Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b0b75169
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b0b75169
编写于
4月 13, 2022
作者:
Z
zlsh80826
提交者:
GitHub
4月 13, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Reduce trt convert unit test problem size (#41701)
上级
404c4a6b
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
122 addition
and
177 deletion
+122
-177
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_activation.py
...sts/unittests/ir/inference/test_trt_convert_activation.py
+16
-18
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_batch_norm.py
...sts/unittests/ir/inference/test_trt_convert_batch_norm.py
+10
-10
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_clip.py
...uid/tests/unittests/ir/inference/test_trt_convert_clip.py
+16
-18
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_conv2d.py
...d/tests/unittests/ir/inference/test_trt_convert_conv2d.py
+17
-47
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_conv2d_fusion.py
.../unittests/ir/inference/test_trt_convert_conv2d_fusion.py
+16
-31
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_elementwise.py
...ts/unittests/ir/inference/test_trt_convert_elementwise.py
+6
-8
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_gelu.py
...uid/tests/unittests/ir/inference/test_trt_convert_gelu.py
+15
-17
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_hard_sigmoid.py
...s/unittests/ir/inference/test_trt_convert_hard_sigmoid.py
+7
-9
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_hard_swish.py
...sts/unittests/ir/inference/test_trt_convert_hard_swish.py
+4
-4
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_prelu.py
...id/tests/unittests/ir/inference/test_trt_convert_prelu.py
+4
-4
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_scale.py
...id/tests/unittests/ir/inference/test_trt_convert_scale.py
+3
-3
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_stack.py
...id/tests/unittests/ir/inference/test_trt_convert_stack.py
+1
-1
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_yolo_box.py
...tests/unittests/ir/inference/test_trt_convert_yolo_box.py
+7
-7
未找到文件。
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_activation.py
浏览文件 @
b0b75169
...
@@ -28,16 +28,16 @@ class TrtConvertActivationTest(TrtLayerAutoScanTest):
...
@@ -28,16 +28,16 @@ class TrtConvertActivationTest(TrtLayerAutoScanTest):
def
sample_program_configs
(
self
):
def
sample_program_configs
(
self
):
def
generate_input1
(
dims
,
batch
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
def
generate_input1
(
dims
,
batch
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
if
dims
==
1
:
if
dims
==
1
:
return
np
.
ones
([
64
]).
astype
(
np
.
float32
)
return
np
.
ones
([
32
]).
astype
(
np
.
float32
)
elif
dims
==
2
:
elif
dims
==
2
:
return
np
.
ones
([
3
,
64
]).
astype
(
np
.
float32
)
return
np
.
ones
([
3
,
32
]).
astype
(
np
.
float32
)
elif
dims
==
3
:
elif
dims
==
3
:
return
np
.
ones
([
3
,
64
,
64
]).
astype
(
np
.
float32
)
return
np
.
ones
([
3
,
32
,
32
]).
astype
(
np
.
float32
)
else
:
else
:
return
np
.
ones
([
batch
,
3
,
64
,
64
]).
astype
(
np
.
float32
)
return
np
.
ones
([
batch
,
3
,
32
,
32
]).
astype
(
np
.
float32
)
for
dims
in
[
1
,
2
,
3
,
4
]:
for
dims
in
[
1
,
2
,
3
,
4
]:
for
batch
in
[
1
,
2
,
4
]:
for
batch
in
[
1
,
4
]:
for
op_type
in
[
"relu"
,
"sigmoid"
,
"tanh"
,
"relu6"
]:
for
op_type
in
[
"relu"
,
"sigmoid"
,
"tanh"
,
"relu6"
]:
self
.
dims
=
dims
self
.
dims
=
dims
dics
=
[{}]
dics
=
[{}]
...
@@ -70,27 +70,25 @@ class TrtConvertActivationTest(TrtLayerAutoScanTest):
...
@@ -70,27 +70,25 @@ class TrtConvertActivationTest(TrtLayerAutoScanTest):
def
generate_dynamic_shape
(
attrs
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
1
:
if
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
128
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
32
]}
elif
self
.
dims
==
2
:
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
16
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
64
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
32
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
3
,
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
3
,
32
]}
elif
self
.
dims
==
3
:
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
,
32
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
16
,
16
]}
self
.
dynamic_shape
.
max_input_shape
=
{
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
32
,
32
]}
"input_data"
:
[
10
,
64
,
64
]
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
3
,
32
,
32
]}
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
3
,
64
,
64
]}
else
:
else
:
self
.
dynamic_shape
.
min_input_shape
=
{
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
3
,
32
,
32
]
"input_data"
:
[
1
,
3
,
16
,
16
]
}
}
self
.
dynamic_shape
.
max_input_shape
=
{
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
3
,
64
,
64
]
"input_data"
:
[
4
,
3
,
32
,
32
]
}
}
self
.
dynamic_shape
.
opt_input_shape
=
{
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
1
,
3
,
64
,
64
]
"input_data"
:
[
1
,
3
,
32
,
32
]
}
}
def
clear_dynamic_shape
():
def
clear_dynamic_shape
():
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_batch_norm.py
浏览文件 @
b0b75169
...
