未验证 提交 b0b8f1d7 编写于 作者: z8hanghuan's avatar z8hanghuan 提交者: GitHub

move stack op to phi, *test=kunlun (#45670)

* move stack op to phi, *test=kunlun

* move stack op to phi, *test=kunlun

* move stack op to phi, *test=kunlun

* move stack op to phi, *test=kunlun

* move stack op to phi, *test=kunlun

* move stack to phi,*test=kunlun
上级 3c612b92
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef PADDLE_WITH_XPU
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/concat_op.h"
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
namespace paddle {
namespace operators {
using framework::Tensor;
template <typename DeviceContext, typename T>
class StackXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto x = ctx.MultiInput<Tensor>("X");
auto* y = ctx.Output<Tensor>("Y");
int axis = ctx.Attr<int>("axis");
if (axis < 0) {
axis += x[0]->dims().size() + 1;
}
auto* y_data = y->mutable_data<T>(ctx.GetPlace());
auto& dim = x[0]->dims();
std::vector<int> xdims;
for (auto i = 0; i < dim.size(); ++i) {
xdims.push_back(dim[i]);
}
xdims.push_back(1);
std::vector<std::vector<int>> xdims_list;
int n = static_cast<int>(x.size());
for (int i = 0; i < n; i++) {
xdims_list.push_back(xdims);
}
std::vector<const T*> x_list;
for (int i = 0; i < n; i++) {
x_list.push_back(x[i]->data<T>());
}
auto& dev_ctx = ctx.template device_context<DeviceContext>();
int r =
xpu::concat<T>(dev_ctx.x_context(), x_list, y_data, xdims_list, axis);
PADDLE_ENFORCE_EQ(r,
xpu::Error_t::SUCCESS,
platform::errors::External(
"The stack XPU API return wrong value[%d %s]",
r,
XPUAPIErrorMsg[r]));
}
};
template <typename DeviceContext, typename T>
class StackGradXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
auto dx = ctx.MultiOutput<Tensor>(framework::GradVarName("X"));
auto axis = ctx.Attr<int>("axis");
auto& dev_ctx = ctx.template device_context<DeviceContext>();
auto dy_dims = dy->dims();
if (axis < 0) axis += dy_dims.size() + 1;
auto dy_shape = phi::vectorize<int>(dy_dims);
std::vector<int> dx_dims_list(dx.size(), 1);
std::vector<T*> dx_lists;
for (auto out : dx) {
dx_lists.push_back(out->mutable_data<T>(ctx.GetPlace()));
}
int r = xpu::split<T>(dev_ctx.x_context(),
dy->data<T>(),
dx_lists,
dy_shape,
dx_dims_list,
axis);
PADDLE_ENFORCE_EQ(r,
XPU_SUCCESS,
platform::errors::External(
"The stack_grad XPU kernel return wrong value[%d %s]",
r,
XPUAPIErrorMsg[r]));
}
};
} // namespace operators
} // namespace paddle
namespace plat = paddle::platform;
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(stack,
ops::StackXPUKernel<plat::XPUDeviceContext, float>,
ops::StackXPUKernel<plat::XPUDeviceContext, int>,
ops::StackXPUKernel<plat::XPUDeviceContext, int64_t>);
REGISTER_OP_XPU_KERNEL(stack_grad,
ops::StackGradXPUKernel<plat::XPUDeviceContext, float>,
ops::StackGradXPUKernel<plat::XPUDeviceContext, int>);
#endif
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/stack_grad_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void StackGradKernel(const Context& dev_ctx,
const DenseTensor& out,
int axis,
std::vector<DenseTensor*> x_grad) {
using XPUType = typename XPUTypeTrait<T>::Type;
auto outs = x_grad;
auto dy_dims = out.dims();
if (axis < 0) axis += dy_dims.size() + 1;
auto dy_shape = phi::vectorize<int>(dy_dims);
std::vector<int> dx_dims_list(x_grad.size(), 1);
std::vector<XPUType*> dx_lists;
for (size_t j = 0; j < outs.size(); ++j) {
dev_ctx.template Alloc<T>(outs[j]);
dx_lists.push_back(reinterpret_cast<XPUType*>(outs[j]->data<T>()));
}
int r = xpu::split<XPUType>(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(out.data<T>()),
dx_lists,
dy_shape,
dx_dims_list,
axis);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "split in stack_grad op");
}
} // namespace phi
PD_REGISTER_KERNEL(
stack_grad, XPU, ALL_LAYOUT, phi::StackGradKernel, float, int) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/stack_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void StackKernel(const Context& dev_ctx,
const std::vector<const DenseTensor*>& x,
int axis,
DenseTensor* out) {
using XPUType = typename XPUTypeTrait<T>::Type;
if (axis < 0) {
axis += x[0]->dims().size() + 1;
}
dev_ctx.template Alloc<T>(out);
auto& dim = x[0]->dims();
std::vector<int> xdims;
for (auto i = 0; i < dim.size(); ++i) {
xdims.push_back(dim[i]);
}
xdims.push_back(1);
std::vector<std::vector<int>> xdims_list;
int n = static_cast<int>(x.size());
for (int i = 0; i < n; i++) {
xdims_list.push_back(xdims);
}
std::vector<const XPUType*> x_list;
for (int i = 0; i < n; i++) {
x_list.push_back(reinterpret_cast<const XPUType*>(x[i]->data<T>()));
}
int r = xpu::concat<XPUType>(dev_ctx.x_context(),
x_list,
reinterpret_cast<XPUType*>(out->data<T>()),
xdims_list,
axis);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "concat in stack op");
}
} // namespace phi
PD_REGISTER_KERNEL(
stack, XPU, ALL_LAYOUT, phi::StackKernel, float, int, int64_t) {}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册