Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
af6ef888
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
af6ef888
编写于
3月 15, 2022
作者:
石
石晓伟
提交者:
GitHub
3月 15, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
adjusts the mlir attrs order, test=develop (#40514)
上级
e7057932
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
131 addition
and
70 deletion
+131
-70
paddle/infrt/dialect/phi/data_type.cc
paddle/infrt/dialect/phi/data_type.cc
+14
-14
paddle/infrt/dialect/phi/data_type.h
paddle/infrt/dialect/phi/data_type.h
+8
-8
paddle/infrt/dialect/phi/pass/kernel_op_desc.cc
paddle/infrt/dialect/phi/pass/kernel_op_desc.cc
+3
-3
paddle/infrt/host_context/kernel_registry.cc
paddle/infrt/host_context/kernel_registry.cc
+20
-10
paddle/infrt/host_context/kernel_registry.h
paddle/infrt/host_context/kernel_registry.h
+6
-2
paddle/infrt/host_context/mlir_function_executable.cc
paddle/infrt/host_context/mlir_function_executable.cc
+3
-1
paddle/infrt/host_context/mlir_function_executable.h
paddle/infrt/host_context/mlir_function_executable.h
+1
-0
paddle/infrt/host_context/mlir_to_runtime_translate.cc
paddle/infrt/host_context/mlir_to_runtime_translate.cc
+55
-16
paddle/infrt/host_context/mlir_to_runtime_translate.h
paddle/infrt/host_context/mlir_to_runtime_translate.h
+2
-1
paddle/infrt/kernel/phi/dense_tensor_kernels.cc
paddle/infrt/kernel/phi/dense_tensor_kernels.cc
+6
-6
paddle/infrt/kernel/phi/dense_tensor_kernels.h
paddle/infrt/kernel/phi/dense_tensor_kernels.h
+1
-1
paddle/infrt/kernel/phi/registry.cc
paddle/infrt/kernel/phi/registry.cc
+8
-4
paddle/infrt/kernel/tensor_kernels.cc
paddle/infrt/kernel/tensor_kernels.cc
+3
-3
paddle/infrt/tests/dialect/phi/dense_tensor.mlir
paddle/infrt/tests/dialect/phi/dense_tensor.mlir
+1
-1
未找到文件。
paddle/infrt/dialect/phi/data_type.cc
浏览文件 @
af6ef888
...
...
@@ -16,7 +16,7 @@
namespace
infrt
{
phi
::
Backend
cvtTarget2
Phi
(
TargetType
target
)
{
phi
::
Backend
ConvertTargetTo
Phi
(
TargetType
target
)
{
switch
(
target
)
{
case
TargetType
::
CPU
:
return
phi
::
Backend
::
CPU
;
...
...
@@ -27,7 +27,7 @@ phi::Backend cvtTarget2Phi(TargetType target) {
}
}
TargetType
cv
tTargetFromPhi
(
phi
::
Backend
backend
)
{
TargetType
Conver
tTargetFromPhi
(
phi
::
Backend
backend
)
{
switch
(
backend
)
{
case
phi
::
Backend
::
CPU
:
return
TargetType
::
CPU
;
...
...
@@ -38,7 +38,7 @@ TargetType cvtTargetFromPhi(phi::Backend backend) {
}
}
phi
::
DataType
cvtPrecision2
Phi
(
PrecisionType
precision
)
{
phi
::
DataType
ConvertPrecisionTo
Phi
(
PrecisionType
precision
)
{
#define CONVERT_PRECISION_TO_PHI(Precision) \
case PrecisionType::Precision: \
return phi::DataType::Precision;
...
...
@@ -61,7 +61,7 @@ phi::DataType cvtPrecision2Phi(PrecisionType precision) {
#undef CONVERT_PRECISION_TO_PHI
}
PrecisionType
cv
tPrecisionFromPhi
(
phi
::
DataType
datatype
)
{
PrecisionType
Conver
tPrecisionFromPhi
(
phi
::
DataType
datatype
)
{
#define CONVERT_PRECISION_FROM_PHI(Precision) \
case phi::DataType::Precision: \
return PrecisionType::Precision;
...
