Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ae06debf
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ae06debf
编写于
12月 02, 2016
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Remove the C++ code and refine Python code.
上级
fe073d1f
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
208 addition
and
635 deletion
+208
-635
CMakeLists.txt
CMakeLists.txt
+0
-5
plugin/opencv/CMakeLists.txt
plugin/opencv/CMakeLists.txt
+0
-47
plugin/opencv/DataTransformer.cpp
plugin/opencv/DataTransformer.cpp
+0
-181
plugin/opencv/DataTransformer.h
plugin/opencv/DataTransformer.h
+0
-122
plugin/opencv/PyDecodejpeg.cpp
plugin/opencv/PyDecodejpeg.cpp
+0
-175
python/paddle/utils/image_multiproc.py
python/paddle/utils/image_multiproc.py
+208
-105
未找到文件。
CMakeLists.txt
浏览文件 @
ae06debf
...
...
@@ -43,7 +43,6 @@ option(WITH_SWIG_PY "Compile PaddlePaddle with py PaddlePaddle prediction api" $
option
(
ON_TRAVIS
"Running test on travis-ci or not."
OFF
)
option
(
ON_COVERALLS
"Generating code coverage data on coveralls or not."
OFF
)
option
(
COVERALLS_UPLOAD
"Uploading the generated coveralls json."
ON
)
option
(
USE_OPENCV
"Compile PaddlePaddle with opencv"
OFF
)
if
(
NOT CMAKE_BUILD_TYPE
)
set
(
CMAKE_BUILD_TYPE
"RelWithDebInfo"
CACHE STRING
...
...
@@ -196,7 +195,3 @@ if(WITH_DOC)
add_subdirectory
(
doc
)
add_subdirectory
(
doc_cn
)
endif
()
if
(
USE_OPENCV
)
add_subdirectory
(
plugin/opencv
)
endif
()
plugin/opencv/CMakeLists.txt
已删除
100644 → 0
浏览文件 @
fe073d1f
# use opencv plugin
project
(
DeJpeg CXX C
)
set
(
CMAKE_MODULE_PATH
${
CMAKE_MODULE_PATH
}
"
${
CMAKE_SOURCE_DIR
}
/cmake"
)
set
(
PROJ_ROOT
${
CMAKE_SOURCE_DIR
}
)
list
(
APPEND CMAKE_MODULE_PATH
${
PROJECT_SOURCE_DIR
}
/cmake/Modules
)
set
(
DEJPEG_LINKER_LIBS
""
)
# opencv
find_package
(
OpenCV REQUIRED COMPONENTS core highgui imgproc
)
include_directories
(
${
OpenCV_INCLUDE_DIRS
}
)
list
(
APPEND DEJPEG_LINKER_LIBS
${
OpenCV_LIBS
}
)
message
(
STATUS
"OpenCV found (
${
OpenCV_CONFIG_PATH
}
)"
)
add_definitions
(
-DUSE_OPENCV
)
# boost-python
set
(
Boost_NO_SYSTEM_PATHS ON
)
if
(
Boost_NO_SYSTEM_PATHS
)
set
(
BOOST_ROOT $ENV{BOOST_ROOT}
)
set
(
Boost_DIR
${
BOOST_ROOT
}
)
set
(
Boost_INCLUDE_DIR
"
${
BOOST_ROOT
}
/include"
)
set
(
Boost_LIBRARIES
"
${
BOOST_ROOT
}
/lib/"
)
endif
(
Boost_NO_SYSTEM_PATHS
)
find_package
(
Boost 1.46 COMPONENTS python
)
include_directories
(
SYSTEM
${
Boost_INCLUDE_DIR
}
)
link_directories
(
${
Boost_INCLUDE_DIR
}
)
message
(
STATUS
"Boost found (
${
Boost_INCLUDE_DIR
}
)"
)
message
(
STATUS
"Boost found (
${
Boost_LIBRARIES
}
)"
)
list
(
APPEND DEJPEG_LINKER_LIBS
${
Boost_LIBRARIES
}
)
file
(
GLOB DEJPEG_HEADER
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"*.h"
)
file
(
GLOB DEJPEG_SOURCES
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"*.cpp"
)
set
(
BUILD_PRIVATE_FLAGS
-Wno-all
-Wno-error
-Wno-non-virtual-dtor
-Wno-delete-non-virtual-dtor
)