@@ -54,7 +54,7 @@ class TrtConvertBatchNormTest(TrtLayerAutoScanTest):
...
@@ -54,7 +54,7 @@ class TrtConvertBatchNormTest(TrtLayerAutoScanTest):
for
dims
in
[
2
,
3
,
4
]:
for
dims
in
[
2
,
3
,
4
]:
for
num_input
in
[
0
,
1
]:
for
num_input
in
[
0
,
1
]:
for
batch
in
[
1
,
2
,
4
]:
for
batch
in
[
1
,
4
]:
for
epsilon
in
[
1e-6
,
1e-5
,
1e-4
]:
for
epsilon
in
[
1e-6
,
1e-5
,
1e-4
]:
for
data_layout
in
[
"NCHW"
]:
for
data_layout
in
[
"NCHW"
]:
for
momentum
in
[
0.9
,
0.8
]:
for
momentum
in
[
0.9
,
0.8
]:
...
@@ -134,33 +134,33 @@ class TrtConvertBatchNormTest(TrtLayerAutoScanTest):
...
@@ -134,33 +134,33 @@ class TrtConvertBatchNormTest(TrtLayerAutoScanTest):
if
self
.
dims
==
4
:
if
self
.
dims
==
4
:
if
attrs
[
0
][
'data_layout'
]
==
"NCHW"
:
if
attrs
[
0
][
'data_layout'
]
==
"NCHW"
:
self
.
dynamic_shape
.
min_input_shape
=
{
self
.
dynamic_shape
.
min_input_shape
=
{
"batch_norm_input"
:
[
1
,
3
,
24
,
24
]
"batch_norm_input"
:
[
1
,
3
,
12
,
12
]
}
}
self
.
dynamic_shape
.
max_input_shape
=
{
self
.
dynamic_shape
.
max_input_shape
=
{
"batch_norm_input"
:
[
4
,
3
,
48
,
48
]
"batch_norm_input"
:
[
4
,
3
,
24
,
24
]
}
}
self
.
dynamic_shape
.
opt_input_shape
=
{
self
.
dynamic_shape
.
opt_input_shape
=
{
"batch_norm_input"
:
[
1
,
3
,
24
,
48
]
"batch_norm_input"
:
[
1
,
3
,
24
,
24
]
}
}
elif
attrs
[
0
][
'data_layout'
]
==
"NHWC"
:
elif
attrs
[
0
][
'data_layout'
]
==
"NHWC"
:
self
.
dynamic_shape
.
min_input_shape
=
{
self
.
dynamic_shape
.
min_input_shape
=
{
"batch_norm_input"
:
[
1
,
24
,
24
,
3
]
"batch_norm_input"
:
[
1
,
12
,
12
,
3
]
}
}
self
.
dynamic_shape
.
max_input_shape
=
{
self
.
dynamic_shape
.
max_input_shape
=
{
"batch_norm_input"
:
[
4
,
48
,
48
,
3
]
"batch_norm_input"
:
[
4
,
24
,
24
,
3
]
}
}
self
.
dynamic_shape
.
opt_input_shape
=
{
self
.
dynamic_shape
.
opt_input_shape
=
{
"batch_norm_input"
:
[
1
,
24
,
48
,
3
]
"batch_norm_input"
:
[
1
,
24
,
24
,
3
]
}
}
elif
self
.
dims
==
3
:
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
self
.
dynamic_shape
.
min_input_shape
=
{
"batch_norm_input"
:
[
1
,
3
,
24
]
"batch_norm_input"
:
[
1
,
3
,
12
]
}
}
self
.
dynamic_shape
.
max_input_shape
=
{
self
.
dynamic_shape
.
max_input_shape
=
{
"batch_norm_input"
:
[
4
,
3
,
48
]
"batch_norm_input"
:
[
4
,
3
,
24
]
}
}
self
.
dynamic_shape
.
opt_input_shape
=
{
self
.
dynamic_shape
.
opt_input_shape
=
{
"batch_norm_input"
:
[
1
,
3
,
48
]
"batch_norm_input"
:
[
1
,
3
,
24
]
}
}
elif
self
.
dims
==
2
:
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
self
.
dynamic_shape
.
min_input_shape
=
{
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_clip.py
浏览文件 @
b0b75169
...
@@ -28,13 +28,13 @@ class TrtConvertClipTest(TrtLayerAutoScanTest):
...