...
@@ -84,7 +84,7 @@ PrecisionType cvtPrecisionFromPhi(phi::DataType datatype) {
#undef CONVERT_PRECISION_FROM_PHI
}
phi
::
DataLayout
cvtLayout2
Phi
(
LayoutType
layout
)
{
phi
::
DataLayout
ConvertLayoutTo
Phi
(
LayoutType
layout
)
{
switch
(
layout
)
{
case
LayoutType
::
NCHW
:
return
phi
::
DataLayout
::
NCHW
;
...
...
@@ -97,7 +97,7 @@ phi::DataLayout cvtLayout2Phi(LayoutType layout) {
}
}
LayoutType
cv
tLayoutFromPhi
(
phi
::
DataLayout
layout
)
{
LayoutType
Conver
tLayoutFromPhi
(
phi
::
DataLayout
layout
)
{
switch
(
layout
)
{
case
phi
::
DataLayout
::
NCHW
:
return
LayoutType
::
NCHW
;
...
...
@@ -110,16 +110,16 @@ LayoutType cvtLayoutFromPhi(phi::DataLayout layout) {
}
}
phi
::
KernelKey
cvtPlace2
Phi
(
const
Place
&
place
)
{
return
phi
::
KernelKey
(
cvtTarget2
Phi
(
place
.
target
),
cvtLayout2
Phi
(
place
.
layout
),
cvtPrecision2
Phi
(
place
.
precision
));
phi
::
KernelKey
ConvertPlaceTo
Phi
(
const
Place
&
place
)
{
return
phi
::
KernelKey
(
ConvertTargetTo
Phi
(
place
.
target
),
ConvertLayoutTo
Phi
(
place
.
layout
),
ConvertPrecisionTo
Phi
(
place
.
precision
));
}
Place
cv
tPlaceFromPhi
(
phi
::
TensorArgDef
tensor_arg
)
{
return
Place
(
cv
tTargetFromPhi
(
tensor_arg
.
backend
),
cv
tPrecisionFromPhi
(
tensor_arg
.
dtype
),
cv
tLayoutFromPhi
(
tensor_arg
.
layout
));
Place
Conver
tPlaceFromPhi
(
phi
::
TensorArgDef
tensor_arg
)
{
return
Place
(
Conver
tTargetFromPhi
(
tensor_arg
.
backend
),
Conver
tPrecisionFromPhi
(
tensor_arg
.
dtype
),
Conver
tLayoutFromPhi
(
tensor_arg
.
layout
));
}
}
// namespace infrt
paddle/infrt/dialect/phi/data_type.h
浏览文件 @
af6ef888
...
...
@@ -23,16 +23,16 @@
namespace
infrt
{
phi
::
Backend
cvtTarget2
Phi
(
TargetType
target
);
TargetType
cv
tTargetFromPhi
(
phi
::
Backend
backend
);
phi
::
Backend
ConvertTargetTo
Phi
(
TargetType
target
);
TargetType
Conver
tTargetFromPhi
(
phi
::
Backend
backend
);
phi
::
DataType
cvtPrecision2
Phi
(
PrecisionType
precision
);
PrecisionType
cv
tPrecisionFromPhi
(
phi
::
DataType
datatype
);
phi
::
DataType
ConvertPrecisionTo
Phi
(
PrecisionType
precision
);
PrecisionType
Conver
tPrecisionFromPhi
(
phi
::
DataType
datatype
);
phi
::
DataLayout
cvtLayout2
Phi
(
LayoutType
layout
);
LayoutType
cv
tLayoutFromPhi
(
phi
::
DataLayout
layout
);
phi
::
DataLayout
ConvertLayoutTo
Phi
(
LayoutType
layout
);
LayoutType
Conver
tLayoutFromPhi
(
phi
::
DataLayout
layout
);
phi
::
KernelKey
cvtPlace2
Phi
(
const
Place
&
place
);
Place
cv
tPlaceFromPhi
(
phi
::
TensorArgDef
tensor_arg
);
phi
::
KernelKey
ConvertPlaceTo
Phi
(
const
Place
&
place
);
Place
Conver
tPlaceFromPhi
(
phi
::
TensorArgDef
tensor_arg
);
}
// namespace infrt
paddle/infrt/dialect/phi/pass/kernel_op_desc.cc
浏览文件 @
af6ef888
...