add_library
(
DeJpeg SHARED
${
DEJPEG_SOURCES
}
)
target_compile_options
(
DeJpeg BEFORE PRIVATE
${
BUILD_PRIVATE_FLAGS
}
)
target_link_libraries
(
DeJpeg
${
DEJPEG_LINKER_LIBS
}
)
set_target_properties
(
DeJpeg PROPERTIES PREFIX
""
)
add_style_check_target
(
DeJpeg
${
DEJPEG_SOURCES
}
)
add_style_check_target
(
DeJpeg
${
DEJPEG_HEADER
}
)
plugin/opencv/DataTransformer.cpp
已删除
100644 → 0
浏览文件 @
fe073d1f
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "DataTransformer.h"
#include <time.h>
#include <limits>
DataTransformer
::
DataTransformer
(
int
threadNum
,
int
capacity
,
bool
isTest
,
bool
isColor
,
int
cropHeight
,
int
cropWidth
,
int
imgSize
,
bool
isEltMean
,
bool
isChannelMean
,
float
*
meanValues
)
:
isTest_
(
isTest
),
isColor_
(
isColor
),
cropHeight_
(
cropHeight
),
cropWidth_
(
cropWidth
),
imgSize_
(
imgSize
),
capacity_
(
capacity
),
prefetchFree_
(
capacity
),
prefetchFull_
(
capacity
)
{
fetchCount_
=
-
1
;
scale_
=
1.0
;
isChannelMean_
=
isChannelMean
;
isEltMean_
=
isEltMean
;
loadMean
(
meanValues
);
imgPixels_
=
cropHeight
*
cropWidth
*
(
isColor_
?
3
:
1
);
prefetch_
.
reserve
(
capacity
);
for
(
int
i
=
0
;
i
<
capacity
;
i
++
)
{
auto
d
=
std
::
make_shared
<
DataType
>
(
new
float
[
imgPixels_
*
3
],
0
);
prefetch_
.
push_back
(
d
);
memset
(
prefetch_
[
i
]
->
first
,
0
,
imgPixels_
*
sizeof
(
float
));
prefetchFree_
.
enqueue
(
prefetch_
[
i
]);
}
numThreads_
=
threadNum
;
syncThreadPool_
.
reset
(
new
paddle
::
SyncThreadPool
(
numThreads_
,
false
));
}
void
DataTransformer
::
loadMean
(
float
*
values
)
{
if
(
values
)
{
int
c
=
isColor_
?
3
:
1
;
int
sz
=
isChannelMean_
?
c
:
cropHeight_
*
cropWidth_
*
c
;
meanValues_
=
new
float
[
sz
];
memcpy
(
meanValues_
,
values
,
sz
*
sizeof
(
float
));
}
}
void
DataTransformer
::
startFetching
(
const
char
*
src
,
const
int
size
,
float
*
trg
)
{
std
::
vector
<
char
>
imbuf
(
src
,
src
+
size
);
int
cvFlag
=
(
isColor_
?
CV_LOAD_IMAGE_COLOR
:
CV_LOAD_IMAGE_GRAYSCALE
);
cv
::
Mat
im
=
cv
::
imdecode
(
cv
::
Mat
(
imbuf
),
cvFlag
);
if
(
!
im
.
data
)
{
LOG
(
ERROR
)
<<
"Could not decode image"
;
LOG
(
ERROR
)
<<
im
.
channels
()
<<
" "
<<
im
.
rows
<<
" "
<<
im
.
cols
;
}
this
->
transform
(
im
,
trg
);
}
int
DataTransformer
::
Rand
(
int
min
,
int
max
)
{
std
::
random_device
source
;
std
::
mt19937
rng
(
source
());
std
::
uniform_int_distribution
<
int
>
dist
(
min
,
max
);
return
dist
(
rng
);
}
void
DataTransformer
::
transform
(
cv
::
Mat
&
cvImgOri
,
float
*
target
)
{
const
int
imgChannels
=
cvImgOri
.
channels
();
const
int
imgHeight
=
cvImgOri
.
rows
;
const
int
imgWidth
=
cvImgOri
.
cols
;
const
bool
doMirror
=
(
!
isTest_
)
&&
Rand
(
0
,
1
);
int
h_off
=
0
;
int
w_off
=
0
;
int
th
=
imgHeight
;
int
tw
=
imgWidth
;
cv
::
Mat
img
;
if
(
imgSize_
>
0
)
{
if
(
imgHeight
>
imgWidth
)
{
tw
=
imgSize_
;
th
=
int
(
double
(
imgHeight
)
/
imgWidth
*
tw
);
th
=
th
>
imgSize_
?
