Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b0f0104a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b0f0104a
编写于
11月 10, 2017
作者:
T
Tao Luo
提交者:
GitHub
11月 10, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #5547 from tensor-tang/doc
update mkldnn design doc
上级
e5d810b9
cd4ecc92
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
23 addition
and
14 deletion
+23
-14
doc/design/mkldnn/README.MD
doc/design/mkldnn/README.MD
+23
-14
未找到文件。
doc/design/mkldnn/README.MD
浏览文件 @
b0f0104a
...
...
@@ -15,6 +15,7 @@
-
[
CMake
](
#cmake
)
-
[
Layers
](
#layers
)
-
[
Activations
](
#activations
)
-
[
Weights
](
#weights
)
-
[
Unit Tests
](
#unit-tests
)
-
[
Protobuf Messages
](
#protobuf-messages
)
-
[
Python API
](
#python-api
)
...
...
@@ -45,17 +46,23 @@ Figure 1. PaddlePaddle on IA.
### Layers
所有MKL-DNN相关的C++ layers,都会按照PaddlePaddle的目录结构存放在
`paddle/gserver/layers`
中,并且文件名都会一以
*M
kldnn
*
开头。
`paddle/gserver/layers`
中,并且文件名都会一以
*M
KLDNN
*
开头。
所有MKL-DNN的layers都会继承于一个叫做
`MkldnnLayer`
的父类,该父类继承于PaddlePaddle的基类
`Layer`
。
所有MKL-DNN的layers都会继承于一个叫做
`MKLDNNLayer`
的父类,该父类继承于PaddlePaddle的基类
`Layer`
。
在
`MKLDNNLayer`
中会提供一些必要的接口和函数,并且会写好
`forward`
和
`backward`
的基本逻辑。部分函数定义为纯虚函数,子类只需要实现这些函数即可。
### Activations
由于在PaddlePaddle中,激活函数是独立于layer概念的,所以会在
`paddle/gserver/activations`
目录下添加
一个
`MkldnnActivation.h`
文件定义一些用于MKL-DNN的接口,实现方法还是会在
`ActivationFunction.cpp`
文件
。
由于在PaddlePaddle中,激活函数是独立于layer概念的,所以会在
`paddle/gserver/activations`
目录下添加
`MKLDNNActivation.h`
和
`MKLDNNActivation.cpp`
文件用于定义和使用MKL-DNN的接口
。
### Unit Tests
会在
`paddle/gserver/test`
目录下添加
`test_Mkldnn.cpp`
和
`MkldnnTester.*`
用于MKL-DNN的测试。
### Weights
由于有些layer是含有参数的,我们会尽量让MKL-DNN的参数与PaddlePaddle中
`parameter`
共享一块内存。
同时,由于MKL-DNN在训练时使用的参数layout可能与PaddlePaddle默认的
`nchw`
不一致,我们会在网络训练的开始和结束时分别转换这个layout,使得最终保存的参数格式与PaddlePaddle一致。
Activation的测试,计划在PaddlePaddle原有的测试文件上直接添加新的测试type。
### Unit Tests
会在
`paddle/gserver/test`
目录下添加
`test_MKLDNN.cpp`
和
`MKLDNNTester.*`
用于MKL-DNN的测试。
测试分为每个layer(或activation)的单元测试和简单网络的整体测试。
每个测试会对比PaddlePaddle中CPU算出的结果与MKL-DNN的结果,小于某个比较小的阈值认为通过。
### Protobuf Messages
根据具体layer的需求可能会在
`proto/ModelConfig.proto`
里面添加必要的选项。
...
...
@@ -82,7 +89,7 @@ if use_mkldnn
会在
`v1_api_demo`
目录下添加一个
`mkldnn`
的文件夹,里面放入一些用于MKL-DNN测试的demo脚本。
### Benchmarking
会
考虑添加部分逻辑在
`benchmark/paddle/image/run.sh`
,添加使用MKL-DNN的测试
。
会
添加
`benchmark/paddle/image/run_mkldnn.sh`
,用于测试使用MKL-DNN之后的性能
。
### Others
1.
如果在使用MKL-DNN的情况下,会把CPU的Buffer对齐为64。
...
...
@@ -94,14 +101,16 @@ if use_mkldnn
我们总结出一些特别需要注意的点:
1.
使用
**deviceId_**
。为了尽可能少的在父类Layer中添加变量或者函数,我们决定使用已有的
`deviceId_`
变量来区分layer的属性,定义
`-2`
为
`M
kldnn
Layer`
特有的设备ID。
1.
使用
**deviceId_**
。为了尽可能少的在父类Layer中添加变量或者函数,我们决定使用已有的
`deviceId_`
变量来区分layer的属性,定义
`-2`
为
`M
KLDNN
Layer`
特有的设备ID。
2.