@@ -28,13 +28,13 @@ class TrtConvertClipTest(TrtLayerAutoScanTest):
def
sample_program_configs
(
self
):
def
sample_program_configs
(
self
):
def
generate_input1
(
dims
,
batch
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
def
generate_input1
(
dims
,
batch
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
if
dims
==
1
:
if
dims
==
1
:
return
np
.
ones
([
64
]).
astype
(
np
.
float32
)
return
np
.
ones
([
32
]).
astype
(
np
.
float32
)
elif
dims
==
2
:
elif
dims
==
2
:
return
np
.
ones
([
3
,
64
]).
astype
(
np
.
float32
)
return
np
.
ones
([
3
,
32
]).
astype
(
np
.
float32
)
elif
dims
==
3
:
elif
dims
==
3
:
return
np
.
ones
([
3
,
64
,
64
]).
astype
(
np
.
float32
)
return
np
.
ones
([
3
,
32
,
32
]).
astype
(
np
.
float32
)
else
:
else
:
return
np
.
ones
([
batch
,
3
,
64
,
64
]).
astype
(
np
.
float32
)
return
np
.
ones
([
batch
,
3
,
32
,
32
]).
astype
(
np
.
float32
)
def
generate_weight1
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
def
generate_weight1
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
array
([
np
.
random
.
uniform
(
1
,
10
)]).
astype
(
"float32"
)
return
np
.
array
([
np
.
random
.
uniform
(
1
,
10
)]).
astype
(
"float32"
)
...
@@ -43,7 +43,7 @@ class TrtConvertClipTest(TrtLayerAutoScanTest):
...
@@ -43,7 +43,7 @@ class TrtConvertClipTest(TrtLayerAutoScanTest):
return
np
.
array
([
np
.
random
.
uniform
(
10
,
20
)]).
astype
(
"float32"
)
return
np
.
array
([
np
.
random
.
uniform
(
10
,
20
)]).
astype
(
"float32"
)
for
dims
in
[
1
,
2
,
3
,
4
]:
for
dims
in
[
1
,
2
,
3
,
4
]:
for
batch
in
[
1
,
2
,
4
]:
for
batch
in
[
1
,
4
]:
for
op_inputs
in
[{
for
op_inputs
in
[{
"X"
:
[
"input_data"
]
"X"
:
[
"input_data"
]
},
{
},
{
...
@@ -89,27 +89,25 @@ class TrtConvertClipTest(TrtLayerAutoScanTest):
...
@@ -89,27 +89,25 @@ class TrtConvertClipTest(TrtLayerAutoScanTest):
def
generate_dynamic_shape
(
attrs
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
1
:
if
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
128
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
32
]}
elif
self
.
dims
==
2
:
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
16
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
64
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
32
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
3
,
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
3
,
32
]}
elif
self
.
dims
==
3
:
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
,
32
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
16
,
16
]}
self
.
dynamic_shape
.
max_input_shape
=
{
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
32
,
32
]}
"input_data"
:
[
10
,
64
,
64
]
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
3
,
32
,
32
]}
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
3
,
64
,
64
]}
else
:
else
:
self
.
dynamic_shape
.
min_input_shape
=
{
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
3
,
32
,
32
]
"input_data"
:
[
1
,
3
,
16
,
16
]
}
}
self
.
dynamic_shape
.
max_input_shape
=
{
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
3
,
64
,
64
]
"input_data"
:
[
4
,
3
,
32
,
32
]
}
}
self
.
dynamic_shape
.
opt_input_shape
=
{
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
1
,
3
,
64
,
64
]
"input_data"
:
[
1
,
3
,
32
,
32
]
}
}
def
clear_dynamic_shape
():
def
clear_dynamic_shape
():
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_conv2d.py
浏览文件 @
b0b75169
...
@@ -46,20 +46,16 @@ class TrtConvertConv2dTest(TrtLayerAutoScanTest):
...
@@ -46,20 +46,16 @@ class TrtConvertConv2dTest(TrtLayerAutoScanTest):
self
.
trt_param
.
workspace_size
=
1073741824
self
.
trt_param
.
workspace_size
=
1073741824
def
generate_input1
(
batch
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
def
generate_input1
(
batch
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
if
attrs
[
0
][
'groups'
]
==
1
:
return
np
.
ones
(
return
np
.
ones
([
batch
,
3
,
64
,
64
]).
astype
(
np
.
float32
)
[
batch
,
attrs
[
0
][
'groups'
]
*
3
,
64
,
64
]).
astype
(
np
.
float32
)
elif
attrs
[
0
][
'groups'
]
==
2
:
return
np
.
ones
([
batch
,
6
,
64
,
64
]).
astype
(
np
.
float32
)
else
:
return
np
.
ones
([
batch
,
9
,
64
,
64
]).
astype
(
np
.
float32
)
def
generate_weight1
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
def
generate_weight1
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
random
.
random
([
24
,
3
,
3
,
3
]).
astype
(
np
.
float32
)
return
np
.
random
.
random
([
24
,
3
,
3
,
3
]).
astype
(
np
.
float32
)
for
batch
in
[
1
,
2
,
4
]:
for
batch
in
[
1
,
4
]:
for
strides
in
[[
1
,
1
],
[
2
,
2
],
[
1
,
2
]]:
for
strides
in
[[
1
,
1
],
[
2
,
2
],
[
1
,
2
]]:
for
paddings
in
[[
0
,
3
],
[
1
,
2
,
3
,
4
]]:
for
paddings
in
[[
0
,
3
],
[
1
,
2
,
3
,
4
]]:
for
groups
in
[
1
,
2
,
3
]:
for
groups
in
[
1
,
3
]:
for
padding_algorithm
in
[
'EXPLICIT'
,
'SAME'
,
'VALID'
]:
for
padding_algorithm
in
[
'EXPLICIT'
,
'SAME'
,
'VALID'
]:
for
dilations
in
[[
1
,
1
],
[
2
,
2
],
[
1
,
2
]]:
for
dilations
in
[[
1
,
1
],
[
2
,
2
],
[
1
,
2
]]:
for
data_format
in
[
'NCHW'
]:
for
data_format
in
[
'NCHW'
]:
...