th
:
imgSize_
;
}
else
{
th
=
imgSize_
;
tw
=
int
(
double
(
imgWidth
)
/
imgHeight
*
th
);
tw
=
tw
>
imgSize_
?
tw
:
imgSize_
;
}
cv
::
resize
(
cvImgOri
,
img
,
cv
::
Size
(
tw
,
th
));
}
else
{
cv
::
Mat
img
=
cvImgOri
;
}
cv
::
Mat
cv_cropped_img
=
img
;
if
(
cropHeight_
&&
cropWidth_
)
{
if
(
!
isTest_
)
{
h_off
=
Rand
(
0
,
th
-
cropHeight_
);
w_off
=
Rand
(
0
,
tw
-
cropWidth_
);
}
else
{
h_off
=
(
th
-
cropHeight_
)
/
2
;
w_off
=
(
tw
-
cropWidth_
)
/
2
;
}
cv
::
Rect
roi
(
w_off
,
h_off
,
cropWidth_
,
cropHeight_
);
cv_cropped_img
=
img
(
roi
);
}
else
{
CHECK_EQ
(
cropHeight_
,
imgHeight
);
CHECK_EQ
(
cropWidth_
,
imgWidth
);
}
int
height
=
cropHeight_
;
int
width
=
cropWidth_
;
int
top_index
;
for
(
int
h
=
0
;
h
<
height
;
++
h
)
{
const
uchar
*
ptr
=
cv_cropped_img
.
ptr
<
uchar
>
(
h
);
int
img_index
=
0
;
for
(
int
w
=
0
;
w
<
width
;
++
w
)
{
for
(
int
c
=
0
;
c
<
imgChannels
;
++
c
)
{
if
(
doMirror
)
{
top_index
=
(
c
*
height
+
h
)
*
width
+
width
-
1
-
w
;
}
else
{
top_index
=
(
c
*
height
+
h
)
*
width
+
w
;
}
float
pixel
=
static_cast
<
float
>
(
ptr
[
img_index
++
]);
if
(
isEltMean_
)
{
int
mean_index
=
(
c
*
imgHeight
+
h
)
*
imgWidth
+
w
;
target
[
top_index
]
=
(
pixel
-
meanValues_
[
mean_index
])
*
scale_
;
}
else
{
if
(
isChannelMean_
)
{
target
[
top_index
]
=
(
pixel
-
meanValues_
[
c
])
*
scale_
;
}
else
{
target
[
top_index
]
=
pixel
*
scale_
;
}
}
}
}
}
// target: BGR
}
void
DataTransformer
::
start
(
std
::
vector
<
char
*>&
data
,
int
*
datalen
,
int
*
labels
)
{
auto
job
=
[
&
](
int
tid
,
int
numThreads
)
{
for
(
size_t
i
=
tid
;
i
<
data
.
size
();
i
+=
numThreads
)
{
DataTypePtr
ret
=
prefetchFree_
.
dequeue
();
char
*
buf
=
data
[
i
];
int
size
=
datalen
[
i
];
ret
->
second
=
labels
[
i
];
this
->
startFetching
(
buf
,
size
,
ret
->
first
);
prefetchFull_
.
enqueue
(
ret
);
}
};
syncThreadPool_
->
exec
(
job
);
fetchCount_
=
data
.
size
();
}
void
DataTransformer
::
obtain
(
float
*
data
,
int
*
label
)
{
fetchCount_
--
;
if
(
fetchCount_
<
0
)
{
LOG
(
FATAL
)
<<
"Empty data"
;
}
DataTypePtr
ret
=
prefetchFull_
.
dequeue
();
*
label
=
ret
->
second
;
memcpy
(
data
,
ret
->
first
,
sizeof
(
float
)
*
imgPixels_
);
prefetchFree_
.
enqueue
(
ret
);
}
plugin/opencv/DataTransformer.h
已删除
100644 → 0
浏览文件 @
fe073d1f
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef DATATRANSFORMER_H_
#define DATATRANSFORMER_H_
#include <iostream>
#include <fstream>
#include <opencv2/opencv.hpp>
#include <vector>
#include <string>
#include <algorithm>
#include "paddle/utils/Thread.h"
/**
* This is an image processing module with OpenCV, such as
* resizing, scaling, mirroring, substracting the image mean...
*
* This class has a double BlockQueue and they shared the same memory.
* It is used to avoid create memory each time. And it also can
* return the data even if the data are processing in multi-threads.
