Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
b056a6bd
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b056a6bd
编写于
1月 23, 2018
作者:
T
Travis CI
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Deploy to GitHub Pages:
9536c4e3
上级
7b6b20c7
变更
6
展开全部
隐藏空白更改
内联
并排
Showing
6 changed file
with
220 addition
and
2 deletion
+220
-2
develop/doc/_sources/api/v2/fluid/layers.rst.txt
develop/doc/_sources/api/v2/fluid/layers.rst.txt
+5
-0
develop/doc/api/v2/fluid/layers.html
develop/doc/api/v2/fluid/layers.html
+104
-0
develop/doc/searchindex.js
develop/doc/searchindex.js
+1
-1
develop/doc_cn/_sources/api/v2/fluid/layers.rst.txt
develop/doc_cn/_sources/api/v2/fluid/layers.rst.txt
+5
-0
develop/doc_cn/api/v2/fluid/layers.html
develop/doc_cn/api/v2/fluid/layers.html
+104
-0
develop/doc_cn/searchindex.js
develop/doc_cn/searchindex.js
+1
-1
未找到文件。
develop/doc/_sources/api/v2/fluid/layers.rst.txt
浏览文件 @
b056a6bd
...
...
@@ -505,6 +505,11 @@ swish
.. autofunction:: paddle.v2.fluid.layers.swish
:noindex:
im2sequence
------
.. autofunction:: paddle.v2.fluid.layers.im2sequence
:noindex:
edit_distance
---------------
.. autofunction:: paddle.v2.fluid.layers.edit_distance_error
...
...
develop/doc/api/v2/fluid/layers.html
浏览文件 @
b056a6bd
...
...
@@ -3388,6 +3388,110 @@ Duplicable: False Optional: False</li>
</table>
</dd></dl>
</div>
<div
class=
"section"
id=
"im2sequence"
>
<h2>
im2sequence
<a
class=
"headerlink"
href=
"#im2sequence"
title=
"Permalink to this headline"
>
¶
</a></h2>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
im2sequence
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
filter_size=1
</em>
,
<em>
stride=1
</em>
,
<em>
padding=0
</em>
,
<em>
name=None
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
Extracts image patches from the input tensor to form a tensor of shape
{input.batch_size * output_height * output_width, filter_size_H *
filter_size_W * input.channels} which is similar with im2col.
This op use filter / kernel to scan images and convert these images to
sequences. After expanding, the number of time step are
output_height * output_width for an image, in which output_height and
output_width are calculated by below equation:
</p>
<div
class=
"math"
>
\[output\_size = 1 + (2 * padding + img\_size - block\_size + stride - 1) / stride\]
</div>
<p>
And the dimension of each time step is block_y * block_x * input.channels.
</p>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
<tbody
valign=
"top"
>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
Parameters:
</th><td
class=
"field-body"
><ul
class=
"first simple"
>
<li><strong>
input
</strong>
(
<em>
Variable
</em>
)
–
The input should be a tensor in NCHW format.
</li>
<li><strong>
filter_size
</strong>
(
<em>
int|tuple|None
</em>
)
–
The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
</li>
<li><strong>
stride
</strong>
(
<em>
int|tuple
</em>
)
–
The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: stride = 1.
</li>
<li><strong>
padding
</strong>
(
<em>
int|tuple
</em>
)
–
The padding size. If padding is a tuple, it can
contain two integers like (padding_H, padding_W) which means
padding_up = padding_down = padding_H and
padding_left = padding_right = padding_W. Or it can use
(padding_up, padding_left, padding_down, padding_right) to indicate
paddings of four direction. Otherwise, a scalar padding means
padding_up = padding_down = padding_left = padding_right = padding
Default: padding = 0.
</li>
<li><strong>
name
</strong>
(
<em>
int
</em>
)
–
The name of this layer. It is optional.
</li>
</ul>
</td>
</tr>
<tr
class=
"field-even field"
><th
class=
"field-name"
>
Returns:
</th><td
class=
"field-body"
><p
class=
"first"
>
The output is a LoDTensor with shape
{input.batch_size * output_height * output_width,
filter_size_H * filter_size_W * input.channels}.
If we regard output as a matrix, each row of this matrix is
a step of a sequence.