@@ -116,45 +112,19 @@ class TrtConvertConv2dTest(TrtLayerAutoScanTest):
...
@@ -116,45 +112,19 @@ class TrtConvertConv2dTest(TrtLayerAutoScanTest):
def
sample_predictor_configs
(
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
def
generate_dynamic_shape
(
attrs
):
if
attrs
[
0
][
'groups'
]
==
1
:
input_groups
=
attrs
[
0
][
'groups'
]
*
3
self
.
dynamic_shape
.
min_input_shape
=
{
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
3
,
32
,
32
],
"input_data"
:
[
1
,
input_groups
,
32
,
32
],
"output_data"
:
[
1
,
24
,
32
,
32
]
"output_data"
:
[
1
,
24
,
32
,
32
]
}
}
self
.
dynamic_shape
.
max_input_shape
=
{
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
3
,
64
,
64
],
"input_data"
:
[
4
,
input_groups
,
64
,
64
],
"output_data"
:
[
4
,
24
,
64
,
64
]
"output_data"
:
[
4
,
24
,
64
,
64
]
}
}
self
.
dynamic_shape
.
opt_input_shape
=
{
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
1
,
3
,
64
,
64
],
"input_data"
:
[
1
,
input_groups
,
64
,
64
],
"output_data"
:
[
1
,
24
,
64
,
64
]
"output_data"
:
[
1
,
24
,
64
,
64
]
}
}
elif
attrs
[
0
][
'groups'
]
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
6
,
32
,
32
],
"output_data"
:
[
1
,
24
,
32
,
32
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
6
,
64
,
64
],
"output_data"
:
[
4
,
24
,
64
,
64
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
1
,
6
,
64
,
64
],
"output_data"
:
[
1
,
24
,
64
,
64
]
}
else
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
9
,
32
,
32
],
"output_data"
:
[
1
,
24
,
32
,
32
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
9
,
64
,
64
],
"output_data"
:
[
4
,
24
,
64
,
64
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
1
,
9
,
64
,
64
],
"output_data"
:
[
1
,
24
,
64
,
64
]
}
def
clear_dynamic_shape
():
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
min_input_shape
=
{}
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_conv2d_fusion.py
浏览文件 @
b0b75169
...
@@ -49,10 +49,8 @@ class TrtConvertConv2dFusionTest(TrtLayerAutoScanTest):
...
@@ -49,10 +49,8 @@ class TrtConvertConv2dFusionTest(TrtLayerAutoScanTest):
self
.
trt_param
.
workspace_size
=
1073741824
self
.
trt_param
.
workspace_size
=
1073741824
def
generate_input1
(
batch
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
def
generate_input1
(
batch
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
if
attrs
[
0
][
'groups'
]
==
2
:
return
np
.
ones
(
return
np
.
ones
([
batch
,
6
,
64
,
64
]).
astype
(
np
.
float32
)
[
batch
,
attrs
[
0
][
'groups'
]
*
3
,
64
,
64
]).
astype
(
np
.
float32
)
else
:
return
np
.
ones
([
batch
,
9
,
64
,
64
]).
astype
(
np
.
float32
)
def
generate_weight1
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
def
generate_weight1
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
random
.
random
([
24
,
3
,
3
,
3
]).
astype
(
np
.
float32
)
return
np
.
random
.
random
([
24
,
3
,
3
,
3
]).
astype
(
np
.
float32
)
...
@@ -60,7 +58,7 @@ class TrtConvertConv2dFusionTest(TrtLayerAutoScanTest):
...
@@ -60,7 +58,7 @@ class TrtConvertConv2dFusionTest(TrtLayerAutoScanTest):
def
generate_weight2
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
def
generate_weight2
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
random
.
random
([
24
,
1
,
1
]).
astype
(
np
.
float32
)
return
np
.
random
.
random
([
24
,
1
,
1
]).
astype
(
np
.
float32
)
for
batch
in
[
1
,
2
,
4
]:
for
batch
in
[
1
,
4
]:
for
strides
in
[[
1
,
1
],
[
2
,
2
],
[
1
,
2
]]:
for
strides
in
[[
1
,
1
],
[
2
,
2
],
[
1
,
2
]]:
for
paddings
in
[[
0
,
3
],
[
1
,
2
,
3
,
4
]]:
for
paddings
in
[[
0
,
3
],
[
1
,
2
,
3
,
4
]]:
for
groups
in
[
2
,
3
]:
for
groups
in
[
2
,
3
]:
...
@@ -126,32 +124,19 @@ class TrtConvertConv2dFusionTest(TrtLayerAutoScanTest):
...
