Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b1adde3d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b1adde3d
编写于
4月 13, 2022
作者:
z8hanghuan
提交者:
GitHub
4月 13, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
use bilstm_train for rnn forward, * test=kunlun (#41671)
上级
f4cc5def
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
43 addition
and
74 deletion
+43
-74
paddle/fluid/operators/rnn_op_xpu.cc
paddle/fluid/operators/rnn_op_xpu.cc
+43
-74
未找到文件。
paddle/fluid/operators/rnn_op_xpu.cc
浏览文件 @
b1adde3d
...
@@ -51,41 +51,6 @@ void reset_parameter_vector(const std::vector<TensorType>& raw_params_vec,
...
@@ -51,41 +51,6 @@ void reset_parameter_vector(const std::vector<TensorType>& raw_params_vec,
}
}
}
}
template
<
typename
DeviceContext
,
typename
T
>
void
RunLSTMLayer
(
const
framework
::
ExecutionContext
&
ctx
,
int
seq_len
,
int
batch_size
,
int
xdim
,
int
hidden_size
,
const
T
*
x
,
T
*
y
,
const
T
*
init_h
,
const
T
*
init_c
,
T
*
last_h
,
T
*
last_c
,
int
state_offset
,
const
std
::
vector
<
int
>&
seq_len_tensor
,
const
std
::
vector
<
const
T
*>&
param_list
,
T
*
i_f_g_o
,
T
*
c
,
bool
is_bidirect
,
int
layer_idx
,
int
offset
)
{
bool
is_reverse
=
false
;
if
(
is_bidirect
)
{
layer_idx
=
2
*
layer_idx
+
offset
;
if
(
offset
>
0
)
{
is_reverse
=
true
;
}
}
auto
w_x
=
param_list
[
0
+
offset
*
4
];
auto
w_h
=
param_list
[
1
+
offset
*
4
];
auto
b_x
=
param_list
[
2
+
offset
*
4
];
auto
b_h
=
param_list
[
3
+
offset
*
4
];
auto
h_0
=
init_h
+
layer_idx
*
state_offset
;
auto
c_0
=
init_c
+
layer_idx
*
state_offset
;
auto
last_h_ptr
=
last_h
+
layer_idx
*
state_offset
;
auto
last_c_ptr
=
last_c
+
layer_idx
*
state_offset
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
lstm_train
<
T
,
T
,
int16_t
>
(
dev_ctx
.
x_context
(),
(
const
T
*
)
x
,
(
const
T
*
)
h_0
,
(
const
T
*
)
c_0
,
(
const
T
*
)
w_x
,
(
const
T
*
)
w_h
,
(
const
T
*
)
b_x
,
(
const
T
*
)
b_h
,
reinterpret_cast
<
T
*>
(
y
),
reinterpret_cast
<
T
*>
(
last_h_ptr
),
reinterpret_cast
<
T
*>
(
last_c_ptr
),
batch_size
,
xdim
,
hidden_size
,
seq_len
,
seq_len_tensor
,
is_reverse
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
reinterpret_cast
<
T
*>
(
i_f_g_o
),
reinterpret_cast
<
T
*>
(
c
),
xpu
::
Activation_t
::
TANH
,
xpu
::
Activation_t
::
SIGMOID
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"lstm_train"
);
}
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
RnnXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
class
RnnXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
...
@@ -184,9 +149,9 @@ class RnnXPUKernel : public framework::OpKernel<T> {
...
@@ -184,9 +149,9 @@ class RnnXPUKernel : public framework::OpKernel<T> {
auto
y
=
output
->
data
<
T
>
();
auto
y
=
output
->
data
<
T
>
();
auto
last_h_ptr
=
last_h
->
data
<
T
>
();
auto
last_h_ptr
=
last_h
->
data
<
T
>
();
auto
last_c_ptr
=
last_c
->
data
<
T
>
();
auto
last_c_ptr
=
last_c
->
data
<
T
>
();
auto
i_f_g_o
=
reserve_data
->
data
<
T
>
();
auto
i_f_g_o
_ptr
=
reserve_data
->
data
<
T
>
();
auto
c
=
auto
c
_ptr
=
i_f_g_o
+
i_f_g_o
_ptr
+
num_layers
*
direction_num
*
seq_len
*
batch_size
*
hidden_size
*
4
;
num_layers
*
direction_num
*
seq_len
*
batch_size
*
hidden_size
*
4
;
std
::
vector
<
int
>
seq_len_tensor
(
batch_size
,
seq_len
);
std
::
vector
<
int
>
seq_len_tensor
(
batch_size
,
seq_len
);
...
