Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b1805727
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
b1805727
编写于
2月 21, 2022
作者:
z8hanghuan
提交者:
GitHub
2月 21, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix fill_constant bug, *test=kunlun (#39681)
* fix fill_constant bug, *test=kunlun * fix fill_constant bug,*test=kunlun
上级
93016331
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
227 addition
and
217 deletion
+227
-217
paddle/fluid/platform/device/xpu/xpu2_op_list.h
paddle/fluid/platform/device/xpu/xpu2_op_list.h
+1
-1
python/paddle/fluid/tests/unittests/xpu/test_fill_constant_op_xpu.py
...le/fluid/tests/unittests/xpu/test_fill_constant_op_xpu.py
+226
-216
未找到文件。
paddle/fluid/platform/device/xpu/xpu2_op_list.h
浏览文件 @
b1805727
...
...
@@ -134,7 +134,7 @@ XPUOpMap& get_kl2_ops() {
XPUKernelSet
({
pOpKernelType
(
vartype
::
INT64
,
XPUPlace
()),
pOpKernelType
(
vartype
::
INT32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
INT16
,
XPUPlace
()),
pOpKernelType
(
vartype
::
INT8
,
XPUPlace
()),
pOpKernelType
(
vartype
::
U
INT8
,
XPUPlace
()),
pOpKernelType
(
vartype
::
BOOL
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP64
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
...
...
python/paddle/fluid/tests/unittests/xpu/test_fill_constant_op_xpu.py
浏览文件 @
b1805727
...
...
@@ -17,224 +17,234 @@ from __future__ import print_function
import
sys
sys
.
path
.
append
(
".."
)
import
unittest
from
op_test
import
OpTest
import
paddle
from
paddle.fluid
import
core
import
numpy
as
np
# Situation 1: Attr(shape) is a list(without tensor)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestFillConstantOp1
(
OpTest
):
def
setUp
(
self
):
'''Test fill_constant op with specified value'''
self
.
op_type
=
"fill_constant"
self
.
inputs
=
{}
self
.
attrs
=
{
'shape'
:
[
123
,
92
],
'dtype'
:
5
,
'value'
:
3.8
}
self
.
outputs
=
{
'Out'
:
np
.
full
((
123
,
92
),
3.8
)}
def
test_check_output
(
self
):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestFillConstantOp2
(
OpTest
):
def
setUp
(
self
):
'''Test fill_constant op with default value'''
self
.
op_type
=
"fill_constant"
self
.
inputs
=
{}
self
.
attrs
=
{
'shape'
:
[
123
,
92
],
'dtype'
:
5
}
self
.
outputs
=
{
'Out'
:
np
.
full
((
123
,
92
),
0.0
)}
def
test_check_output
(
self
):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestFillConstantOp3
(
OpTest
):
def
setUp
(
self
):
'''Test fill_constant op with specified int64 value'''
self
.
op_type
=
"fill_constant"
self
.
inputs
=
{}
self
.
attrs
=
{
'shape'
:
[
123
,
92
],
'dtype'
:
3
,
'value'
:
10000000000
}
self
.
outputs
=
{
'Out'
:
np
.
full
((
123
,
92
),
10000000000
)}
def
test_check_output
(
self
):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestFillConstantOp4
(
OpTest
):
def
setUp
(
self
):
'''Test fill_constant op with specified int value'''
self
.
op_type
=
"fill_constant"
self
.
inputs
=
{}
self
.
attrs
=
{
'shape'
:
[
123
,
92
],
'dtype'
:
2
,
'value'
:
3
}
self
.
outputs
=
{
'Out'
:
np
.
full
((
123
,
92
),
3
)}
def
test_check_output
(
self
):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
# Situation 2: Attr(shape) is a list(with tensor)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestFillConstantOp1_ShapeTensorList
(
OpTest
):
def
setUp
(
self
):
'''Test fill_constant op with specified value'''
self
.
op_type
=
"fill_constant"
self
.
init_data
()
shape_tensor_list
=
[]
for
index
,
ele
in
enumerate
(
self
.
shape
):
shape_tensor_list
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
=
{
"ShapeTensorList"
:
shape_tensor_list
}
self
.
