Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ae4b7fd5
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ae4b7fd5
编写于
9月 29, 2017
作者:
Y
Yu Yang
提交者:
GitHub
9月 29, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #4485 from reyoung/feature/BetterActivationKern
Unify Activation functions and simplify register code
上级
473af189
a8c6ce9b
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
198 addition
and
331 deletion
+198
-331
paddle/operators/activation_op.cc
paddle/operators/activation_op.cc
+13
-76
paddle/operators/activation_op.cu
paddle/operators/activation_op.cu
+11
-90
paddle/operators/activation_op.h
paddle/operators/activation_op.h
+174
-165
未找到文件。
paddle/operators/activation_op.cc
浏览文件 @
ae4b7fd5
...
...
@@ -206,120 +206,57 @@ class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
sigmoid
,
ops
::
ActivationOp
,
ops
::
SigmoidOpMaker
,
sigmoid_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
sigmoid
,
ops
::
ActivationKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
SigmoidFunctor
<
float
>>
);
REGISTER_OP_CPU_KERNEL
(
sigmoid_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
SigmoidGradFunctor
<
float
>>
);
REGISTER_OP
(
exp
,
ops
::
ActivationOp
,
ops
::
ExpOpMaker
,
exp_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
exp
,
ops
::
ActivationKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
ExpFunctor
>
);
REGISTER_OP_CPU_KERNEL
(
exp_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
ExpGradFunctor
>
);
REGISTER_OP
(
relu
,
ops
::
ActivationOp
,
ops
::
ReluOpMaker
,
relu_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
relu
,
ops
::
ActivationKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
ReluFunctor
<
float
>>
);
REGISTER_OP_CPU_KERNEL
(
relu_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
ReluGradFunctor
<
float
>>
);
REGISTER_OP
(
tanh
,
ops
::
ActivationOp
,
ops
::
TanhOpMaker
,
tanh_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
tanh
,
ops
::
ActivationKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
TanhFunctor
>
);
REGISTER_OP_CPU_KERNEL
(
tanh_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
TanhGradFunctor
<
float
>>
);
REGISTER_OP
(
sqrt
,
ops
::
ActivationOp
,
ops
::
SqrtOpMaker
,
sqrt_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
sqrt
,
ops
::
ActivationKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
SqrtFunctor
>
);
REGISTER_OP_CPU_KERNEL
(
sqrt_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
SqrtGradFunctor
<
float
>>
);
REGISTER_OP
(
abs
,
ops
::
ActivationOp
,
ops
::
AbsOpMaker
,
abs_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
abs
,
ops
::
ActivationKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
AbsFunctor
>
);
REGISTER_OP_CPU_KERNEL
(
abs_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
AbsGradFunctor
>
);
REGISTER_OP
(
reciprocal
,
ops
::
ActivationOp
,
ops
::
ReciprocalOpMaker
,
reciprocal_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
reciprocal
,
ops
::
ActivationKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
ReciprocalFunctor
<
float
>>
);
REGISTER_OP_CPU_KERNEL
(
reciprocal_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
ReciprocalGradFunctor
<
float
>>
);
REGISTER_OP
(
log
,
ops
::
ActivationOp
,
ops
::
LogOpMaker
,
log_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
log
,
ops
::
ActivationKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
LogFunctor
>
);
REGISTER_OP_CPU_KERNEL
(
log_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
LogGradFunctor
<
float
>>
);
REGISTER_OP
(
square
,
ops
::
ActivationOp
,
ops
::
SquareOpMaker
,
square_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
square
,
ops
::
ActivationKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
SquareFunctor
>
);
REGISTER_OP_CPU_KERNEL
(
square_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
SquareGradFunctor
<
float
>>
);
REGISTER_OP
(
softsign
,
ops
::
ActivationOp
,
ops
::
SoftsignOpMaker
,
softsign_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
softsign
,
ops
::
ActivationKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
SoftsignFunctor
<
float
>>
);
REGISTER_OP_CPU_KERNEL
(
softsign_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
SoftsignGradFunctor
<
float
>>
);
REGISTER_OP
(
brelu
,
ops
::
ActivationOp
,
ops
::
BReluOpMaker
<
float
>
,
brelu_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
brelu
,
ops
::
BReluKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
brelu_grad
,
ops
::
BReluGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP
(
soft_relu
,
ops
::
ActivationOp
,
ops
::
SoftReluOpMaker
<
float
>
,
soft_relu_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
soft_relu
,
ops
::
SoftReluKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
soft_relu_grad
,
ops
::
SoftReluGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP
(
pow
,
ops
::
ActivationOp
,
ops
::
PowOpMaker
<
float
>
,
pow_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
pow
,
ops
::
PowKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
pow_grad
,
ops
::
PowGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP
(
stanh
,
ops
::
ActivationOp
,
ops
::
STanhOpMaker
<
float
>
,
stanh_grad
,
ops
::
ActivationOpGrad
);
REGISTER_OP_CPU_KERNEL
(
stanh
,
ops
::
STanhKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
stanh_grad
,
ops
::
STanhGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, functor, grad_functor) \
REGISTER_OP_CPU_KERNEL( \
act_type, \
paddle::operators::ActivationKernel<paddle::platform::CPUPlace, \
paddle::operators::functor<float>>); \
REGISTER_OP_CPU_KERNEL(act_type##_grad, \
paddle::operators::ActivationGradKernel< \
paddle::platform::CPUPlace, \
paddle::operators::grad_functor<float>>);
FOR_EACH_KERNEL_FUNCTOR
(
REGISTER_ACTIVATION_CPU_KERNEL
);
paddle/operators/activation_op.cu
浏览文件 @
ae4b7fd5
...