*/
class
DataTransformer
{
public:
DataTransformer
(
int
threadNum
,
int
capacity
,
bool
isTest
,
bool
isColor
,
int
cropHeight
,
int
cropWidth
,
int
imgSize
,
bool
isEltMean
,
bool
isChannelMean
,
float
*
meanValues
);
virtual
~
DataTransformer
()
{
if
(
meanValues_
)
{
free
(
meanValues_
);
}
}
/**
* @brief Start multi-threads to transform a list of input data.
* The processed data will be saved in Queue of prefetchFull_.
*
* @param data Data containing the image string to be transformed.
* @param label The label of input image.
*/
void
start
(
std
::
vector
<
char
*>&
data
,
int
*
datalen
,
int
*
labels
);
/**
* @brief Applies the transformation on one image Mat.
*
* @param img The input img to be transformed.
* @param target target is used to save the transformed data.
*/
void
transform
(
cv
::
Mat
&
img
,
float
*
target
);
/**
* @brief Decode the image string, then calls transform() function.
*
* @param src The input image string.
* @param size The length of string.
* @param trg trg is used to save the transformed data.
*/
void
startFetching
(
const
char
*
src
,
const
int
size
,
float
*
trg
);
/**
* @brief Return the transformed data and its label.
*/
void
obtain
(
float
*
data
,
int
*
label
);
private:
int
isTest_
;
int
isColor_
;
int
cropHeight_
;
int
cropWidth_
;
int
imgSize_
;
int
capacity_
;
int
fetchCount_
;
bool
isEltMean_
;
bool
isChannelMean_
;
int
numThreads_
;
float
scale_
;
int
imgPixels_
;
float
*
meanValues_
;
/**
* Initialize the mean values.
*/
void
loadMean
(
float
*
values
);
/**
* @brief Generates a random integer from Uniform({min, min + 1, ..., max}).
* @param min The lower bound (inclusive) value of the random number.
* @param max The upper bound (inclusive) value of the random number.
*
* @return
* A uniformly random integer value from ({min, min + 1, ..., max}).
*/
int
Rand
(
int
min
,
int
max
);
typedef
std
::
pair
<
float
*
,
int
>
DataType
;
typedef
std
::
shared_ptr
<
DataType
>
DataTypePtr
;
std
::
vector
<
DataTypePtr
>
prefetch_
;
std
::
unique_ptr
<
paddle
::
SyncThreadPool
>
syncThreadPool_
;
paddle
::
BlockingQueue
<
DataTypePtr
>
prefetchFree_
;
paddle
::
BlockingQueue
<
DataTypePtr
>
prefetchFull_
;
};
// class DataTransformer
#endif // DATATRANSFORMER_H_
plugin/opencv/PyDecodejpeg.cpp
已删除
100644 → 0
浏览文件 @
fe073d1f
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <Python.h>
#include <time.h>
#include <vector>
#include <sys/time.h>
#include <unistd.h>
#include <glog/logging.h>
#include <numpy/arrayobject.h>
#include <boost/python.hpp>
#include "DataTransformer.h"
/**
* DecodeJpeg is an image processing API for interfacing Python and C++
* code DataTransformer, which used OpenCV and multi-threads to accelerate
* image processing.
* The Boost Python Library is used to wrap C++ interfaces.
*/
class
DecodeJpeg
{
public:
/**
* The constructor will create and initialize an object of DataTransformer.
*/
DecodeJpeg
(
int
threadNum
,
int
capacity
,
bool
isTest
,
bool
isColor
,
int
resize_min_size
,
int
cropSizeH
,
int
cropSizeW
,
PyObject
*
meanValues
)
{
int
channel
=
isColor
?
3
:
1
;
bool
isEltMean
=
false
;
bool
isChannelMean
=
false
;
float
*
mean
=
NULL
;
if
(
meanValues
||
meanValues
!=
Py_None
)
{
if
(
!
PyArray_Check
(
meanValues
))
{
LOG
(
FATAL
)
<<
"Object is not a numpy array"
;
}
pyTypeCheck
(
meanValues
);
int
size
=
PyArray_SIZE
(
reinterpret_cast
<
PyArrayObject
*>
(
meanValues
));
isChannelMean
=
(
size
==
channel
)
?
true
:
false
;
isEltMean
=
(
size
==
channel
*
cropSizeH
*
cropSizeW
)
?
true
:
false
;
CHECK
(
isChannelMean
!=
isEltMean
);
mean
=
(
float
*
)
PyArray_DATA
(
reinterpret_cast
<
PyArrayObject
*>
(
meanValues
));
}
tfhandlerPtr_
=
std
::
make_shared
<
DataTransformer
>
(
threadNum
,
capacity
,
isTest
,
isColor
,
cropSizeH
,
cropSizeW
,
resize_min_size
,
isEltMean
,
isChannelMean
,
mean
);
}
~
DecodeJpeg
()
{}
/**
* @brief This function is used to parse the Python object and convert
* the data to C++ format. Then it called the function of
* DataTransformer to start image processing.