attrs
=
{
'shape'
:
self
.
infer_shape
,
'dtype'
:
5
,
'value'
:
self
.
value
}
self
.
outputs
=
{
'Out'
:
np
.
full
(
self
.
shape
,
self
.
value
)}
def
init_data
(
self
):
self
.
shape
=
[
123
,
92
]
self
.
infer_shape
=
[
-
1
,
92
]
self
.
value
=
3.8
def
test_check_output
(
self
):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestFillConstantOp2_ShapeTensorList
(
OpTest
):
def
setUp
(
self
):
'''Test fill_constant op with default value'''
self
.
op_type
=
"fill_constant"
self
.
init_data
()
shape_tensor_list
=
[]
for
index
,
ele
in
enumerate
(
self
.
shape
):
shape_tensor_list
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
=
{
"ShapeTensorList"
:
shape_tensor_list
}
self
.
attrs
=
{
'shape'
:
self
.
infer_shape
,
'dtype'
:
5
}
self
.
outputs
=
{
'Out'
:
np
.
full
(
self
.
shape
,
0.0
)}
def
init_data
(
self
):
self
.
shape
=
[
123
,
92
]
self
.
infer_shape
=
[
-
1
,
-
1
]
def
test_check_output
(
self
):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestFillConstantOp3_ShapeTensorList
(
TestFillConstantOp1_ShapeTensorList
):
def
init_data
(
self
):
self
.
shape
=
[
123
,
92
]
self
.
infer_shape
=
[
123
,
-
1
]
self
.
value
=
10000000000
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestFillConstantOp4_ShapeTensorList
(
TestFillConstantOp1_ShapeTensorList
):
def
init_data
(
self
):
self
.
shape
=
[
123
,
92
]
self
.
infer_shape
=
[
123
,
-
1
]
self
.
value
=
3
# Situation 3: shape is a tensor
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestFillConstantOp1_ShapeTensor
(
OpTest
):
def
setUp
(
self
):
'''Test fill_constant op with specified value'''
self
.
op_type
=
"fill_constant"
self
.
init_data
()
self
.
inputs
=
{
"ShapeTensor"
:
np
.
array
(
self
.
shape
).
astype
(
"int32"
)}
self
.
attrs
=
{
'value'
:
self
.
value
,
'dtype'
:
5
}
self
.
outputs
=
{
'Out'
:
np
.
full
(
self
.
shape
,
self
.
value
)}
def
init_data
(
self
):
self
.
shape
=
[
123
,
92
]
self
.
value
=
3.8
def
test_check_output
(
self
):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
# Situation 4: value is a tensor
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestFillConstantOp1_ValueTensor
(
OpTest
):
def
setUp
(
self
):
'''Test fill_constant op with specified value'''
self
.
op_type
=
"fill_constant"
self
.
init_data
()
self
.
inputs
=
{
"ShapeTensor"
:
np
.
array
(
self
.
shape
).
astype
(
"int32"
),
'ValueTensor'
:
np
.
array
([
self
.
value
]).
astype
(
"float32"
)
}
self
.
attrs
=
{
'value'
:
self
.
value
+
1.0
,
'dtype'
:
5
}
self
.
outputs
=
{
'Out'
:
np
.
full
(
self
.
shape
,
self
.
value
)}
def
init_data
(
self
):
self
.
shape
=
[
123
,
92
]
self
.
value
=
3.8
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
# Situation 5: value is a tensor
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestFillConstantOp2_ValueTensor
(
OpTest
):
def
setUp
(
self
):
'''Test fill_constant op with specified value'''
self
.
op_type
=
"fill_constant"
self
.
init_data
()
self
.
inputs
=
{
"ShapeTensor"
:
np
.
array
(
self
.
shape
).
astype
(
"int32"
),
'ValueTensor'
:
np
.
array
([
self
.
value
]).
astype
(
"int32"
)
}
self
.
attrs
=
{
'value'
:
self
.
value
,
'dtype'
:
2
}
self
.
outputs
=
{
'Out'
:
np
.
full
(
self
.
shape
,
self
.