...
@@ -15,93 +15,14 @@
#define EIGEN_USE_GPU
#include "paddle/operators/activation_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
sigmoid
,
ops
::
ActivationKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
SigmoidFunctor
<
float
>>
);
REGISTER_OP_GPU_KERNEL
(
sigmoid_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
SigmoidGradFunctor
<
float
>>
);
REGISTER_OP_GPU_KERNEL
(
exp
,
ops
::
ActivationKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
ExpFunctor
>
);
REGISTER_OP_GPU_KERNEL
(
exp_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
ExpGradFunctor
>
);
REGISTER_OP_GPU_KERNEL
(
relu
,
ops
::
ActivationKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
ReluFunctor
<
float
>>
);
REGISTER_OP_GPU_KERNEL
(
relu_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
ReluGradFunctor
<
float
>>
);
REGISTER_OP_GPU_KERNEL
(
tanh
,
ops
::
ActivationKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
TanhFunctor
>
);
REGISTER_OP_GPU_KERNEL
(
tanh_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
TanhGradFunctor
<
float
>>
);
REGISTER_OP_GPU_KERNEL
(
sqrt
,
ops
::
ActivationKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
SqrtFunctor
>
);
REGISTER_OP_GPU_KERNEL
(
sqrt_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
SqrtGradFunctor
<
float
>>
);
REGISTER_OP_GPU_KERNEL
(
abs
,
ops
::
ActivationKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
AbsFunctor
>
);
REGISTER_OP_GPU_KERNEL
(
abs_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
AbsGradFunctor
>
);
REGISTER_OP_GPU_KERNEL
(
reciprocal
,
ops
::
ActivationKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
ReciprocalFunctor
<
float
>>
);
REGISTER_OP_GPU_KERNEL
(
reciprocal_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
ReciprocalGradFunctor
<
float
>>
);
REGISTER_OP_GPU_KERNEL
(
log
,
ops
::
ActivationKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
LogFunctor
>
);
REGISTER_OP_GPU_KERNEL
(
log_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
LogGradFunctor
<
float
>>
);
REGISTER_OP_GPU_KERNEL
(
square
,
ops
::
ActivationKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
SquareFunctor
>
);
REGISTER_OP_GPU_KERNEL
(
square_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
SquareGradFunctor
<
float
>>
);
REGISTER_OP_GPU_KERNEL
(
softsign
,
ops
::
ActivationKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
SoftsignFunctor
<
float
>>
);
REGISTER_OP_GPU_KERNEL
(
softsign_grad
,
ops
::
ActivationGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
SoftsignGradFunctor
<
float
>>
);
REGISTER_OP_GPU_KERNEL
(
brelu
,
ops
::
BReluKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
brelu_grad
,
ops
::
BReluGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
soft_relu
,
ops
::
SoftReluKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
soft_relu_grad
,
ops
::
SoftReluGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
pow
,
ops
::
PowKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
pow_grad
,
ops
::
PowGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
stanh
,
ops
::
STanhKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
stanh_grad
,
ops
::
STanhGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
#define REGISTER_ACTIVATION_GPU_KERNEL(act_type, functor, grad_functor) \
REGISTER_OP_GPU_KERNEL( \
act_type, \
paddle::operators::ActivationKernel<paddle::platform::GPUPlace, \
paddle::operators::functor<float>>); \
REGISTER_OP_GPU_KERNEL(act_type##_grad, \
paddle::operators::ActivationGradKernel< \
paddle::platform::GPUPlace, \
paddle::operators::grad_functor<float>>);
FOR_EACH_KERNEL_FUNCTOR
(
REGISTER_ACTIVATION_GPU_KERNEL
);
paddle/operators/activation_op.h
浏览文件 @
ae4b7fd5
...