@@ -126,32 +124,19 @@ class TrtConvertConv2dFusionTest(TrtLayerAutoScanTest):
def
sample_predictor_configs
(
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
def
generate_dynamic_shape
(
attrs
):
if
attrs
[
0
][
'groups'
]
==
2
:
input_groups
=
attrs
[
0
][
'groups'
]
*
3
self
.
dynamic_shape
.
min_input_shape
=
{
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
6
,
32
,
32
],
"input_data"
:
[
1
,
input_groups
,
32
,
32
],
"output_data"
:
[
1
,
24
,
32
,
32
]
"output_data"
:
[
1
,
24
,
32
,
32
]
}
}
self
.
dynamic_shape
.
max_input_shape
=
{
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
6
,
64
,
64
],
"input_data"
:
[
4
,
input_groups
,
64
,
64
],
"output_data"
:
[
4
,
24
,
64
,
64
]
"output_data"
:
[
4
,
24
,
64
,
64
]
}
}
self
.
dynamic_shape
.
opt_input_shape
=
{
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
1
,
6
,
64
,
64
],
"input_data"
:
[
1
,
input_groups
,
64
,
64
],
"output_data"
:
[
1
,
24
,
64
,
64
]
"output_data"
:
[
1
,
24
,
64
,
64
]
}
}
else
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
9
,
32
,
32
],
"output_data"
:
[
1
,
24
,
32
,
32
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
9
,
64
,
64
],
"output_data"
:
[
4
,
24
,
64
,
64
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
1
,
9
,
64
,
64
],
"output_data"
:
[
1
,
24
,
64
,
64
]
}
def
clear_dynamic_shape
():
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
min_input_shape
=
{}
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_elementwise.py
浏览文件 @
b0b75169
...
@@ -32,7 +32,7 @@ class TrtConvertElementwiseTest_one_input(TrtLayerAutoScanTest):
...
@@ -32,7 +32,7 @@ class TrtConvertElementwiseTest_one_input(TrtLayerAutoScanTest):
def
generate_weight
():
def
generate_weight
():
return
np
.
random
.
randn
(
32
).
astype
(
np
.
float32
)
return
np
.
random
.
randn
(
32
).
astype
(
np
.
float32
)
for
batch
in
[
1
,
2
,
4
]:
for
batch
in
[
1
,
4
]:
for
shape
in
[[
32
],
[
batch
,
32
],
[
batch
,
32
,
32
],
for
shape
in
[[
32
],
[
batch
,
32
],
[
batch
,
32
,
32
],
[
batch
,
32
,
16
,
32
]]:
[
batch
,
32
,
16
,
32
]]:
for
op_type
in
[
"elementwise_add"
,
"elementwise_mul"
]:
for
op_type
in
[
"elementwise_add"
,
"elementwise_mul"
]:
...
@@ -72,7 +72,7 @@ class TrtConvertElementwiseTest_one_input(TrtLayerAutoScanTest):
...
@@ -72,7 +72,7 @@ class TrtConvertElementwiseTest_one_input(TrtLayerAutoScanTest):
# The input.dims[1] must be equal to the weight's length.
# The input.dims[1] must be equal to the weight's length.
if
self
.
dims
==
1
:
if
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
4
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
4
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
256
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
32
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
16
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
16
]}
elif
self
.
dims
==
2
:
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
]}
...
@@ -80,19 +80,17 @@ class TrtConvertElementwiseTest_one_input(TrtLayerAutoScanTest):
...
@@ -80,19 +80,17 @@ class TrtConvertElementwiseTest_one_input(TrtLayerAutoScanTest):
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
32
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
32
]}
elif
self
.
dims
==
3
:
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
,
4
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
,
4
]}
self
.
dynamic_shape
.
max_input_shape
=
{
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
32
,
32
]}
"input_data"
:
[
4
,
32
,
256
]
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
32
,
32
]}
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
32
,
16
]}
elif
self
.
dims
==
4
:
elif
self
.
dims
==
4
:
self
.
dynamic_shape
.
min_input_shape
=
{
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
,
4
,
4
]
"input_data"
:
[
1
,
32
,
4
,
4
]
}
}
self
.
dynamic_shape
.
max_input_shape
=
{
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
32
,
128
,
256
]
"input_data"
:
[
4
,
32
,
32
,
32
]
}
}
self
.
dynamic_shape
.
opt_input_shape
=
{
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
32
,
32
,
16
]
"input_data"
:
[
4
,
32
,
16
,
32
]
}
}
def
clear_dynamic_shape
():
def
clear_dynamic_shape
():
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_gelu.py
浏览文件 @
b0b75169
...
@@ -28,13 +28,13 @@ class TrtConvertGeluTest(TrtLayerAutoScanTest):
...