@@ -197,11 +162,12 @@ class RnnXPUKernel : public framework::OpKernel<T> {
...
@@ -197,11 +162,12 @@ class RnnXPUKernel : public framework::OpKernel<T> {
int
state_offset
=
pre_state
[
0
]
->
dims
()[
1
]
*
pre_state
[
0
]
->
dims
()[
2
];
int
state_offset
=
pre_state
[
0
]
->
dims
()[
1
]
*
pre_state
[
0
]
->
dims
()[
2
];
for
(
int
i
=
0
;
i
<
num_layers
;
i
++
)
{
for
(
int
i
=
0
;
i
<
num_layers
;
i
++
)
{
auto
i_f_g_o
=
i_f_g_o_ptr
+
i
*
direction_num
*
seq_len
*
batch_size
*
hidden_size
*
4
;
auto
c
=
c_ptr
+
i
*
direction_num
*
seq_len
*
batch_size
*
hidden_size
;
const
T
*
cur_input_ptr
=
nullptr
;
const
T
*
cur_input_ptr
=
nullptr
;
int
cur_xdim
=
-
1
;
int
cur_xdim
=
-
1
;
i_f_g_o
+=
i
*
direction_num
*
seq_len
*
batch_size
*
hidden_size
*
4
;
c
+=
i
*
direction_num
*
seq_len
*
batch_size
*
hidden_size
;
if
(
i
==
0
)
{
if
(
i
==
0
)
{
cur_input_ptr
=
x
;
cur_input_ptr
=
x
;
cur_xdim
=
input_dim
;
cur_xdim
=
input_dim
;
...
@@ -222,41 +188,44 @@ class RnnXPUKernel : public framework::OpKernel<T> {
...
@@ -222,41 +188,44 @@ class RnnXPUKernel : public framework::OpKernel<T> {
cur_output_ptr
=
internal_output_1_ptr
;
cur_output_ptr
=
internal_output_1_ptr
;
}
}
auto
h_0
=
init_h_ptr
+
direction_num
*
i
*
state_offset
;
auto
c_0
=
init_c_ptr
+
direction_num
*
i
*
state_offset
;
auto
last_h
=
last_h_ptr
+
direction_num
*
i
*
state_offset
;
auto
last_c
=
last_c_ptr
+
direction_num
*
i
*
state_offset
;
auto
w_x
=
parameter_lists
[
i
][
0
];
auto
w_h
=
parameter_lists
[
i
][
1
];
auto
b_x
=
parameter_lists
[
i
][
2
];
auto
b_h
=
parameter_lists
[
i
][
3
];
if
(
is_bidirec
)
{
if
(
is_bidirec
)
{
std
::
vector
<
Tensor
>
output_vec
(
2
);
auto
bw_x
=
parameter_lists
[
i
][
4
];
std
::
vector
<
T
*>
output_ptr_vec
(
2
);
auto
bw_h
=
parameter_lists
[
i
][
5
];
for
(
int
k
=
0
;
k
<
2
;
++
k
)
{
auto
bb_x
=
parameter_lists
[
i
][
6
];
output_vec
[
k
].
Resize
({
seq_len
,
batch_size
,
output
->
dims
()[
2
]
/
2
});
auto
bb_h
=
parameter_lists
[
i
][
7
];
output_ptr_vec
[
k
]
=
output_vec
[
k
].