...
@@ -80,7 +80,7 @@ std::vector<PhiKernelDesc> getCandidateKernels(
phi
::
KernelKeyMap
kernel_key_map
=
phi
::
KernelFactory
::
Instance
().
SelectKernelMap
(
name
);
for
(
Place
place
:
valid_palces
)
{
phi
::
KernelKey
kernel_key
=
cvtPlace2
Phi
(
place
);
phi
::
KernelKey
kernel_key
=
ConvertPlaceTo
Phi
(
place
);
if
(
kernel_key_map
.
find
(
kernel_key
)
==
kernel_key_map
.
end
())
{
kernel_key
=
phi
::
KernelKey
(
kernel_key
.
backend
(),
phi
::
DataLayout
::
ALL_LAYOUT
,
...
...
@@ -97,10 +97,10 @@ std::vector<PhiKernelDesc> getCandidateKernels(
const
paddle
::
SmallVector
<
phi
::
TensorArgDef
>&
output_arg
=
args_def
.
output_defs
();
for
(
auto
tensor_arg
:
input_arg
)
{
phi_kernel_desc
.
inputsType
.
emplace_back
(
cv
tPlaceFromPhi
(
tensor_arg
));
phi_kernel_desc
.
inputsType
.
emplace_back
(
Conver
tPlaceFromPhi
(
tensor_arg
));
}
for
(
auto
tensor_arg
:
output_arg
)
{
phi_kernel_desc
.
outputsType
.
emplace_back
(
cv
tPlaceFromPhi
(
tensor_arg
));
phi_kernel_desc
.
outputsType
.
emplace_back
(
Conver
tPlaceFromPhi
(
tensor_arg
));
}
candidate_kernels
.
emplace_back
(
phi_kernel_desc
);
}
...
...
paddle/infrt/host_context/kernel_registry.cc
浏览文件 @
af6ef888
...
...
@@ -23,8 +23,9 @@ namespace infrt {
namespace
host_context
{
struct
KernelRegistry
::
Impl
{
std
::
unordered_map
<
std
::
string
,
KernelImplementation
>
data
;
std
::
unordered_map
<
std
::
string
,
llvm
::
SmallVector
<
std
::
string
,
4
>>
attr_names
;
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
KernelImplementation
,
std
::
vector
<
const
char
*>>>
data
;
};
KernelRegistry
::
KernelRegistry
()
:
impl_
(
std
::
make_unique
<
Impl
>
())
{}
...
...
@@ -33,20 +34,29 @@ void KernelRegistry::AddKernel(const std::string &key,
KernelImplementation
fn
)
{
CHECK
(
!
impl_
->
data
.
count
(
key
))
<<
"kernel ["
<<
key
<<
"] is registered twice"
;
impl_
->
data
.
emplace
(
key
,
fn
);
impl_
->
data
.
emplace
(
key
,
std
::
make_pair
(
std
::
move
(
fn
),
std
::
vector
<
const
char
*>
{}));
}
void
KernelRegistry
::
AddKernelAttrNameList
(
const
std
::
string
&
key
,
const
std
::
vector
<
std
::
string
>
&
names
)
{
CHECK
(
!
impl_
->
attr_names
.
count
(
key
))
<<
"kernel ["
<<
key
<<
"] is registered twice in attribute names"
;
impl_
->
attr_names
.
emplace
(
key
,
llvm
::
SmallVector
<
std
::
string
,
4
>
(
names
.