value
)}
def
init_data
(
self
):
self
.
shape
=
[
123
,
92
]
self
.
value
=
3
self
.
dtype
=
np
.
int32
def
test_check_output
(
self
):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
from
op_test
import
OpTest
,
convert_float_to_uint16
from
op_test_xpu
import
XPUOpTest
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
class
XPUTestFillConstantOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'fill_constant'
self
.
use_dynamic_create_class
=
False
# Situation 1: Attr(shape) is a list(without tensor)
class
TestFillConstantOp
(
XPUOpTest
):
def
setUp
(
self
):
'''Test fill_constant op with specified value
'''
self
.
init_dtype
()
self
.
set_xpu
()
self
.
op_type
=
"fill_constant"
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
set_shape
()
self
.
convert_dtype2index
()
self
.
set_value
()
self
.
set_data
()
def
init_dtype
(
self
):
self
.
dtype
=
self
.
in_type
def
set_shape
(
self
):
self
.
shape
=
[
90
,
10
]
def
set_xpu
(
self
):
self
.
__class__
.
use_xpu
=
True
self
.
__class__
.
no_need_check_grad
=
True
self
.
__class__
.
op_type
=
self
.
in_type
def
convert_dtype2index
(
self
):
'''
if new type added, need to add corresponding index
'''
if
self
.
dtype
==
np
.
bool_
:
self
.
index
=
0
if
self
.
dtype
==
np
.
int16
:
self
.
index
=
1
if
self
.
dtype
==
np
.
int32
:
self
.
index
=
2
if
self
.
dtype
==
np
.
int64
:
self
.
index
=
3
if
self
.
dtype
==
np
.
float16
:
self
.
index
=
4
if
self
.
dtype
==
np
.
float32
:
self
.
index
=
5
if
self
.
dtype
==
np
.
float64
:
self
.
index
=
6
if
self
.
dtype
==
np
.
uint8
:
self
.
index
=
20
if
self
.
dtype
==
np
.
int8
:
self
.
index
=
21
if
self
.
dtype
==
np
.
uint16
:
# same as paddle.bfloat16
self
.
index
=
22
if
self
.
dtype
==
np
.
complex64
:
self
.
index
=
23
if
self
.
dtype
==
np
.
complex128
:
self
.
index
=
24
def
set_value
(
self
):
if
self
.
index
==
3
:
self
.
value
=
10000000000
elif
self
.
index
==
0
:
self
.
value
=
np
.
random
.
randint
(
0
,
2
)
elif
self
.
index
in
[
20
,
21
]:
self
.
value
=
125
elif
self
.
index
in
[
1
,
2
]:
self
.
value
=
7
elif
self
.
index
in
[
4
,
5
,
6
]:
self
.
value
=
1e-5
elif
self
.
index
==
22
:
self
.
value
=
1.0
else
:
self
.
value
=
3.7
def
set_data
(
self
):
self
.
inputs
=
{}
self
.
attrs
=
{
'shape'
:
self
.
shape
,
'dtype'
:
self
.
index
,
'value'
:
self
.
value
}
self
.
outputs
=
{
'Out'
:
np
.
full
(
self
.
shape
,
self
.
value
)}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
class
TestFillConstantOp2
(
TestFillConstantOp
):
'''Test fill_constant op with default value
'''
def
set_shape
(
self
):
self
.
shape
=
[
10
,
10
]
class
TestFillConstantOp3
(
TestFillConstantOp
):
'''Test fill_constant op with specified int64 value
'''
def
set_shape
(
self
):
self
.
shape
=
[
123
,
2
,
1
]
class
TestFillConstantOp4
(
TestFillConstantOp
):
'''Test fill_constant op with specified int value
'''
def
set_shape
(
self
):
self
.
shape
=
[
123
,
3
,
2
,
1
]
class
TestFillConstantOp5
(
TestFillConstantOp
):
'''Test fill_constant op with specified float value
'''
def
set_shape
(
self
):
self
.
shape
=
[
123
]
# Situation 2: Attr(shape) is a list(with tensor)
class
TestFillConstantOp1_ShapeTensorList
(
TestFillConstantOp
):
'''Test fill_constant op with specified value
'''
def
set_data
(
self
):
shape_tensor_list
=
[]
for
index
,
ele
in
enumerate
(
self
.