...
@@ -19,9 +19,12 @@
namespace
paddle
{
namespace
operators
{
template
<
typename
Place
,
typename
T
,
typename
Functor
>
class
ActivationKernel
:
public
framework
::
OpKernel
<
T
>
{
template
<
typename
Place
,
typename
Functor
>
class
ActivationKernel
:
public
framework
::
OpKernel
<
typename
Functor
::
ELEMENT_TYPE
>
{
public:
using
T
=
typename
Functor
::
ELEMENT_TYPE
;
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
Y
=
context
.
Output
<
framework
::
Tensor
>
(
"Y"
);
...
...
@@ -31,13 +34,20 @@ class ActivationKernel : public framework::OpKernel<T> {
auto
y
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
Y
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
Functor
functor
;
auto
attrs
=
functor
.
GetAttrs
();
for
(
auto
&
attr
:
attrs
)
{
*
attr
.
second
=
context
.
Attr
<
float
>
(
attr
.
first
);
}
functor
(
place
,
x
,
y
);
}
};
template
<
typename
Place
,
typename
T
,
typename
Functor
>
class
ActivationGradKernel
:
public
framework
::
OpKernel
<
T
>
{
template
<
typename
Place
,
typename
Functor
>
class
ActivationGradKernel
:
public
framework
::
OpKernel
<
typename
Functor
::
ELEMENT_TYPE
>
{
public:
using
T
=
typename
Functor
::
ELEMENT_TYPE
;
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
Y
=
context
.
Input
<
framework
::
Tensor
>
(
"Y"
);
...
...
@@ -51,159 +61,210 @@ class ActivationGradKernel : public framework::OpKernel<T> {
auto
dx
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dX
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
Functor
functor
;
auto
attrs
=
functor
.
GetAttrs
();
for
(
auto
&
attr
:
attrs
)
{
*
attr
.
second
=
context
.
Attr
<
float
>
(
attr
.
first
);
}
functor
(
place
,
x
,
y
,
dy
,
dx
);
}
};
template
<
typename
T
>
struct
BaseActivationFunctor
{
using
ELEMENT_TYPE
=
T
;
using
AttrPair
=
std
::
vector
<
std
::
pair
<
const
char
*
,
float
*>>
;
AttrPair
GetAttrs
()
{
return
AttrPair
();
}
};
// sigmoid(x) = 1 / (1 + exp(-x))
template
<
typename
T
>
struct
SigmoidFunctor
{
struct
SigmoidFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
{
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
static_cast
<
T
>
(
1
)
/
(
static_cast
<
T
>
(
1
)
+
(
-
x
).
exp
());
}
};
template
<
typename
T
>
struct
SigmoidGradFunctor
{
struct
SigmoidGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
{
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
y
*
(
static_cast
<
T
>
(
1
)
-
y
);
}
};
// exp(x) = e^x
struct
ExpFunctor
{
template
<
typename
T
>
struct
ExpFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
{
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
x
.
exp
();
}
};
struct
ExpGradFunctor
{
template
<
typename
T
>
struct
ExpGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
{
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
y
;
}
};
// relu(x) = max(x, 0)
template
<
typename
T
>
struct
ReluFunctor
{
struct
ReluFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
{
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
x
.
cwiseMax
(
static_cast
<
T
>
(
0
));
}
};
template
<
typename
T
>
struct
ReluGradFunctor
{
struct
ReluGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
{
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
(
x
>
static_cast
<
T
>
(
0
)).
template
cast
<
T
>();
}
};
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
struct
TanhFunctor
{
template
<
typename
T
>
struct
TanhFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
{
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
x
.
tanh
();
}
};
template
<
typename
T
>
struct
TanhGradFunctor
{
struct
TanhGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
{
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
(
static_cast
<
T
>
(
1
)
-
y
*
y
);
}
};
// sqrt(x) = x^(1/2)
struct
SqrtFunctor
{
template
<
typename
T
>
struct
SqrtFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
{
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
x
.
sqrt
();
}
};
template
<
typename
T
>
struct
SqrtGradFunctor
{
struct
SqrtGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
{
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
const
Y
y_conj
=
Eigen
::
numext
::
conj
(
y
);
dx
.
device
(
d
)
=
static_cast
<
T
>
(
0.5
)
*
dy
/
y_conj
;
}
};
// abs(x) = |x|
struct
AbsFunctor
{
template
<
typename
T
>
struct
AbsFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
{
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
x
.
