostEqual(2.0, lod_v[0, 0, 0, 1])
self.assertListEqual(lod_py, lod_tensor.lod())
if __name__ == '__main__':
unittest.main()
import unittest
import numpy as np
from gradient_checker import GradientChecker, create_op
from op_test_util import OpTestMeta
from op_test import OpTest
class TestTopkOp(unittest.TestCase):
__metaclass__ = OpTestMeta
class TestTopkOp(OpTest):
def setUp(self):
self.type = "top_k"
self.op_type = "top_k"
k = 1
input = np.random.random((32, 84)).astype("float32")
output = np.ndarray((32, k))
......@@ -25,11 +22,9 @@ class TestTopkOp(unittest.TestCase):
self.outputs = {'Out': output, 'Indices': indices}
class TestTopkOp3d(unittest.TestCase):
__metaclass__ = OpTestMeta
class TestTopkOp3d(OpTest):
def setUp(self):
self.type = "top_k"
self.op_type = "top_k"
k = 1
input = np.random.random((32, 2, 84)).astype("float32")
input_flat_2d = input.reshape(64, 84)
......@@ -48,5 +43,5 @@ class TestTopkOp3d(unittest.TestCase):
self.outputs = {'Out': output, 'Indices': indices}
if __name__ == '__main__':
if __name__ == "__main__":
unittest.main()
......@@ -14,11 +14,11 @@ class UniformRandomTest(unittest.TestCase):
def uniform_random_test(self, place):
scope = core.Scope()
scope.new_var("X").get_tensor()
scope.new_var('X').get_tensor()
op = Operator(
"uniform_random",
Out="X",
Out='X',
dims=[1000, 784],
min=-5.0,
max=10.0,
......@@ -27,9 +27,9 @@ class UniformRandomTest(unittest.TestCase):
op.infer_shape(scope)
ctx = core.DeviceContext.create(place)
op.run(scope, ctx)
tensor = numpy.array(scope.find_var("X").get_tensor())
tensor = numpy.array(scope.find_var('X').get_tensor())
self.assertAlmostEqual(tensor.mean(), 2.5, delta=0.1)
if __name__ == '__main__':
if __name__ == "__main__":
unittest.main()
......@@ -2,6 +2,7 @@ import numpy
import collections
import topology
import minibatch
import cPickle
__all__ = ['infer', 'Inference']
......@@ -25,11 +26,23 @@ class Inference(object):
:type parameters: paddle.v2.parameters.Parameters
"""
def __init__(self, output_layer, parameters):
def __init__(self, parameters, output_layer=None, fileobj=None):
import py_paddle.swig_paddle as api
topo = topology.Topology(output_layer)
gm = api.GradientMachine.createFromConfigProto(
topo.proto(), api.CREATE_MODE_TESTING, [api.PARAMETER_VALUE])
if output_layer is not None:
topo = topology.Topology(output_layer)
gm = api.GradientMachine.createFromConfigProto(
topo.proto(), api.CREATE_MODE_TESTING, [api.PARAMETER_VALUE])
self.__data_types__ = topo.data_type()
elif fileobj is not None:
tmp = cPickle.load(fileobj)
gm = api.GradientMachine.createByConfigProtoStr(
tmp['protobin'], api.CREATE_MODE_TESTING,
[api.PARAMETER_VALUE])
self.__data_types__ = tmp['data_type']
else:
raise ValueError("Either output_layer or fileobj must be set")
for param in gm.getParameters():
val = param.getBuf(api.PARAMETER_VALUE)
name = param.getName()
......@@ -43,7 +56,6 @@ class Inference(object):
# called here, but it's better to call this function in one place.
param.setValueUpdated()
self.__gradient_machine__ = gm
self.__data_types__ = topo.data_type()
def iter_infer(self, input, feeding=None):
from data_feeder import DataFeeder
......
......@@ -18,6 +18,7 @@ from paddle.proto.ModelConfig_pb2 import ModelConfig
import paddle.trainer_config_helpers as conf_helps
import layer as v2_layer
import config_base
import cPickle
__all__ = ['Topology']
......@@ -100,6 +101,14 @@ class Topology(object):
return layer
return None
def serialize_for_inference(self, stream):
protobin = self.proto().SerializeToString()
data_type = self.data_type()
cPickle.dump({
'protobin': protobin,
'data_type': data_type
}, stream, cPickle.HIGHEST_PROTOCOL)
def __check_layer_type__(layer):
if not isinstance(layer, config_base.Layer):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册