shape
):
shape_tensor_list
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
=
{
"ShapeTensorList"
:
shape_tensor_list
}
self
.
attrs
=
{
'shape'
:
self
.
infer_shape
,
'dtype'
:
self
.
index
,
'value'
:
self
.
value
}
self
.
outputs
=
{
'Out'
:
np
.
full
(
self
.
shape
,
self
.
value
)}
if
self
.
index
==
22
:
self
.
outputs
=
{
'Out'
:
np
.
full
(
self
.
shape
,
convert_float_to_uint16
(
np
.
array
([
self
.
value
]).
astype
(
"float32"
)))
}
def
set_shape
(
self
):
self
.
shape
=
[
123
,
92
]
self
.
infer_shape
=
[
123
,
1
]
class
TestFillConstantOp2_ShapeTensorList
(
TestFillConstantOp
):
'''Test fill_constant op with default value
'''
def
set_data
(
self
):
shape_tensor_list
=
[]
for
index
,
ele
in
enumerate
(
self
.
shape
):
shape_tensor_list
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
=
{
"ShapeTensorList"
:
shape_tensor_list
}
self
.
attrs
=
{
'shape'
:
self
.
infer_shape
,
'dtype'
:
self
.
index
}
self
.
outputs
=
{
'Out'
:
np
.
full
(
self
.
shape
,
0.0
)}
def
set_shape
(
self
):
self
.
shape
=
[
123
,
2
,
1
]
self
.
infer_shape
=
[
1
,
1
,
1
]
class
TestFillConstantOp3_ShapeTensorList
(
TestFillConstantOp1_ShapeTensorList
):
def
set_shape
(
self
):
self
.
shape
=
[
123
,
3
,
2
,
1
]
self
.
infer_shape
=
[
123
,
111
,
11
,
1
]
class
TestFillConstantOp4_ShapeTensorList
(
TestFillConstantOp1_ShapeTensorList
):
def
set_shape
(
self
):
self
.
shape
=
[
123
]
self
.
infer_shape
=
[
1
]
# Situation 3: shape is a tensor
class
TestFillConstantOp1_ShapeTensor
(
TestFillConstantOp
):
'''Test fill_constant op with specified value
'''
def
set_data
(
self
):
self
.
inputs
=
{
"ShapeTensor"
:
np
.
array
(
self
.
shape
).
astype
(
"int32"
)}
self
.
attrs
=
{
'value'
:
self
.
value
,
'dtype'
:
self
.
index
}
self
.
outputs
=
{
'Out'
:
np
.
full
(
self
.
shape
,
self
.
value
)}
if
self
.
index
==
22
:
self
.
outputs
=
{
'Out'
:
np
.
full
(
self
.
shape
,
convert_float_to_uint16
(
np
.
array
([
self
.
value
]).
astype
(
"float32"
)))
}
def
set_shape
(
self
):
self
.
shape
=
[
123
,
92
]
# Situation 4: value is a tensor
class
TestFillConstantOp1_ValueTensor
(
TestFillConstantOp
):
'''Test fill_constant op with specified value
'''
def
set_data
(
self
):
self
.
inputs
=
{
"ShapeTensor"
:
np
.
array
(
self
.
shape
).
astype
(
"int32"
),
'ValueTensor'
:
np
.
array
([
self
.
value
]).
astype
(
self
.
dtype
)
}
if
self
.
index
==
22
:
self
.
inputs
=
{
'ValueTensor'
:
convert_float_to_uint16
(
np
.
array
([
self
.
value
]).
astype
(
"float32"
))
}
self
.
attrs
=
{
'value'
:
self
.
value
,
'dtype'
:
self
.
index
}
self
.
outputs
=
{
'Out'
:
np
.
full
(
self
.
shape
,
self
.
value
)}
def
set_shape
(
self
):
self
.
shape
=
[
123
,
92
]
support_types
=
get_xpu_op_support_types
(
'fill_constant'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestFillConstantOp
,
stype
)
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录