@@ -28,13 +28,13 @@ class TrtConvertGeluTest(TrtLayerAutoScanTest):
def
sample_program_configs
(
self
):
def
sample_program_configs
(
self
):
def
generate_input1
(
dims
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
def
generate_input1
(
dims
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
if
dims
==
1
:
if
dims
==
1
:
return
np
.
ones
([
64
]).
astype
(
np
.
float32
)
return
np
.
ones
([
32
]).
astype
(
np
.
float32
)
elif
dims
==
2
:
elif
dims
==
2
:
return
np
.
ones
([
3
,
64
]).
astype
(
np
.
float32
)
return
np
.
ones
([
3
,
32
]).
astype
(
np
.
float32
)
elif
dims
==
3
:
elif
dims
==
3
:
return
np
.
ones
([
3
,
64
,
64
]).
astype
(
np
.
float32
)
return
np
.
ones
([
3
,
32
,
32
]).
astype
(
np
.
float32
)
else
:
else
:
return
np
.
ones
([
1
,
3
,
64
,
64
]).
astype
(
np
.
float32
)
return
np
.
ones
([
1
,
3
,
32
,
32
]).
astype
(
np
.
float32
)
for
dims
in
[
1
,
2
,
3
,
4
]:
for
dims
in
[
1
,
2
,
3
,
4
]:
for
approximate
in
[
True
,
False
]:
for
approximate
in
[
True
,
False
]:
...
@@ -69,27 +69,25 @@ class TrtConvertGeluTest(TrtLayerAutoScanTest):
...
@@ -69,27 +69,25 @@ class TrtConvertGeluTest(TrtLayerAutoScanTest):
def
generate_dynamic_shape
(
attrs
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
1
:
if
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
128
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
32
]}
elif
self
.
dims
==
2
:
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
16
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
64
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
32
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
3
,
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
3
,
32
]}
elif
self
.
dims
==
3
:
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
,
32
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
16
,
16
]}
self
.
dynamic_shape
.
max_input_shape
=
{
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
32
,
32
]}
"input_data"
:
[
10
,
64
,
64
]
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
3
,
32
,
32
]}
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
3
,
64
,
64
]}
else
:
else
:
self
.
dynamic_shape
.
min_input_shape
=
{
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
3
,
32
,
32
]
"input_data"
:
[
1
,
3
,
16
,
16
]
}
}
self
.
dynamic_shape
.
max_input_shape
=
{
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
3
,
64
,
64
]
"input_data"
:
[
4
,
3
,
32
,
32
]
}
}
self
.
dynamic_shape
.
opt_input_shape
=
{
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
1
,
3
,
64
,
64
]
"input_data"
:
[
1
,
3
,
32
,
32
]
}
}
def
clear_dynamic_shape
():
def
clear_dynamic_shape
():
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_hard_sigmoid.py
浏览文件 @
b0b75169
...
@@ -29,8 +29,8 @@ class TrtConvertHardSigmoidTest_dim_2(TrtLayerAutoScanTest):
...
@@ -29,8 +29,8 @@ class TrtConvertHardSigmoidTest_dim_2(TrtLayerAutoScanTest):
def
generate_input
(
shape
):
def
generate_input
(
shape
):
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
for
batch
in
[
1
,
2
,
4
]:
for
batch
in
[
1
,
4
]:
for
shape
in
[[
batch
,
64
],
[
batch
,
32
,
64
],
[
batch
,
64
,
32
,
128
]]:
for
shape
in
[[
batch
,
32
],
[
batch
,
16
,
32
],
[
batch
,
32
,
16
,
128
]]:
self
.
input_dim
=
len
(
shape
)
self
.
input_dim
=
len
(
shape
)
for
slope
in
[
0.1
,
0.5
]:
for
slope
in
[
0.1
,
0.5
]:
for
offset
in
[
0.2
,
0.7
]:
for
offset
in
[
0.2
,
0.7
]:
...
@@ -63,23 +63,21 @@ class TrtConvertHardSigmoidTest_dim_2(TrtLayerAutoScanTest):
...
@@ -63,23 +63,21 @@ class TrtConvertHardSigmoidTest_dim_2(TrtLayerAutoScanTest):
def
generate_dynamic_shape
(
attrs
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
input_dim
==
2
:
if
self
.
input_dim
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
8
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
8
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
64
,
128
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
32
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
16
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
16
]}
elif
self
.
input_dim
==
3
:
elif
self
.
input_dim
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
8
,
8
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
8
,
8
]}
self
.
dynamic_shape
.
max_input_shape
=
{
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
16
,
32
]}
"input_data"
:
[
64
,
128
,
256
]
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
4
,
16
,
32
]}
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
16
,
64
]}
elif
self
.
input_dim
==
4
:
elif
self
.
input_dim
==
4
:
self
.
dynamic_shape
.
min_input_shape
=
{
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
8
,
8
,
4
]
"input_data"
:
[
1
,
8
,
8
,
4
]
}
}
self
.
dynamic_shape
.
max_input_shape
=
{
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
64
,
128
,
256
,
512
]
"input_data"
:
[
4
,
32
,
16
,
128
]
}
}
self
.
dynamic_shape
.
opt_input_shape
=
{
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
16
,
64
,
128
]
"input_data"
:
[
4
,
32
,
16
,
128
]
}
}
def
clear_dynamic_shape
():
def
clear_dynamic_shape
():
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_hard_swish.py
浏览文件 @
b0b75169
...