* @param pysrc The input image list with string type.
* @param pylabel The input label of image.
* It's type is numpy.array with int32.
*/
void
start
(
boost
::
python
::
list
&
pysrc
,
PyObject
*
pydlen
,
PyObject
*
pylabel
)
{
std
::
vector
<
char
*>
data
;
int
num
=
len
(
pysrc
);
for
(
int
t
=
0
;
t
<
num
;
++
t
)
{
char
*
src
=
boost
::
python
::
extract
<
char
*>
(
pysrc
[
t
]);
data
.
push_back
(
src
);
}
int
*
dlen
=
(
int
*
)
PyArray_DATA
(
reinterpret_cast
<
PyArrayObject
*>
(
pydlen
));
int
*
dlabels
=
(
int
*
)
PyArray_DATA
(
reinterpret_cast
<
PyArrayObject
*>
(
pylabel
));
tfhandlerPtr_
->
start
(
data
,
dlen
,
dlabels
);
}
/**
* @brief Return one processed data.
* @param pytrg The processed image.
* @param pylabel The label of processed image.
*/
void
get
(
PyObject
*
pytrg
,
PyObject
*
pylab
)
{
pyWritableCheck
(
pytrg
);
pyWritableCheck
(
pylab
);
pyContinuousCheck
(
pytrg
);
pyContinuousCheck
(
pylab
);
float
*
data
=
(
float
*
)
PyArray_DATA
(
reinterpret_cast
<
PyArrayObject
*>
(
pytrg
));
int
*
label
=
(
int
*
)
PyArray_DATA
(
reinterpret_cast
<
PyArrayObject
*>
(
pylab
));
tfhandlerPtr_
->
obtain
(
data
,
label
);
}
/**
* @brief An object of DataTransformer, which is used to call
* the image processing funtions.
*/
std
::
shared_ptr
<
DataTransformer
>
tfhandlerPtr_
;
private:
/**
* @brief Check whether the type of PyObject is valid or not.
*/
void
pyTypeCheck
(
PyObject
*
o
)
{
int
typenum
=
PyArray_TYPE
(
reinterpret_cast
<
PyArrayObject
*>
(
o
));
// clang-format off
int
type
=
typenum
==
NPY_UBYTE
?
CV_8U
:
typenum
==
NPY_BYTE
?
CV_8S
:
typenum
==
NPY_USHORT
?
CV_16U
:
typenum
==
NPY_SHORT
?
CV_16S
:
typenum
==
NPY_INT
||
typenum
==
NPY_LONG
?
CV_32S
:
typenum
==
NPY_FLOAT
?
CV_32F
:
typenum
==
NPY_DOUBLE
?
CV_64F
:
-
1
;
// clang-format on
if
(
type
<
0
)
{
LOG
(
FATAL
)
<<
"toMat: Data type = "
<<
type
<<
" is not supported"
;
}
}
/**
* @brief Check whether the PyObject is writable or not.
*/
void
pyWritableCheck
(
PyObject
*
o
)
{
CHECK
(
PyArray_ISWRITEABLE
(
reinterpret_cast
<
PyArrayObject
*>
(
o
)));
}
/**
* @brief Check whether the PyObject is c-contiguous or not.
*/
void
pyContinuousCheck
(
PyObject
*
o
)
{
CHECK
(
PyArray_IS_C_CONTIGUOUS
(
reinterpret_cast
<
PyArrayObject
*>
(
o
)));
}
};
// DecodeJpeg
/**
* @brief Initialize the Python interpreter and numpy.
*/
static
void
initPython
()
{
Py_Initialize
();
PyOS_sighandler_t
sighandler
=
PyOS_getsig
(
SIGINT
);
import_array
();
PyOS_setsig
(
SIGINT
,
sighandler
);
}
/**
* Use Boost.Python to expose C++ interface to Python.