</p>
</td>
</tr>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
Return type:
</th><td
class=
"field-body"
><p
class=
"first last"
>
output
</p>
</td>
</tr>
</tbody>
</table>
<p>
Examples:
</p>
<p>
As an example:
</p>
<blockquote>
<div><div
class=
"highlight-text"
><div
class=
"highlight"
><pre><span></span>
Given:
x = [[[[ 6. 2. 1.]
[ 8. 3. 5.]
[ 0. 2. 6.]]
[[ 2. 4. 4.]
[ 6. 3. 0.]
[ 6. 4. 7.]]]
[[[ 6. 7. 1.]
[ 5. 7. 9.]
[ 2. 4. 8.]]
[[ 1. 2. 1.]
[ 1. 3. 5.]
[ 9. 0. 8.]]]]
x.dims = {2, 2, 3, 3}
And:
filter = [2, 2]
stride = [1, 1]
padding = [0, 0]
Then:
output.data = [[ 6. 2. 8. 3. 2. 4. 6. 3.]
[ 2. 1. 3. 5. 4. 4. 3. 0.]
[ 8. 3. 0. 2. 6. 3. 6. 4.]
[ 3. 5. 2. 6. 3. 0. 4. 7.]
[ 6. 7. 5. 7. 1. 2. 1. 3.]
[ 7. 1. 7. 9. 2. 1. 3. 5.]
[ 5. 7. 2. 4. 1. 3. 9. 0.]
[ 7. 9. 4. 8. 3. 5. 0. 8.]]
output.dims = {8, 9}
output.lod = [[0, 4, 8]]
</pre></div>
</div>
<p>
The simple usage is:
</p>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"n"
>
output
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
fluid
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
layers
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
im2sequence
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
layer
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
stride
</span><span
class=
"o"
>
=
</span><span
class=
"p"
>
[
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
1
</span><span
class=
"p"
>
],
</span>
<span
class=
"n"
>
filter_size
</span><span
class=
"o"
>
=
</span><span
class=
"p"
>
[
</span><span
class=
"mi"
>
2
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
2
</span><span
class=
"p"
>
])
</span>
</pre></div>
</div>
</div></blockquote>
</dd></dl>
</div>
<div
class=
"section"
id=
"edit-distance"
>
<h2>
edit_distance
<a
class=
"headerlink"
href=
"#edit-distance"
title=
"Permalink to this headline"
>
¶
</a></h2>
...
...
develop/doc/searchindex.js
浏览文件 @
b056a6bd
因为 它太大了无法显示 source diff 。你可以改为
查看blob
。
develop/doc_cn/_sources/api/v2/fluid/layers.rst.txt
浏览文件 @
b056a6bd
...
...
@@ -505,6 +505,11 @@ swish
.. autofunction:: paddle.v2.fluid.layers.swish
:noindex:
im2sequence
------
.. autofunction:: paddle.v2.fluid.layers.im2sequence
:noindex:
edit_distance
---------------
.. autofunction:: paddle.v2.fluid.layers.edit_distance_error
...
...
develop/doc_cn/api/v2/fluid/layers.html
浏览文件 @
b056a6bd
...
...
@@ -3407,6 +3407,110 @@ Duplicable: False Optional: False</li>
</table>
</dd></dl>
</div>
<div
class=
"section"
id=
"im2sequence"
>
<h2>
im2sequence
<a
class=
"headerlink"
href=
"#im2sequence"
title=
"永久链接至标题"
>
¶
</a></h2>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.fluid.layers.
</code><code
class=
"descname"
>
im2sequence
</code><span
class=
"sig-paren"
>
(
</span><em>
input
</em>
,
<em>
filter_size=1
</em>
,
<em>
stride=1
</em>
,
<em>
padding=0
</em>
,
<em>
name=None
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
Extracts image patches from the input tensor to form a tensor of shape
{input.batch_size * output_height * output_width, filter_size_H *
filter_size_W * input.channels} which is similar with im2col.
This op use filter / kernel to scan images and convert these images to
sequences. After expanding, the number of time step are
output_height * output_width for an image, in which output_height and
output_width are calculated by below equation:
</p>
<div
class=
"math"
>
\[output\_size = 1 + (2 * padding + img\_size - block\_size + stride - 1) / stride\]
</div>
<p>
And the dimension of each time step is block_y * block_x * input.channels.
</p>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
<tbody
valign=
"top"
>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
参数:
</th><td
class=
"field-body"
><ul
class=
"first simple"
>
<li><strong>
input
</strong>
(
<em>
Variable
</em>
)
–
The input should be a tensor in NCHW format.