begin
(),
names
.
end
()));
const
std
::
vector
<
const
char
*>
&
KernelRegistry
::
GetAttrNameList
(
const
std
::
string
&
key
)
const
{
CHECK
(
impl_
->
data
.
count
(
key
));
return
impl_
->
data
[
key
].
second
;
}
void
KernelRegistry
::
AddKernelWithAttrs
(
const
std
::
string
&
key
,
KernelImplementation
fn
,
std
::
vector
<
const
char
*>
&&
attr_order
)
{
CHECK
(
!
impl_
->
data
.
count
(
key
))
<<
"kernel ["
<<
key
<<
"] is registered twice"
;
impl_
->
data
.
emplace
(
key
,
std
::
make_pair
(
std
::
move
(
fn
),
std
::
move
(
attr_order
)));
}
KernelImplementation
KernelRegistry
::
GetKernel
(
const
std
::
string
&
key
)
const
{
auto
it
=
impl_
->
data
.
find
(
key
);
return
it
!=
impl_
->
data
.
end
()
?
it
->
second
:
KernelImplementation
{};
return
it
!=
impl_
->
data
.
end
()
?
it
->
second
.
first
:
KernelImplementation
{};
}
std
::
vector
<
std
::
string
>
KernelRegistry
::
GetKernelList
()
const
{
...
...
paddle/infrt/host_context/kernel_registry.h
浏览文件 @
af6ef888
...
...
@@ -34,10 +34,14 @@ class KernelRegistry {
KernelRegistry
();
void
AddKernel
(
const
std
::
string
&
key
,
KernelImplementation
fn
);
void
AddKernelAttrNameList
(
const
std
::
string
&
key
,
const
std
::
vector
<
std
::
string
>
&
names
);
void
AddKernelWithAttrs
(
const
std
::
string
&
key
,
KernelImplementation
fn
,
std
::
vector
<
const
char
*>
&&
attrs_order
);
KernelImplementation
GetKernel
(
const
std
::
string
&
key
)
const
;
const
std
::
vector
<
const
char
*>
&
GetAttrNameList
(
const
std
::
string
&
key
)
const
;
std
::
vector
<
std
::
string
>
GetKernelList
()
const
;
size_t
size
()
const
;
...
...
paddle/infrt/host_context/mlir_function_executable.cc
浏览文件 @
af6ef888
...
...
@@ -43,6 +43,7 @@ MlirFunctionExecutable::MlirFunctionExecutable(
func_op
.
getNumResults
()),
MlirToRuntimeTranslator
(
&
core_runtime_builder_
),
region_
(
&
func_op
.
getRegion
()),
kernel_registry_
(
kernel_registry
),
core_runtime_builder_
(
kernel_registry
),
function_table_
(
function_table
)
{}
...
...
@@ -54,6 +55,7 @@ MlirFunctionExecutable::MlirFunctionExecutable(
:
Function
(
""
,
func_type
.
getNumInputs
(),
func_type
.
getNumResults
()),
MlirToRuntimeTranslator
(
&
core_runtime_builder_
),
region_
(
region
),
kernel_registry_
(
kernel_registry
),
core_runtime_builder_
(
kernel_registry
),
function_table_
(
function_table
)
{}
...
...
@@ -90,7 +92,7 @@ void MlirFunctionExecutable::BuildExecutables(
if
(
EmitCallOp
(
&
op
,
&
function_table_
))
continue
;
if
(
EmitGeneralOp
(
&
op
))
continue
;
if
(
EmitGeneralOp
(
&
op
,
*
kernel_registry_
))
continue
;
LOG
(
FATAL
)
<<
"Not supported op: "
<<
DumpToString
(
op
);
}
...
...
paddle/infrt/host_context/mlir_function_executable.h
浏览文件 @
af6ef888
...
...