*/
BOOST_PYTHON_MODULE
(
DeJpeg
)
{
initPython
();
boost
::
python
::
class_
<
DecodeJpeg
>
(
"DecodeJpeg"
,
boost
::
python
::
init
<
int
,
int
,
bool
,
bool
,
int
,
int
,
int
,
PyObject
*>
())
.
def
(
"start"
,
&
DecodeJpeg
::
start
)
.
def
(
"get"
,
&
DecodeJpeg
::
get
);
};
python/paddle/utils/image_multiproc.py
浏览文件 @
ae06debf
import
os
,
psutil
import
cv2
from
paddle.utils.image_util
import
*
import
os
,
sys
import
numpy
as
np
from
PIL
import
Image
from
cStringIO
import
StringIO
import
multiprocessing
import
subprocess
,
signal
,
sys
from
functools
import
partial
from
paddle.utils.image_util
import
*
from
paddle.trainer.config_parser
import
logger
try
:
import
cv2
except
ImportError
:
logger
.
warning
(
"OpenCV2 is not installed, using PIL to prcoess"
)
cv2
=
None
class
CvImageTransfomer
(
ImageTransformer
):
class
CvTransfomer
(
ImageTransformer
):
"""
Cv
Image
Transfomer used python-opencv to process image.
CvTransfomer used python-opencv to process image.
"""
def
__init__
(
self
,
min_size
=
None
,
crop_size
=
None
,
transpose
=
None
,
channel_swap
=
None
,
mean
=
None
,
is_train
=
True
,
is_color
=
True
):
def
__init__
(
self
,
min_size
=
None
,
crop_size
=
None
,
transpose
=
(
2
,
0
,
1
),
# transpose to C * H * W
channel_swap
=
None
,
mean
=
None
,
is_train
=
True
,
is_color
=
True
):
ImageTransformer
.
__init__
(
self
,
transpose
,
channel_swap
,
mean
,
is_color
)
self
.
min_size
=
min_size
self
.
crop_size
=
crop_size
self
.
is_train
=
is_train
def
cv_resize_fixed_short_sid
e
(
self
,
im
,
min_size
):
def
resiz
e
(
self
,
im
,
min_size
):
row
,
col
=
im
.
shape
[:
2
]
scale
=
min_size
/
float
(
min
(
row
,
col
))
if
row
<
col
:
row
=
min_size
col
=
int
(
round
(
col
*
scale
))
col
=
col
if
col
>
min_size
else
min_size
new_row
,
new_col
=
min_size
,
min_size
if
row
>
col
:
new_row
=
min_size
*
row
/
col
else
:
col
=
min_size
row
=
int
(
round
(
row
*
scale
))
row
=
row
if
row
>
min_size
else
min_size
resized_size
=
row
,
col
im
=
cv2
.
resize
(
im
,
resized_size
,
interpolation
=
cv2
.
INTER_CUBIC
)
new_col
=
min_size
*
col
/
row
im
=
cv2
.
resize
(
im
,
(
new_row
,
new_col
),
interpolation
=
cv2
.
INTER_CUBIC
)
return
im
def
crop_
img
(
self
,
im
):
def
crop_
and_flip
(
self
,
im
):
"""
Return cropped image.
The size of the cropped image is inner_size * inner_size.
...
...
@@ -65,8 +71,8 @@ class CvImageTransfomer(ImageTransformer):
return
im
def
transform
(
self
,
im
):
im
=
self
.
cv_resize_fixed_short_sid
e
(
im
,
self
.
min_size
)
im
=
self
.
crop_
img
(
im
)
im
=
self
.
resiz
e
(
im
,
self
.
min_size
)
im
=
self
.
crop_
and_flip
(
im
)
# transpose, swap channel, sub mean
im
=
im
.
astype
(
'float32'
)
ImageTransformer
.
transformer
(
self
,
im
)
...
...
@@ -81,90 +87,187 @@ class CvImageTransfomer(ImageTransformer):
im
=
self
.
load_image_from_string
(
data
)
return
self
.
transform
(
im
)
def
load_image_from_file
(
self
,
file
):
flag
=
cv2
.
CV_LOAD_IMAGE_COLOR
if
self
.
is_color
else
cv2
.
CV_LOAD_IMAGE_GRAYSCALE
im
=
cv2
.
imread
(
file
,
flag
)
return
im
def
transform_from_file
(
self
,
file
):
im
=
self
.
load_image_from_file
(
file
)
return
self
.
transform
(
im
)
class
PILTransfomer
(
ImageTransformer
):
"""
PILTransfomer used PIL to process image.
"""
def
__init__
(
self
,
min_size
=
None
,
crop_size
=
None
,
transpose
=
(
2
,
0
,
1
),
# transpose to C * H * W
channel_swap
=
None
,
mean
=
None
,
is_train
=
True
,
is_color
=
True
):
ImageTransformer
.