重写父类Layer的
**init**
函数,修改
`deviceId_`
为
`-2`
,代表这个layer是用于跑在MKL-DNN的环境下。
3.
创建
`MkldnnMatrix`
,用于管理MKL-DNN会用到的相关memory函数、接口以及会用的到格式信息。
4.
创建
`MkldnnBase`
,定义一些除了layer和memory相关的类和函数。包括MKL-DNN会用到
`MkldnnStream`
和
`CpuEngine`
,和未来可能还会用到
`FPGAEngine`
等。
5.
在
**Argument**
里添加两个
`MkldnnMatrixPtr`
,取名为
`mkldnnValue`
和
`mkldnnGrad`
,用于存放
`MkldnnLayer`
会用到的memory buffer。 并且添加函数cvt(会修改为一个更加合适的函数名),用于处理"CPU device"和"MKL-DNN device"之间memory的相互转化。
6.
在父类
`Layer`
中的
`getOutput`
函数中添加一段逻辑,用于判断
`deviceId`
,并针对device在MKL-DNN和CPU之间不统一的情况,做一个前期转换。 也就是调用
`Argument`
的cvt函数把output统一到需要的device上。
7.
在原来的
`FLAGS`
中添加一个
`use_mkldnn`
的flag,用于选择是否使用MKL-DNN的相关功能。
8.
关于MKLDNN参数的保存。由于MKLDNN参数的格式与PaddlePaddle原有的格式存在不一样的情况,所以需要在保存参数时同时保存该格式信息。目前准备扩展
[
Header
](
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/parameter/Parameter.h#L247
)
里面的
`int32_t version`
。这个值不管是在v1还是在v2里面,一直保存的是0,所以可以充分利用这个信息,定义一个枚举处理所有MKLDNN的参数格式,从而
`MKLDNNLayer`
就可以从输入的参数中获取需要的格式信息。
3.
创建
`MKLDNNMatrix`
,同时继承
`CpuMatrix`
和
`mkldnn::memory`
。用于管理MKL-DNN会用到的相关memory函数、接口以及会用的到格式信息。
4.
创建
`MKLDNNBase`
,定义一些除了layer和memory相关的类和函数。包括MKL-DNN会用到
`MKLDNNStream`
和
`CPUEngine`
,和未来可能还会用到
`FPGAEngine`
等。
5.
每个
`MKLDNNlayer`
都会有
`inVal_`
,
`inGrad_`
,
`outVal_`
和
`outGrad_`
,分别代表input value, input gradient,output value和output gradient。他们会存放MKL-DNN用到的internal memory。同时还会定义以
*ext*
开头的
`MKLDNNMatrix`
(表示external的memory),主要是在格式与PaddlePaddle默认的
`nchw`
格式不匹配时,用于转换内存的工作。必要的转换函数也会在
`MKLDNNLayer`
中提前定义好,每个子类只需要调用定义好的reset buffer函数即可。
6.
每个
`MKLDNNlayer`
的resetbuffer相关的函数(包括reset input、output的Value和grad),他们会根据输入参数reset internal和external的memory,当然这两者也可以相等,即表示不需要转换。只需要把握一个原则,每个
`MKLDNNlayer`
的子类,只需要使用internal的memory就可以了,所有external的转换工作在父类的reset函数中都提前准备好了。
7.
一般来说,external的memory会尽量与PaddlePaddle中的
`value`
和
`grad`
共享内存。同时每个
`MKLDNNLayer`
中的external output value和gradient(也就是
`extOutVal_`
和
`extOutGrad_`
)必须分别与
`output_.value`
和
`output_.grad`
共享内存,因为PaddlePaddle的activation会直接使用
`output_.value`
和
`output_.grad`
。如果不需要external的buffer用于转换,那么internal的buffer也会与他们共享内存。
8.
如果MKL-DNN layer的后面接有cpu device,那么就会使
`output_.value`
与
`extOutVal_`
共享内存,同时数据格式就是
`nchw`
,这样下一个cpu device就能拿到正确的数据。在有cpu device的时候,external的memory的格式始终是
`nchw`
或者
`nc`
。
9.
由于MKL-DNN的输出操作都是覆盖data的,不是在原来的数据上累加,所以当网络出现分支时,在
`backward`
时会需要merge不同layer的梯度。
`MKLDNNlayer`
中会实现merge的方法,此时每个小分支的input gradient会先临时保存在一个
`MKLDNNMatrix`
中,由分支处的layer负责求和,并把结果放到这个layer的
`output_.grad`
中。所以整体上,每个子类并不会需要关心分支的事情,也是在父类都实现好了。
10.
在原来的
`FLAGS`
中添加一个
`use_mkldnn`
的flag,用于选择是否使用MKL-DNN的相关功能。
## References
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录