@@ -70,6 +70,7 @@ class MlirFunctionExecutable : public Function, public MlirToRuntimeTranslator {
private:
mlir
::
Region
*
region_
{};
KernelRegistry
*
kernel_registry_
{};
CoreRuntimeBuilder
core_runtime_builder_
;
MlirToRuntimeTranslator
::
function_defs_t
&
function_table_
;
std
::
function
<
void
()
>
copy_res_fn_
;
...
...
paddle/infrt/host_context/mlir_to_runtime_translate.cc
浏览文件 @
af6ef888
...
...
@@ -270,7 +270,8 @@ static bool IsReturn(mlir::Operation* op) {
return
op
->
getName
().
getStringRef
()
==
"infrt.return"
;
}
bool
MlirToRuntimeTranslator
::
EmitGeneralOp
(
mlir
::
Operation
*
op
)
{
bool
MlirToRuntimeTranslator
::
EmitGeneralOp
(
mlir
::
Operation
*
op
,
const
KernelRegistry
&
kernel_registry
)
{
CHECK
(
impl_
->
runtime
);
impl_
->
cur_op
=
impl_
->
runtime
->
NewOpExecutable
(
op
->
getName
().
getStringRef
().
str
());
...
...
@@ -308,42 +309,80 @@ bool MlirToRuntimeTranslator::EmitGeneralOp(mlir::Operation* op) {
// process attributes
auto
attrs
=
op
->
getAttrs
();
// MLIR's underlying attr storage type is `Builtin_Dictionary`, and its
// elements
// are sorted by name. The following code adapts the order of function
// signatures
// of the phi operator library.
llvm
::
SmallVector
<
Value
*
,
4
>
tmp
;
tmp
.
resize
(
attrs
.
size
());
const
std
::
string
&
kernel_name
=
op
->
getName
().
getStringRef
().
str
();
const
auto
&
attr_names
=
kernel_registry
.
GetAttrNameList
(
kernel_name
);
if
(
attrs
.
size
()
&&
attr_names
.
empty
())
{
LOG
(
WARNING
)
<<
"The kernel `"
<<
kernel_name
<<
"` has no specified attr order."
;
}
auto
get_offset
=
[](
const
char
*
attr
,
const
std
::
vector
<
const
char
*>&
names
,
const
std
::
string
&
kernel_name
)
->
int
{
for
(
size_t
i
=
0
;
i
<
names
.
size
();
++
i
)
{
if
(
!
std
::
strcmp
(
attr
,
names
[
i
]))
{
return
i
;
}
}
LOG
(
WARNING
)
<<
"The attribute `"
<<
attr
<<
"` of kernel `"
<<
kernel_name
<<
"` is not properly registered with "
"`KernelRegistry::AddKernelWithAttrs()`."
;
return
-
1
;
};
for
(
size_t
i
=
0
;
i
<
attrs
.
size
();
i
++
)
{
auto
&
attr
=
attrs
[
i
];
int
offset
{};
if
(
attr_names
.
size
())
{
offset
=
get_offset
(
attr
.
getName
().
data
(),
attr_names
,
kernel_name
);
}
else
{
offset
=
i
;
}
CHECK_NE
(
offset
,
-
1
);
if
(
auto
v
=
EmitAttribute
<
int32_t
>
(
attr
.
getValue
()))
{
impl_
->
cur_op
->
AppendAttribute
(
new
Value
(
*
v
)
);
tmp
[
offset
]
=
new
Value
(
*
v
);
}
else
if
(
auto
v
=
EmitAttribute
<
int64_t
>
(
attr
.
getValue
()))
{
impl_
->
cur_op
->
AppendAttribute
(
new
Value
(
*
v
)
);
tmp
[
offset
]
=
new
Value
(
*
v
);
}
else
if
(
auto
v
=
EmitAttribute
<
float
>
(
attr
.
getValue
()))
{
impl_
->
cur_op
->
AppendAttribute
(
new
Value
(
*
v
)
);
tmp
[
offset
]
=
new
Value
(
*
v
);
}
else
if
(
auto
v
=
EmitAttribute
<
double
>
(
attr
.
