Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b18ca5f8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b18ca5f8
编写于
12月 05, 2017
作者:
T
typhoonzero
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
wip api for dist train
上级
36444461
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
250 addition
and
0 deletion
+250
-0
python/paddle/v2/fluid/distribute_planner.py
python/paddle/v2/fluid/distribute_planner.py
+190
-0
python/paddle/v2/fluid/tests/book/test_recognize_digits_conv_dist.py
...le/v2/fluid/tests/book/test_recognize_digits_conv_dist.py
+60
-0
未找到文件。
python/paddle/v2/fluid/distribute_planner.py
0 → 100644
浏览文件 @
b18ca5f8
import
framework
from
backward
import
append_backward_ops
from
regularizer
import
append_regularization_ops
import
optimizer
from
layer_helper
import
LayerHelper
__all__
=
[
'SGD'
,
'Momentum'
,
'Adagrad'
,
'Adam'
,
'Adamax'
,
'DecayedAdagrad'
]
def
hash_name_to_server
(
parameters_and_grads
,
pserver_endpoints
):
def
_hash_param
(
param_name
,
total
):
return
hash
(
param_name
)
%
total
param_map
=
dict
()
grad_map
=
dict
()
for
param_and_grad
in
parameters_and_grads
:
if
param_and_grad
[
0
].
trainable
is
True
and
param_and_grad
[
1
]
is
not
None
:
server_id
=
_hash_param
(
param_and_grad
[
0
].
name
,
len
(
pserver_endpoints
))
server_for_param
=
pserver_endpoints
[
server_id
]
if
param_map
.
has_key
(
server_for_param
):
param_map
[
server_for_param
].
append
(
param_and_grad
[
0
])
else
:
param_map
[
server_for_param
]
=
[
param_and_grad
[
0
]]
if
grad_map
.
has_key
(
server_for_param
):
grad_map
[
server_for_param
].
append
(
param_and_grad
[
1
])
else
:
grad_map
[
server_for_param
]
=
[
param_and_grad
[
1
]]
return
param_map
,
grad_map
def
round_robin
(
parameters_and_grads
,
pserver_endpoints
):
if
len
(
parameters_and_grads
)
<
len
(
pserver_endpoints
):
raise
Exception
(
"parameters is less than pservers"
)
param_map
=
dict
()
grad_map
=
dict
()
pserver_idx
=
0
for
param_and_grad
in
parameters_and_grads
:
if
param_and_grad
[
0
].
trainable
is
True
and
param_and_grad
[
1
]
is
not
None
:
server_for_param
=
pserver_endpoints
[
pserver_idx
]
if
param_map
.
has_key
(
server_for_param
):
param_map
[
server_for_param
].
append
(
param_and_grad
[
0
])
else
:
param_map
[
server_for_param
]
=
[
param_and_grad
[
0
]]
if
grad_map
.
has_key
(
server_for_param
):
grad_map
[
server_for_param
].
append
(
param_and_grad
[
1
])
else
:
grad_map
[
server_for_param
]
=
[
param_and_grad
[
1
]]
pserver_idx
+=
1
if
pserver_idx
>
len
(
pserver_endpoints
):
pserver_idx
=
0
return
param_map
,
grad_map
def
_append_sendop_for_trainer
(
loss
,
parameters_and_grads
,
pserver_endpoints
,
split_method
=
round_robin
):
assert
(
callable
(
split_method
))
param_map
,
grad_map
=
\
split_method
(
parameters_and_grads
,
pserver_endpoints
)
for
ep
in
pserver_endpoints
:
# FIXME(typhoonzero): send to different servers can run in parrallel.
send_op
=
loss
.
block
.
append_op
(
type
=
"send"
,
inputs
=
{
"X"
:
param_map
[
ep
]},
outputs
=
{
"Out"
:
param_map
[
ep
]},
attrs
=
{
"endpoint"
:
ep
})
return
send_op
class
DistributedPlanner
(
optimizer
.
Optimizer
):
def
__init__
(
self
,
global_step
=
None
,
parallelism_type
=
'dp'
):
"""
parallelism_type:
dp: data parallelism
mp: model parallelism
"""
super
(
DistributedPlanner
).
__init__
(
self
,
global_step
)
if
parallelism_type
==
"mp"
:
raise
NotImplementedError
(
"model parallelism not implemented"
)
elif
parallelism_type
==
"dp"
:
self
.
parameter_server_program_map
=
dict
()
self
.
worker_program
=
None
else
:
raise
NameError
(
"parallelism_type %s not supported"
%
parallelism_type
)
def
create_optimization_pass
(
self
,
parameters_and_grads
,
program
,
startup_program
=
None
):
# Create any accumulators
self
.
helper
=
LayerHelper
(
self
.
__class__
.
__name__
,
main_program
=
program
,
startup_program
=
startup_program
)
self
.
