未验证 提交 b1355444 编写于 作者: 李季 提交者: GitHub

fix dp (#33297)

上级 7cadd957
......@@ -113,7 +113,8 @@ class RawProgramOptimizer(MetaOptimizerBase):
optimize_ops, params_grads = self.inner_opt.minimize(
loss, startup_program, parameter_list, no_grad_set)
if self.nranks == 1:
return optimize_ops, params_grads
self._init_process_group()
self.main_program = program
......
......@@ -104,6 +104,7 @@ if(((NOT WITH_ROCM) AND (NOT WITH_GPU)) OR WIN32)
LIST(REMOVE_ITEM TEST_OPS test_collective_sendrecv_api)
LIST(REMOVE_ITEM TEST_OPS test_collective_wait)
LIST(REMOVE_ITEM TEST_OPS test_memcpy_op)
LIST(REMOVE_ITEM TEST_OPS test_raw_program_optimizer)
endif()
if(WIN32)
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.distributed.fleet as fleet
import numpy as np
import os
class TestRawProgramOptimizer(unittest.TestCase):
def setUp(self):
os.environ["PADDLE_TRAINER_ID"] = "0"
os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
def mlp(self, input_x, input_y, hid_dim=128, label_dim=2):
fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
prediction = paddle.static.nn.fc(x=[fc_2],
size=label_dim,
activation='softmax')
cost = paddle.nn.functional.cross_entropy(
input=prediction, label=input_y)
avg_cost = paddle.mean(x=cost)
return avg_cost
def gen_data(self):
return {
"x": np.random.random(size=(128, 32)).astype('float32'),
"y": np.random.randint(
2, size=(128, 1)).astype('int64')
}
def test_single_gpu(self):
paddle.enable_static()
fleet.init(is_collective=True)
sharding_program = paddle.static.Program()
sharding_startup_program = paddle.static.Program()
strategy = fleet.DistributedStrategy()
strategy.without_graph_optimization = True
with fluid.program_guard(sharding_program, sharding_startup_program):
with fluid.unique_name.guard():
input_x = paddle.static.data(
name="x", shape=[None, 32], dtype='float32')
input_y = paddle.static.data(
name="y", shape=[None, 1], dtype='int64')
cost = self.mlp(input_x=input_x, input_y=input_y)
output_name = cost.name
optimizer = fleet.distributed_optimizer(fluid.optimizer.Adam(),
strategy)
optimizer.minimize(cost)
trainer_id = fleet.worker_index()
exe = paddle.static.Executor(paddle.CUDAPlace(trainer_id))
rank = fleet.worker_index()
exe.run(sharding_startup_program)
exe.run(program=sharding_program, feed=self.gen_data())
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册