abs
();
}
};
struct
AbsGradFunctor
{
template
<
typename
T
>
struct
AbsGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
{
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
x
.
sign
();
}
};
// reciprocal(x) = 1 / x
template
<
typename
T
>
struct
ReciprocalFunctor
{
struct
ReciprocalFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
{
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
static_cast
<
T
>
(
1
)
/
x
;
}
};
template
<
typename
T
>
struct
ReciprocalGradFunctor
{
struct
ReciprocalGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
{
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
static_cast
<
T
>
(
-
1
)
*
y
*
y
;
}
};
// log(x) = natural logarithm of x
struct
LogFunctor
{
template
<
typename
T
>
struct
LogFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
{
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
x
.
log
();
}
};
template
<
typename
T
>
struct
LogGradFunctor
{
struct
LogGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
{
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
(
static_cast
<
T
>
(
1
)
/
x
);
}
};
// square(x) = x^2
struct
SquareFunctor
{
template
<
typename
T
>
struct
SquareFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
{
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
x
.
square
();
}
};
template
<
typename
T
>
struct
SquareGradFunctor
{
struct
SquareGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
{
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
static_cast
<
T
>
(
2
)
*
x
;
}
};
template
<
typename
T
>
struct
BReluFunctor
:
public
BaseActivationFunctor
<
T
>
{
float
t_min
;
float
t_max
;
// NOTE: Explicit hides the `BaseActivationFunctor<T>::GetAttrs`
// not polymorphism for speed.
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"t_min"
,
&
t_min
},
{
"t_max"
,
&
t_max
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
x
.
cwiseMax
(
t_min
).
cwiseMin
(
t_max
);
}
};
template
<
typename
T
>
struct
BReluGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
float
t_min
;
float
t_max
;
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"t_min"
,
&
t_min
},
{
"t_max"
,
&
t_max
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
((
x
>
t_min
)
*
(
x
<
t_max
)).
template
cast
<
T
>();
}
};
// softsign(x) = x / (1 + |x|)
template
<
typename
T
>
struct
SoftsignFunctor
{
struct
SoftsignFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
{
y
.
device
(
d
)
=
x
/
(
static_cast
<
T
>
(
1
)
+
x
.
abs
());
...
...
@@ -213,7 +274,7 @@ struct SoftsignFunctor {
// d(softsign(x))/dx = 1 / (1 + |x|)^2
// Taken from https://en.wikipedia.org/wiki/Activation_function
template
<
typename
T
>
struct
SoftsignGradFunctor
{
struct
SoftsignGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
{
dx
.
device
(
d
)
=
...
...
@@ -221,153 +282,101 @@ struct SoftsignGradFunctor {
}
};
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
class
BReluKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
Y
=
context
.
Output
<
framework
::
Tensor
>
(
"Y"
);
auto
t_min
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"t_min"
));
auto
t_max
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"t_max"
));
Y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
X
);
auto
y
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
Y
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
y
.
device
(
place
)
=
x
.
cwiseMax
(
t_min
).
cwiseMin
(
t_max
);
template
<
typename
T
>
struct
SoftReluFunctor
:
public
BaseActivationFunctor
<
T
>
{
float
threshold
;
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"threshold"
,
&
threshold
}};
}
};
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
class
BReluGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
dY
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
dX
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
t_min
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"t_min"
));
auto
t_max
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"t_max"
));
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dy
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dY
);
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
X
);
auto
dx
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dX
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
dx
.
device
(
place
)
=
dy
*
((
x
>
t_min
)
*
(
x
<
t_max
)).
template
cast
<
T
>();
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
auto
temp
=
x
.
cwiseMax
(
-
threshold
).
cwiseMin
(
threshold
);
y
.
device
(
d
)
=
(
static_cast
<
T
>
(
1
)
+
temp
.
exp
()).
log
();
}
};
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
class
SoftReluKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
Y
=
context
.
Output
<
framework
::
Tensor
>
(
"Y"
);
auto
threshold
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"threshold"
));
Y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
X
);
auto
y
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
Y
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
auto
temp
=
x
.
cwiseMax
(
-
threshold
).
cwiseMin
(
threshold
).
eval
();
y
.
device
(
place
)
=
(
static_cast
<
T
>
(
1
)
+
temp
.
exp
()).
log
();
template
<
typename
T
>
struct
SoftReluGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
float
threshold
;
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"threshold"
,
&
threshold
}};
}
};
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
class
SoftReluGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
Y
=
context
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
*
dY
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
dX
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
threshold
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"threshold"
));
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
X
);
auto
y
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
Y
);
auto
dy
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dY
);
auto
dx
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dX
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
auto
temp
=
((
x
>
-
threshold
)
*
(
x
<
threshold
)).
template
cast
<
T
>().
eval
();
dx
.
device
(
place
)
=
dy
*
(
static_cast
<
T
>
(
1
)
-
(
-
y
).
exp
())
*
temp
;
dx
.
device
(
d
)
=
dy
*
(
static_cast
<
T
>
(
1
)
-
(
-
y
).
exp
())
*
temp
;
}
};
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
class
PowKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
Y
=
context
.