@@ -37,7 +37,7 @@ class TrtConvertHardSwishTest(TrtLayerAutoScanTest):
...
@@ -37,7 +37,7 @@ class TrtConvertHardSwishTest(TrtLayerAutoScanTest):
def
sample_program_configs
(
self
):
def
sample_program_configs
(
self
):
def
generate_input1
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
def
generate_input1
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
ones
([
1
,
3
,
64
,
64
]).
astype
(
np
.
float32
)
return
np
.
ones
([
1
,
3
,
32
,
32
]).
astype
(
np
.
float32
)
for
threshold
in
[
6.0
,
7.0
,
100.0
,
0.0
,
-
1.0
]:
for
threshold
in
[
6.0
,
7.0
,
100.0
,
0.0
,
-
1.0
]:
for
scale
in
[
5.0
,
6.0
,
7.0
,
-
1.0
,
0.0
,
100.0
]:
for
scale
in
[
5.0
,
6.0
,
7.0
,
-
1.0
,
0.0
,
100.0
]:
...
@@ -74,9 +74,9 @@ class TrtConvertHardSwishTest(TrtLayerAutoScanTest):
...
@@ -74,9 +74,9 @@ class TrtConvertHardSwishTest(TrtLayerAutoScanTest):
def
sample_predictor_configs
(
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
def
generate_dynamic_shape
(
attrs
):
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
3
,
32
,
32
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
3
,
16
,
16
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
3
,
64
,
64
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
2
,
3
,
32
,
32
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
1
,
3
,
64
,
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
1
,
3
,
32
,
32
]}
def
clear_dynamic_shape
():
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
min_input_shape
=
{}
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_prelu.py
浏览文件 @
b0b75169
...
@@ -136,7 +136,7 @@ class TrtConvertPreluTest(TrtLayerAutoScanTest):
...
@@ -136,7 +136,7 @@ class TrtConvertPreluTest(TrtLayerAutoScanTest):
"input_data"
:
[
1
,
1
],
"input_data"
:
[
1
,
1
],
}
}
self
.
dynamic_shape
.
max_input_shape
=
{
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
64
],
"input_data"
:
[
4
,
32
],
}
}
self
.
dynamic_shape
.
opt_input_shape
=
{
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
3
],
"input_data"
:
[
2
,
3
],
...
@@ -146,7 +146,7 @@ class TrtConvertPreluTest(TrtLayerAutoScanTest):
...
@@ -146,7 +146,7 @@ class TrtConvertPreluTest(TrtLayerAutoScanTest):
"input_data"
:
[
1
,
1
,
1
,
1
],
"input_data"
:
[
1
,
1
,
1
,
1
],
}
}
self
.
dynamic_shape
.
max_input_shape
=
{
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
64
,
128
,
128
],
"input_data"
:
[
4
,
3
,
16
,
32
],
}
}
self
.
dynamic_shape
.
opt_input_shape
=
{
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
3
,
16
,
32
],
"input_data"
:
[
2
,
3
,
16
,
32
],
...
@@ -156,10 +156,10 @@ class TrtConvertPreluTest(TrtLayerAutoScanTest):
...
@@ -156,10 +156,10 @@ class TrtConvertPreluTest(TrtLayerAutoScanTest):
"input_data"
:
[
1
,
1
,
1
],
"input_data"
:
[
1
,
1
,
1
],
}
}
self
.
dynamic_shape
.
max_input_shape
=
{
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
64
,
256
],
"input_data"
:
[
4
,
3
,
32
],
}
}
self
.
dynamic_shape
.
opt_input_shape
=
{
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
3
,
1
28
],
"input_data"
:
[
2
,
3
,
1
6
],
}
}
def
clear_dynamic_shape
():
def
clear_dynamic_shape
():
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_scale.py
浏览文件 @
b0b75169
...
@@ -94,14 +94,14 @@ class TrtConvertScaleTest(TrtLayerAutoScanTest):
...
@@ -94,14 +94,14 @@ class TrtConvertScaleTest(TrtLayerAutoScanTest):
"scale_input"
:
[
1
,
3
,
24
,
24
]
"scale_input"
:
[
1
,
3
,
24
,
24
]
}
}
self
.
dynamic_shape
.
max_input_shape
=
{
self
.
dynamic_shape
.
max_input_shape
=
{
"scale_input"
:
[
9
,
3
,
48
,
48
]
"scale_input"
:
[
4
,
3
,
24
,
24
]
}
}
self
.
dynamic_shape
.
opt_input_shape
=
{
self
.
dynamic_shape
.
opt_input_shape
=
{
"scale_input"
:
[
1
,
3
,
48
,
24
]
"scale_input"
:
[
1
,
3
,
24
,
24
]
}
}
elif
self
.
dims
==
3
:
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"scale_input"
:
[
1
,
3
,
24
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"scale_input"
:
[
1
,
3
,
24
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"scale_input"
:
[
9
,
6
,
48
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"scale_input"
:
[
4
,
3
,
24
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"scale_input"
:
[
1
,
3
,
24
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"scale_input"
:
[
1
,
3
,
24
]}
elif
self
.
dims
==
2
:
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"scale_input"
:
[
1
,
24
]}
self
.
dynamic_shape
.
min_input_shape
=
{
"scale_input"
:
[
1
,
24
]}
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_stack.py
浏览文件 @
b0b75169
...