__init__
(
self
,
transpose
,
channel_swap
,
mean
,
is_color
)
self
.
min_size
=
min_size
self
.
crop_size
=
crop_size
self
.
is_train
=
is_train
def
resize
(
self
,
im
,
min_size
):
row
,
col
=
im
.
size
[:
2
]
new_row
,
new_col
=
min_size
,
min_size
if
row
>
col
:
new_row
=
min_size
*
row
/
col
else
:
new_col
=
min_size
*
col
/
row
im
=
im
.
resize
((
new_row
,
new_col
),
Image
.
ANTIALIAS
)
return
im
class
MultiProcessImageTransfomer
():
def
crop_and_flip
(
self
,
im
):
"""
Return cropped image.
The size of the cropped image is inner_size * inner_size.
"""
row
,
col
=
im
.
size
[:
2
]
start_h
,
start_w
=
0
,
0
if
self
.
is_train
:
start_h
=
np
.
random
.
randint
(
0
,
row
-
self
.
crop_size
+
1
)
start_w
=
np
.
random
.
randint
(
0
,
col
-
self
.
crop_size
+
1
)
else
:
start_h
=
(
row
-
self
.
crop_size
)
/
2
start_w
=
(
col
-
self
.
crop_size
)
/
2
end_h
,
end_w
=
start_h
+
self
.
crop_size
,
start_w
+
self
.
crop_size
im
=
im
.
crop
((
start_h
,
start_w
,
end_h
,
end_w
))
if
(
self
.
is_train
)
and
(
np
.
random
.
randint
(
2
)
==
0
):
im
=
im
.
transpose
(
Image
.
FLIP_LEFT_RIGHT
)
return
im
def
transform
(
self
,
im
):
im
=
self
.
resize
(
im
,
self
.
min_size
)
im
=
self
.
crop_and_flip
(
im
)
im
=
np
.
array
(
im
,
dtype
=
np
.
float32
)
# convert to numpy.array
# transpose, swap channel, sub mean
ImageTransformer
.
transformer
(
self
,
im
)
return
im
def
load_image_from_string
(
self
,
data
):
im
=
Image
.
open
(
StringIO
(
data
))
return
im
def
transform_from_string
(
self
,
data
):
im
=
self
.
load_image_from_string
(
data
)
return
self
.
transform
(
im
)
def
load_image_from_file
(
self
,
file
):
im
=
Image
.
open
(
file
)
return
im
def
transform_from_file
(
self
,
file
):
im
=
self
.
load_image_from_file
(
file
)
return
self
.
transform
(
im
)
def
warpper
(
cls
,
(
dat
,
label
)):
return
cls
.
job
(
dat
,
label
)
class
MultiProcessImageTransformer
(
object
):
def
__init__
(
self
,
procnum
=
10
,
capacity
=
10240
,
min_size
=
None
,
resize_size
=
None
,
crop_size
=
None
,
transpose
=
None
,
transpose
=
(
2
,
0
,
1
)
,
channel_swap
=
None
,
mean
=
None
,
is_train
=
True
,
is_color
=
True
):
self
.
procnum
=
procnum
self
.
capacity
=
capacity
self
.
size
=
0
self
.
count
=
0
signal
.
signal
(
signal
.
SIGTERM
,
self
.
kill_child_processes
)
self
.
fetch_queue
=
multiprocessing
.
Queue
(
maxsize
=
capacity
)
self
.
cv_transformer
=
CvImageTransfomer
(
min_size
,
crop_size
,
transpose
,
channel_swap
,
mean
,
is_train
,
is_color
)
def
__del__
(
self
):
try
:
for
p
in
self
.
procs
:
p
.
join
()
except
Exception
as
e
:
print
str
(
e
)
def
reset
(
self
,
size
):
self
.
size
=
size
self
.
count
=
0
self
.
procs
=
[]
def
run_proc
(
self
,
data
,
label
):
dlen
=
len
(
label
)
self
.
reset
(
dlen
)
for
i
in
xrange
(
self
.
procnum
):
start
=
dlen
*
i
/
self
.
procnum
end
=
dlen
*
(
i
+
1
)
/
self
.
procnum
proc
=
multiprocessing
.
Process
(
target
=
self
.
batch_transfomer
,
args
=
(
data
[
start
:
end
],
label
[
start
:
end
]))
proc
.
daemon
=
True
self
.
procs
.
append
(
proc
)
for
p
in
self
.
procs
:
p
.
start
()
def
get
(
self
):
"""
Return one processed image.