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
int
r
=
xpu
::
bilstm_train
<
T
,
T
,
int16_t
>
(
RunLSTMLayer
<
DeviceContext
,
T
>
(
dev_ctx
.
x_context
(),
(
const
T
*
)
cur_input_ptr
,
(
const
T
*
)
h_0
,
ctx
,
seq_len
,
batch_size
,
cur_xdim
,
hidden_size
,
cur_input_ptr
,
(
const
T
*
)
c_0
,
(
const
T
*
)
w_x
,
(
const
T
*
)
w_h
,
(
const
T
*
)
b_x
,
output_ptr_vec
[
0
],
init_h_ptr
,
init_c_ptr
,
last_h_ptr
,
last_c_ptr
,
(
const
T
*
)
b_h
,
(
const
T
*
)
bw_x
,
(
const
T
*
)
bw_h
,
(
const
T
*
)
bb_x
,
state_offset
,
seq_len_tensor
,
parameter_lists
[
i
],
i_f_g_o
,
c
,
(
const
T
*
)
bb_h
,
reinterpret_cast
<
T
*>
(
cur_output_ptr
),
is_bidirec
,
i
,
0
);
reinterpret_cast
<
T
*>
(
last_h
),
reinterpret_cast
<
T
*>
(
last_c
),
batch_size
,
cur_xdim
,
hidden_size
,
seq_len
,
seq_len_tensor
,
nullptr
,
T
*
bw_i_f_g_o
=
i_f_g_o
+
seq_len
*
batch_size
*
hidden_size
*
4
;
nullptr
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
T
*
bw_c
=
c
+
seq_len
*
batch_size
*
hidden_size
;
reinterpret_cast
<
T
*>
(
i_f_g_o
),
reinterpret_cast
<
T
*>
(
c
));
RunLSTMLayer
<
DeviceContext
,
T
>
(
ctx
,
seq_len
,
batch_size
,
cur_xdim
,
hidden_size
,
cur_input_ptr
,
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"bilstm_train"
);
output_ptr_vec
[
1
],
init_h_ptr
,
init_c_ptr
,
last_h_ptr
,
last_c_ptr
,
state_offset
,
seq_len_tensor
,
parameter_lists
[
i
],
bw_i_f_g_o
,
bw_c
,
is_bidirec
,
i
,
1
);
// concat
int
r
=
xpu
::
concat
<
T
>
(
dev_ctx
.
x_context
(),
{
output_ptr_vec
[
0
],
output_ptr_vec
[
1
]},
cur_output_ptr
,
{{
seq_len
,
batch_size
,
hidden_size
},
{
seq_len
,
batch_size
,
hidden_size
}},
2
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"concat"
);
xpu_wait
(
dev_ctx
.
x_context
()
->
xpu_stream
);
}
else
{
}
else
{
RunLSTMLayer
<
DeviceContext
,
T
>
(
int
r
=
xpu
::
lstm_train
<
T
,
T
,
int16_t
>
(
ctx
,
seq_len
,
batch_size
,
cur_xdim
,
hidden_size
,
cur_input_ptr
,
dev_ctx
.
x_context
(),
(
const
T
*
)
cur_input_ptr
,
(
const
T
*
)
h_0
,
cur_output_ptr
,
init_h_ptr
,
init_c_ptr
,
last_h_ptr
,
last_c_ptr
,
(
const
T
*
)
c_0
,
(
const
T
*
)
w_x
,
(
const
T
*
)
w_h
,
(
const
T
*
)
b_x
,
state_offset
,
seq_len_tensor
,
parameter_lists
[
i
],
i_f_g_o
,
c
,
(
const
T
*
)
b_h
,
reinterpret_cast
<
T
*>
(
cur_output_ptr
),
is_bidirec
,
i
,
0
);
reinterpret_cast
<
T
*>
(
last_h
),
reinterpret_cast
<
T
*>
(
last_c
),
batch_size
,
cur_xdim
,
hidden_size
,
seq_len
,
seq_len_tensor
,
nullptr
,
nullptr
,
nullptr
,
nullptr
,
reinterpret_cast
<
T
*>
(
i_f_g_o
),
reinterpret_cast
<
T
*>
(
c
),
xpu
::
Activation_t
::
TANH
,
xpu
::
Activation_t
::
SIGMOID
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"lstm_train"
);
}
}
}
}
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录