getValue
()))
{
impl_
->
cur_op
->
AppendAttribute
(
new
Value
(
*
v
)
);
tmp
[
offset
]
=
new
Value
(
*
v
);
}
else
if
(
auto
v
=
EmitAttribute
<
std
::
string
>
(
attr
.
getValue
()))
{
impl_
->
cur_op
->
AppendAttribute
(
new
Value
(
std
::
move
(
*
v
)
));
tmp
[
offset
]
=
new
Value
(
std
::
move
(
*
v
));
}
else
if
(
auto
v
=
EmitAttribute
<
bool
>
(
attr
.
getValue
()))
{
impl_
->
cur_op
->
AppendAttribute
(
new
Value
(
*
v
)
);
tmp
[
offset
]
=
new
Value
(
*
v
);
}
else
if
(
auto
v
=
EmitAttribute
<::
infrt
::
TargetType
>
(
attr
.
getValue
()))
{
impl_
->
cur_op
->
AppendAttribute
(
new
Value
(
*
v
)
);
tmp
[
offset
]
=
new
Value
(
*
v
);
}
else
if
(
auto
v
=
EmitAttribute
<::
infrt
::
PrecisionType
>
(
attr
.
getValue
()))
{
impl_
->
cur_op
->
AppendAttribute
(
new
Value
(
*
v
)
);
tmp
[
offset
]
=
new
Value
(
*
v
);
}
else
if
(
auto
v
=
EmitAttribute
<::
infrt
::
LayoutType
>
(
attr
.
getValue
()))
{
impl_
->
cur_op
->
AppendAttribute
(
new
Value
(
*
v
)
);
tmp
[
offset
]
=
new
Value
(
*
v
);
}
else
if
(
auto
v
=
EmitAttribute
<
std
::
vector
<
int16_t
>>
(
attr
.
getValue
()))
{
impl_
->
cur_op
->
AppendAttribute
(
new
Value
(
std
::
move
(
*
v
)
));
tmp
[
offset
]
=
new
Value
(
std
::
move
(
*
v
));
}
else
if
(
auto
v
=
EmitAttribute
<
std
::
vector
<
int32_t
>>
(
attr
.
getValue
()))
{
impl_
->
cur_op
->
AppendAttribute
(
new
Value
(
std
::
move
(
*
v
)
));
tmp
[
offset
]
=
new
Value
(
std
::
move
(
*
v
));
}
else
if
(
auto
v
=
EmitAttribute
<
std
::
vector
<
int64_t
>>
(
attr
.
getValue
()))
{
impl_
->
cur_op
->
AppendAttribute
(
new
Value
(
std
::
move
(
*
v
)
));
tmp
[
offset
]
=
new
Value
(
std
::
move
(
*
v
));
}
else
if
(
auto
v
=
EmitAttribute
<
std
::
vector
<
float
>>
(
attr
.
getValue
()))
{
impl_
->
cur_op
->
AppendAttribute
(
new
Value
(
std
::
move
(
*
v
)
));
tmp
[
offset
]
=
new
Value
(
std
::
move
(
*
v
));
}
else
if
(
auto
v
=
EmitAttribute
<
std
::
vector
<
double
>>
(
attr
.
getValue
()))
{
impl_
->
cur_op
->
AppendAttribute
(
new
Value
(
std
::
move
(
*
v
)
));
tmp
[
offset
]
=
new
Value
(
std
::
move
(
*
v
));
}
else
{
LOG
(
FATAL
)
<<
"Not supported attribute type"
;
}
}
for
(
size_t
i
=
0
;
i
<
tmp
.
size
();
i
++
)
{
impl_
->
cur_op
->
AppendAttribute
(
tmp
[
i
]);
}
// process results
llvm
::
SmallVector
<
Value
*
,
4
>
res_values
;
for
(
int
i
=
0
,
e
=
op
->
getNumResults
();
i
<
e
;
i
++
)
{
...
...