@@ -69,7 +69,7 @@ class TrtConvertStackTest(TrtLayerAutoScanTest):
...
@@ -69,7 +69,7 @@ class TrtConvertStackTest(TrtLayerAutoScanTest):
return
np
.
ones
([
24
]).
astype
(
np
.
float32
)
return
np
.
ones
([
24
]).
astype
(
np
.
float32
)
for
dims
in
[
1
,
2
,
3
,
4
]:
for
dims
in
[
1
,
2
,
3
,
4
]:
for
batch
in
[
1
,
2
,
4
]:
for
batch
in
[
1
,
4
]:
for
axis
in
[
-
2
,
-
1
,
0
,
1
,
2
,
3
]:
for
axis
in
[
-
2
,
-
1
,
0
,
1
,
2
,
3
]:
self
.
dims
=
dims
self
.
dims
=
dims
dics
=
[{
"axis"
:
axis
},
{}]
dics
=
[{
"axis"
:
axis
},
{}]
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_yolo_box.py
浏览文件 @
b0b75169
...
@@ -37,7 +37,7 @@ class TrtConvertYoloBoxTest(TrtLayerAutoScanTest):
...
@@ -37,7 +37,7 @@ class TrtConvertYoloBoxTest(TrtLayerAutoScanTest):
def
generate_input2
(
attrs
:
List
[
Dict
[
str
,
Any
]],
batch
):
def
generate_input2
(
attrs
:
List
[
Dict
[
str
,
Any
]],
batch
):
return
np
.
random
.
random
([
batch
,
2
]).
astype
(
np
.
int32
)
return
np
.
random
.
random
([
batch
,
2
]).
astype
(
np
.
int32
)
for
batch
in
[
1
,
2
,
4
]:
for
batch
in
[
1
,
4
]:
for
class_num
in
[
80
,
30
]:
for
class_num
in
[
80
,
30
]:
for
anchors
in
[[
10
,
13
,
16
,
30
,
33
,
23
]]:
for
anchors
in
[[
10
,
13
,
16
,
30
,
33
,
23
]]:
for
downsample_ratio
in
[
32
,
16
]:
for
downsample_ratio
in
[
32
,
16
]:
...
@@ -97,24 +97,24 @@ class TrtConvertYoloBoxTest(TrtLayerAutoScanTest):
...
@@ -97,24 +97,24 @@ class TrtConvertYoloBoxTest(TrtLayerAutoScanTest):
if
attrs
[
0
][
'iou_aware'
]
==
True
:
if
attrs
[
0
][
'iou_aware'
]
==
True
:
channel
=
3
*
(
attrs
[
0
][
'class_num'
]
+
6
)
channel
=
3
*
(
attrs
[
0
][
'class_num'
]
+
6
)
self
.
dynamic_shape
.
min_input_shape
=
{
self
.
dynamic_shape
.
min_input_shape
=
{
"scale_input"
:
[
1
,
channel
,
24
,
24
]
"scale_input"
:
[
1
,
channel
,
12
,
12
]
}
}
self
.
dynamic_shape
.
max_input_shape
=
{
self
.
dynamic_shape
.
max_input_shape
=
{
"scale_input"
:
[
4
,
channel
,
48
,
48
]
"scale_input"
:
[
4
,
channel
,
24
,
24
]
}
}
self
.
dynamic_shape
.
opt_input_shape
=
{
self
.
dynamic_shape
.
opt_input_shape
=
{
"scale_input"
:
[
1
,
channel
,
24
,
48
]
"scale_input"
:
[
1
,
channel
,
24
,
24
]
}
}
else
:
else
:
channel
=
3
*
(
attrs
[
0
][
'class_num'
]
+
5
)
channel
=
3
*
(
attrs
[
0
][
'class_num'
]
+
5
)
self
.
dynamic_shape
.
min_input_shape
=
{
self
.
dynamic_shape
.
min_input_shape
=
{
"scale_input"
:
[
1
,
channel
,
24
,
24
]
"scale_input"
:
[
1
,
channel
,
12
,
12
]
}
}
self
.
dynamic_shape
.
max_input_shape
=
{
self
.
dynamic_shape
.
max_input_shape
=
{
"scale_input"
:
[
4
,
channel
,
48
,
48
]
"scale_input"
:
[
4
,
channel
,
24
,
24
]
}
}
self
.
dynamic_shape
.
opt_input_shape
=
{
self
.
dynamic_shape
.
opt_input_shape
=
{
"scale_input"
:
[
1
,
channel
,
24
,
48
]
"scale_input"
:
[
1
,
channel
,
24
,
24
]
}
}
def
clear_dynamic_shape
():
def
clear_dynamic_shape
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录