</li>
<li><strong>
filter_size
</strong>
(
<em>
int|tuple|None
</em>
)
–
The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
</li>
<li><strong>
stride
</strong>
(
<em>
int|tuple
</em>
)
–
The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: stride = 1.
</li>
<li><strong>
padding
</strong>
(
<em>
int|tuple
</em>
)
–
The padding size. If padding is a tuple, it can
contain two integers like (padding_H, padding_W) which means
padding_up = padding_down = padding_H and
padding_left = padding_right = padding_W. Or it can use
(padding_up, padding_left, padding_down, padding_right) to indicate
paddings of four direction. Otherwise, a scalar padding means
padding_up = padding_down = padding_left = padding_right = padding
Default: padding = 0.
</li>
<li><strong>
name
</strong>
(
<em>
int
</em>
)
–
The name of this layer. It is optional.
</li>
</ul>
</td>
</tr>
<tr
class=
"field-even field"
><th
class=
"field-name"
>
返回:
</th><td
class=
"field-body"
><p
class=
"first"
>
The output is a LoDTensor with shape
{input.batch_size * output_height * output_width,
filter_size_H * filter_size_W * input.channels}.
If we regard output as a matrix, each row of this matrix is
a step of a sequence.
</p>
</td>
</tr>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
返回类型:
</th><td
class=
"field-body"
><p
class=
"first last"
>
output
</p>
</td>
</tr>
</tbody>
</table>
<p>
Examples:
</p>
<p>
As an example:
</p>
<blockquote>
<div><div
class=
"highlight-text"
><div
class=
"highlight"
><pre><span></span>
Given:
x = [[[[ 6. 2. 1.]
[ 8. 3. 5.]
[ 0. 2. 6.]]
[[ 2. 4. 4.]
[ 6. 3. 0.]
[ 6. 4. 7.]]]
[[[ 6. 7. 1.]
[ 5. 7. 9.]
[ 2. 4. 8.]]
[[ 1. 2. 1.]
[ 1. 3. 5.]
[ 9. 0. 8.]]]]
x.dims = {2, 2, 3, 3}
And:
filter = [2, 2]
stride = [1, 1]
padding = [0, 0]
Then:
output.data = [[ 6. 2. 8. 3. 2. 4. 6. 3.]
[ 2. 1. 3. 5. 4. 4. 3. 0.]
[ 8. 3. 0. 2. 6. 3. 6. 4.]
[ 3. 5. 2. 6. 3. 0. 4. 7.]
[ 6. 7. 5. 7. 1. 2. 1. 3.]
[ 7. 1. 7. 9. 2. 1. 3. 5.]
[ 5. 7. 2. 4. 1. 3. 9. 0.]
[ 7. 9. 4. 8. 3. 5. 0. 8.]]
output.dims = {8, 9}
output.lod = [[0, 4, 8]]
</pre></div>
</div>
<p>
The simple usage is:
</p>
<div
class=
"highlight-python"
><div
class=
"highlight"
><pre><span></span><span
class=
"n"
>
output
</span>
<span
class=
"o"
>
=
</span>
<span
class=
"n"
>
fluid
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
layers
</span><span
class=
"o"
>
.
</span><span
class=
"n"
>
im2sequence
</span><span
class=
"p"
>
(
</span><span
class=
"nb"
>
input
</span><span
class=
"o"
>
=
</span><span
class=
"n"
>
layer
</span><span
class=
"p"
>
,
</span>
<span
class=
"n"
>
stride
</span><span
class=
"o"
>
=
</span><span
class=
"p"
>
[
</span><span
class=
"mi"
>
1
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
1
</span><span
class=
"p"
>
],
</span>
<span
class=
"n"
>
filter_size
</span><span
class=
"o"
>
=
</span><span
class=
"p"
>
[
</span><span
class=
"mi"
>
2
</span><span
class=
"p"
>
,
</span>
<span
class=
"mi"
>
2
</span><span
class=
"p"
>
])
</span>
</pre></div>
</div>
</div></blockquote>
</dd></dl>
</div>
<div
class=
"section"
id=
"edit-distance"
>
<h2>
edit_distance
<a
class=
"headerlink"
href=
"#edit-distance"
title=
"永久链接至标题"
>
¶
</a></h2>
...
...
develop/doc_cn/searchindex.js
浏览文件 @
b056a6bd
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录