@@ -598,7 +637,7 @@ class MlirProgramTestExecutor : public MlirToRuntimeTranslator {
llvm
::
SmallVector
<
mlir
::
Value
,
3
>
results
;
if
(
EmitReturnOp
(
&
op
,
&
results
))
continue
;
if
(
EmitCallOp
(
&
op
,
&
impl_
->
func_defs
))
continue
;
if
(
EmitGeneralOp
(
&
op
))
continue
;
if
(
EmitGeneralOp
(
&
op
,
*
registry
))
continue
;
LOG
(
FATAL
)
<<
"Not supported op: "
<<
DumpToString
(
op
);
}
...
...
paddle/infrt/host_context/mlir_to_runtime_translate.h
浏览文件 @
af6ef888
...
...
@@ -63,7 +63,8 @@ class MlirToRuntimeTranslator {
//! Emit a "ts.build_shape" operation.
bool
EmitBuildShapeOp
(
mlir
::
Operation
*
op
);
//! Emit an operation other than the special cases above.
bool
EmitGeneralOp
(
mlir
::
Operation
*
op
);
bool
EmitGeneralOp
(
mlir
::
Operation
*
op
,
const
KernelRegistry
&
kernel_registry
);
//! Emit all the functions.
bool
EmitFunctions
();
...
...
paddle/infrt/kernel/phi/dense_tensor_kernels.cc
浏览文件 @
af6ef888
...
...
@@ -23,23 +23,23 @@ namespace phi {
::
phi
::
DenseTensor
CreateDenseTensor
(
const
::
phi
::
CPUContext
&
context
,
host_context
::
Attribute
<
std
::
vector
<
int64_t
>>
dims
,
host_context
::
Attribute
<::
infrt
::
LayoutType
>
layout
,
host_context
::
Attribute
<
std
::
vector
<
int64_t
>>
lod
,
host_context
::
Attribute
<::
infrt
::
LayoutType
>
layout
,
host_context
::
Attribute
<::
infrt
::
PrecisionType
>
precision
)
{
return
::
phi
::
DenseTensor
(
const_cast
<::
phi
::
Allocator
*>
(
&
context
.
GetAllocator
()),
::
phi
::
DenseTensorMeta
(
cvtPrecision2
Phi
(
precision
.
get
()),
::
phi
::
DenseTensorMeta
(
ConvertPrecisionTo
Phi
(
precision
.
get
()),
::
phi
::
make_ddim
(
dims
.
get
()),
cvtLayout2
Phi
(
layout
.
get
()),
ConvertLayoutTo
Phi
(
layout
.
get
()),
{}));
}
void
FillDenseTensorF32
(
::
phi
::
DenseTensor
*
dense_tensor
,
host_context
::
Attribute
<
std
::
vector
<
float
>>
value
s
)
{
host_context
::
Attribute
<
std
::
vector
<
float
>>
value
)
{
auto
place
=
::
phi
::
CPUPlace
();
float
*
a_data
=
dense_tensor
->
mutable_data
<
float
>
(
place
);
for
(
int64_t
i
=
0
;
i
<
dense_tensor
->
numel
();
++
i
)
{
a_data
[
i
]
=
(
value
s
.
get
())[
i
];
a_data
[
i
]
=
(
value
.
get
())[
i
];
}
}
...
...
@@ -57,7 +57,7 @@ void PrintDenseTensor(::phi::DenseTensor* dense_tensor) {
::
phi
::
DDim
dims
=
dense_tensor
->
dims
();
std
::
cout
<<
"dense_tensor: shape=shape"
<<
dims
.
to_str
()
<<
","
<<
" value
s
=["
;
<<
" value=["
;
switch
(
dense_tensor
->
dtype
())
{
PRINT_META_DATA
(
FLOAT32
,
float
);
PRINT_META_DATA
(
INT32
,
int32_t
);
...
...
paddle/infrt/kernel/phi/dense_tensor_kernels.h
浏览文件 @
af6ef888
...
...