"""
# block if necessary until an item is available
data
,
lab
=
self
.
fetch_queue
.
get
(
block
=
True
)
self
.
count
+=
1
if
self
.
count
==
self
.
size
:
try
:
for
p
in
self
.
procs
:
p
.
join
()
except
Exception
as
e
:
print
str
(
e
)
return
data
,
lab
def
batch_transfomer
(
self
,
data
,
label
):
is_color
=
True
,
is_img_string
=
True
):
"""
param data: input data in format of image string
type data: a list of string
label: the label of image
"""
for
i
in
xrange
(
len
(
label
)):
res
=
self
.
cv_transformer
.
transform_from_string
(
data
[
i
])
self
.
fetch_queue
.
put
((
res
,
int
(
label
[
i
])))
Processing image with multi-process. If it is used in PyDataProvider,
the simple usage for CNN is as follows:
.. code-block:: python
def
kill_child_processes
(
self
,
signum
,
frame
):
"""
Kill a process's child processes in python.
def hool(settings, is_train, **kwargs):
settings.is_train = is_train
settings.mean_value = np.array([103.939,116.779,123.68], dtype=np.float32)
settings.input_types = [
dense_vector(3 * 224 * 224),
integer_value(1)]
settings.transformer = MultiProcessImageTransformer(
procnum=10,
resize_size=256,
crop_size=224,
transpose=(2, 0, 1),
mean=settings.mean_values,
is_train=settings.is_train)
@provider(init_hook=hook, pool_size=20480)
def process(settings, file_list):
with open(file_list, 'r') as fdata:
for line in fdata:
data_dic = np.load(line.strip()) # load the data batch pickled by Pickle.
data = data_dic['data']
labels = data_dic['label']
labels = np.array(labels, dtype=np.float32)
for im, lab in settings.dp.run(data, labels):
yield [im.astype('float32'), int(lab)]
:param procnum: processor number.
:type procnum: int
:param resize_size: the shorter edge size of image after resizing.
:type resize_size: int
:param crop_size: the croping size.
:type crop_size: int
:param transpose: the transpose order, Paddle only allow C * H * W order.
:type transpose: tuple or list
:param channel_swap: the channel swap order, RGB or BRG.
:type channel_swap: tuple or list
:param mean: the mean values of image, per-channel mean or element-wise mean.
:type mean: array, The dimension is 1 for per-channel mean.
The dimension is 3 for element-wise mean.
:param is_train: training peroid or testing peroid.
:type is_train: bool.
:param is_color: the image is color or gray.
:type is_color: bool.
:param is_img_string: The input can be the file name of image or image string.
:type is_img_string: bool.
"""
parent_id
=
os
.
getpid
()
ps_command
=
subprocess
.
Popen
(
"ps -o pid --ppid %d --noheaders"
%
parent_id
,
shell
=
True
,
stdout
=
subprocess
.
PIPE
)
ps_output
=
ps_command
.
stdout
.
read
()
retcode
=
ps_command
.
wait
()
for
pid_str
in
ps_output
.
strip
().
split
(
"
\n
"
)[:
-
1
]:
os
.
kill
(
int
(
pid_str
),
signal
.
SIGTERM
)
sys
.
exit
()
self
.
pool
=
multiprocessing
.
Pool
(
procnum
)
self
.
is_img_string
=
is_img_string
if
cv2
is
not
None
:
self
.
transformer
=
CvTransfomer
(
resize_size
,
crop_size
,
transpose
,
channel_swap
,
mean
,
is_train
,
is_color
)
else
:
self
.
transformer
=
PILTransfomer
(
resize_size
,
crop_size
,
transpose
,
channel_swap
,
mean
,
is_train
,
is_color
)
def
run
(
self
,
data
,
label
):
try
:
fun
=
partial
(
warpper
,
self
)
return
self
.
pool
.
imap_unordered
(
fun
,
zip
(
data
,
label
),
chunksize
=
5
)
except
KeyboardInterrupt
:
self
.
pool
.
terminate
()
except
Exception
,
e
:
self
.
pool
.
terminate
()
def
job
(
self
,
data
,
label
):
if
self
.
is_img_string
:
return
self
.
transformer
.
transform_from_string
(
data
),
label
else
:
return
self
.
transformer
.
transform_from_file
(
data
),
label
def
__getstate__
(
self
):
self_dict
=
self
.
__dict__
.
copy
()
del
self_dict
[
'pool'
]
return
self_dict
def
__setstate__
(
self
,
state
):
self
.
__dict__
.
update
(
state
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录