Output
<
framework
::
Tensor
>
(
"Y"
);
auto
factor
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"factor"
));
Y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
X
);
auto
y
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
Y
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
y
.
device
(
place
)
=
x
.
pow
(
factor
);
template
<
typename
T
>
struct
PowFunctor
:
public
BaseActivationFunctor
<
T
>
{
float
factor
;
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"factor"
,
&
factor
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
x
.
pow
(
factor
);
}
};
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
class
PowGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
dY
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
dX
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
factor
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"factor"
));
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dy
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dY
);
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
X
);
auto
dx
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dX
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
dx
.
device
(
place
)
=
dy
*
factor
*
x
.
pow
(
factor
-
static_cast
<
T
>
(
1
));
template
<
typename
T
>
struct
PowGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
float
factor
;
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"factor"
,
&
factor
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dy
*
factor
*
x
.
pow
(
factor
-
static_cast
<
T
>
(
1
));
}
};
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
class
STanhKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
Y
=
context
.
Output
<
framework
::
Tensor
>
(
"Y"
);
auto
scale_a
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"scale_a"
));
auto
scale_b
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"scale_b"
));
Y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
template
<
typename
T
>
struct
STanhFunctor
:
public
BaseActivationFunctor
<
T
>
{
float
scale_a
;
float
scale_b
;
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"scale_a"
,
&
scale_a
},
{
"scale_b"
,
&
scale_b
}};
}
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
X
);
auto
y
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
Y
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
y
.
device
(
place
)
=
scale_b
*
(
scale_a
*
x
).
tanh
();
template
<
typename
Device
,
typename
X
,
typename
Y
>
void
operator
()(
Device
d
,
X
x
,
Y
y
)
const
{
y
.
device
(
d
)
=
scale_b
*
(
scale_a
*
x
).
tanh
();
}
};
template
<
typename
Place
,
typename
T
,
typename
AttrType
=
T
>
class
STanhGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
dY
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
dX
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
scale_a
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"scale_a"
));
auto
scale_b
=
static_cast
<
T
>
(
context
.
Attr
<
AttrType
>
(
"scale_b"
));
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dy
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dY
);
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
X
);
auto
dx
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dX
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
template
<
typename
T
>
struct
STanhGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
float
scale_a
;
float
scale_b
;
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"scale_a"
,
&
scale_a
},
{
"scale_b"
,
&
scale_b
}};
}
template
<
typename
Device
,
typename
X
,
typename
Y
,
typename
dY
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Y
y
,
dY
dy
,
dX
dx
)
const
{
auto
temp
=
(
scale_a
*
x
).
tanh
()
*
(
scale_a
*
x
).
tanh
();
dx
.
device
(
place
)
=
dy
*
scale_a
*
scale_b
*
(
static_cast
<
T
>
(
1
)
-
temp
);
dx
.
device
(
d
)
=
dy
*
scale_a
*
scale_b
*
(
static_cast
<
T
>
(
1
)
-
temp
);
}
};
}
// namespace operators
}
// namespace paddle
#define FOR_EACH_KERNEL_FUNCTOR(__macro) \
__macro(sigmoid, SigmoidFunctor, SigmoidGradFunctor); \
__macro(exp, ExpFunctor, ExpGradFunctor); \
__macro(relu, ReluFunctor, ReluGradFunctor); \
__macro(tanh, TanhFunctor, TanhGradFunctor); \
__macro(sqrt, SqrtFunctor, SqrtGradFunctor); \
__macro(abs, AbsFunctor, AbsGradFunctor); \
__macro(reciprocal, ReciprocalFunctor, ReciprocalGradFunctor); \
__macro(log, LogFunctor, LogGradFunctor); \
__macro(square, SquareFunctor, SquareGradFunctor); \
__macro(brelu, BReluFunctor, BReluGradFunctor); \
__macro(soft_relu, SoftReluFunctor, SoftReluGradFunctor); \
__macro(pow, PowFunctor, PowGradFunctor); \
__macro(stanh, STanhFunctor, STanhGradFunctor); \
__macro(softsign, SoftsignFunctor, SoftsignGradFunctor)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录