_create_accumulators
(
program
.
global_block
(),
[
p
[
0
]
for
p
in
parameters_and_grads
])
optimize_ops
=
[]
for
param_and_grad
in
parameters_and_grads
:
if
param_and_grad
[
0
].
trainable
is
True
and
param_and_grad
[
1
]
is
not
None
:
optimize_op
=
self
.
_append_optimize_op
(
program
.
global_block
(),
param_and_grad
)
optimize_ops
.
append
(
optimize_op
)
# Returned list of ops can include more ops in addition
# to optimization ops
return_ops
=
optimize_ops
# Get custom finish ops for subclasses
# FIXME: Need to fix this once we figure out how to handle dependencies
finish_ops
=
self
.
_finish_update
(
program
.
global_block
())
if
finish_ops
is
not
None
:
return_ops
+=
finish_ops
if
self
.
_global_step
is
not
None
:
return_ops
.
append
(
self
.
_increment_global_step
(
program
.
global_block
()))
return
return_ops
def
minimize
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
,
split_method
=
round_robin
):
"""
For distributed case, this call append backward ops and then
append sevaral send_ops at the end for each parameter server.
Then call get_pserver_program(idx/endpoint) will return the program of
coresponding pserver program to run.
"""
params_grads
=
append_backward_ops
(
loss
,
parameter_list
,
no_grad_set
)
# Add regularization if any
params_grads
=
append_regularization_ops
(
params_grads
)
_append_sendop_for_trainer
(
loss
,
params_grads
,
self
.
pserver_endpoints
,
split_method
)
self
.
worker_program
=
loss
.
block
.
program
optimize_sub_program
=
framework
.
Program
()
optimize_ops
=
self
.
create_optimization_pass
(
params_grads
,
optimize_sub_program
,
startup_program
)
param_list
=
[]
for
param_and_grad
in
params_grads
:
if
param_and_grad
[
0
].
trainable
is
True
and
param_and_grad
[
1
]
is
not
None
:
param_list
.
append
(
param_and_grad
[
0
])
param_map
,
grad_map
=
\
split_method
(
params_grads
,
self
.
pserver_endpoints
)
for
ep
in
self
.
pserver_endpoints
:
pserver_program
=
framework
.
Program
()
self
.
parameter_server_program_map
[
ep
]
=
pserver_program
pserver_program
.
global_block
().
append_op
(
type
=
"recv"
,
inputs
=
{
"RX"
:
param_map
[
ep
]},
outputs
=
{},
attrs
=
{
"OptimizeBlock"
:
optimize_sub_program
.
global_block
(),
"endpoint"
:
ep
})
# FIXME(typhoonzero): when to use this return value?
return
None
def
get_pserver_program
(
self
,
endpoint
):
return
self
.
parameter_server_program_map
.
get
(
endpoint
)
SGD
=
optimizer
.
SGDOptimizer
Momentum
=
optimizer
.
MomentumOptimizer
Adagrad
=
optimizer
.
AdagradOptimizer
Adam
=
optimizer
.
AdamOptimizer
Adamax
=
optimizer
.
AdamaxOptimizer
DecayedAdagrad
=
optimizer
.
DecayedAdagradOptimizer
for
optcls
in
__all__
:
eval
(
optcls
).
__base__
=
DistributedPlanner
python/paddle/v2/fluid/tests/book/test_recognize_digits_conv_dist.py
0 → 100644
浏览文件 @
b18ca5f8
from
__future__
import
print_function
import
numpy
as
np
import
paddle.v2
as
paddle
import
paddle.v2.fluid
as
fluid
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
conv_pool_1
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
images
,
filter_size
=
5
,
num_filters
=
20
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
conv_pool_2
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
conv_pool_1
,
filter_size
=
5
,
num_filters
=
50
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
predict
=
fluid
.
layers
.
fc
(
input
=
conv_pool_2
,
size
=
10
,
act
=
"softmax"
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.01
)
optimizer
.
minimize
(
avg_cost
)
accuracy
=
fluid
.
evaluator
.
Accuracy
(
input
=
predict
,
label
=
label
)
BATCH_SIZE
=
50
PASS_NUM
=
3
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
500
),
batch_size
=
BATCH_SIZE
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
images
,
label
],
place
=
place
)
exe
.
run
(
fluid
.
default_startup_program
())
for
pass_id
in
range
(
PASS_NUM
):
accuracy
.
reset
(
exe
)
for
data
in
train_reader
():
loss
,
acc
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
]
+
accuracy
.
metrics
)
pass_acc
=
accuracy
.
eval
(
exe
)
print
(
"pass_id="
+
str
(
pass_id
)
+
" acc="
+
str
(
acc
)
+
" pass_acc="
+
str
(
pass_acc
))
# print loss, acc
if
loss
<
10.0
and
pass_acc
>
0.9
:
# if avg cost less than 10.0 and accuracy is larger than 0.9, we think our code is good.
exit
(
0
)
pass_acc
=
accuracy
.
eval
(
exe
)
print
(
"pass_id="
+
str
(
pass_id
)
+
" pass_acc="
+
str
(
pass_acc
))
exit
(
1
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录