@@ -26,8 +26,8 @@ namespace phi {
::
phi
::
DenseTensor
CreateDenseTensor
(
const
::
phi
::
CPUContext
&
context
,
host_context
::
Attribute
<
std
::
vector
<
int64_t
>>
dims
,
host_context
::
Attribute
<::
infrt
::
LayoutType
>
layout
,
host_context
::
Attribute
<
std
::
vector
<
int64_t
>>
lod
,
host_context
::
Attribute
<::
infrt
::
LayoutType
>
layout
,
host_context
::
Attribute
<::
infrt
::
PrecisionType
>
precision
);
void
FillDenseTensorF32
(
::
phi
::
DenseTensor
*
dense_tensor
,
...
...
paddle/infrt/kernel/phi/registry.cc
浏览文件 @
af6ef888
...
...
@@ -34,10 +34,14 @@ namespace kernel {
void
RegisterPhiKernels
(
host_context
::
KernelRegistry
*
registry
)
{
registry
->
AddKernel
(
"phi_dt.create_context.cpu"
,
INFRT_KERNEL
(
infrt
::
kernel
::
phi
::
CreateCPUContext
));
registry
->
AddKernel
(
"phi_dt.create_dense_tensor"
,
INFRT_KERNEL
(
infrt
::
kernel
::
phi
::
CreateDenseTensor
));
registry
->
AddKernel
(
"phi_dt.fill_dense_tensor.f32"
,
INFRT_KERNEL
(
infrt
::
kernel
::
phi
::
FillDenseTensorF32
));
registry
->
AddKernelWithAttrs
(
"phi_dt.create_dense_tensor"
,
INFRT_KERNEL
(
infrt
::
kernel
::
phi
::
CreateDenseTensor
),
{
"dims"
,
"lod"
,
"layout"
,
"precision"
});
registry
->
AddKernelWithAttrs
(
"phi_dt.fill_dense_tensor.f32"
,
INFRT_KERNEL
(
infrt
::
kernel
::
phi
::
FillDenseTensorF32
),
{
"value"
});
registry
->
AddKernel
(
"phi_dt.print_tensor"
,
INFRT_KERNEL
(
infrt
::
kernel
::
phi
::
PrintDenseTensor
));
}
...
...
paddle/infrt/kernel/tensor_kernels.cc
浏览文件 @
af6ef888
...
...
@@ -111,9 +111,9 @@ void NaiveMatmul(const DenseHostTensor &x,
/// ===== Kernel end ====
void
RegisterTensorKernels
(
host_context
::
KernelRegistry
*
registry
)
{
registry
->
AddKernel
(
"dt.create_uninit_tensor.f32"
,
INFRT_KERNEL
(
CreateUninitTensor
<
float
>
));
registry
->
AddKernelAttrNameList
(
"dt.create_uninit_tensor.f32"
,
{
"shape"
});
registry
->
AddKernel
WithAttrs
(
"dt.create_uninit_tensor.f32"
,
INFRT_KERNEL
(
CreateUninitTensor
<
float
>
),
{
"shape"
});
registry
->
AddKernel
(
"dt.print_tensor"
,
INFRT_KERNEL
(
PrintTensor
));
registry
->
AddKernel
(
"dt.fill_tensor_with_constant.f32"
,
INFRT_KERNEL
(
FillTensorWithConstant
<
float
>
));
...
...
paddle/infrt/tests/dialect/phi/dense_tensor.mlir
浏览文件 @
af6ef888
...
...
@@ -9,7 +9,7 @@ func @sign_any_float32_execute() {
"phi_dt.fill_dense_tensor.f32"(%t) {value=[3.8:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
%e = "phi_cpu.sign.float32.any"(%ctx, %t) : (!phi.context<CPU>, !infrt.dense_tensor<CPU, FP32, NCHW>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
// CHECK: dense_tensor: shape=shape[1], value
s
=[1]
// CHECK: dense_tensor: shape=shape[1], value=[1]
"phi_dt.print_tensor" (%e) : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
infrt.return
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录