Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
adba4384
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
adba4384
编写于
1月 17, 2019
作者:
乔
乔龙飞 Qiao Longfei
提交者:
GitHub
1月 17, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #15161 from jacquesqiao/gru-add-mode
gru add origin mode
上级
7cd4dd7c
4d15515c
变更
15
隐藏空白更改
内联
并排
Showing
15 changed file
with
251 addition
and
91 deletion
+251
-91
paddle/fluid/API.spec
paddle/fluid/API.spec
+2
-2
paddle/fluid/operators/gru_op.cc
paddle/fluid/operators/gru_op.cc
+7
-2
paddle/fluid/operators/gru_op.cu.cc
paddle/fluid/operators/gru_op.cu.cc
+2
-1
paddle/fluid/operators/gru_op.h
paddle/fluid/operators/gru_op.h
+2
-1
paddle/fluid/operators/gru_unit_op.cc
paddle/fluid/operators/gru_unit_op.cc
+7
-0
paddle/fluid/operators/gru_unit_op.h
paddle/fluid/operators/gru_unit_op.h
+23
-7
paddle/fluid/operators/math/detail/gru_cpu_kernel.h
paddle/fluid/operators/math/detail/gru_cpu_kernel.h
+26
-20
paddle/fluid/operators/math/detail/gru_gpu_kernel.h
paddle/fluid/operators/math/detail/gru_gpu_kernel.h
+6
-4
paddle/fluid/operators/math/detail/gru_kernel.h
paddle/fluid/operators/math/detail/gru_kernel.h
+60
-25
paddle/fluid/operators/math/gru_compute.cc
paddle/fluid/operators/math/gru_compute.cc
+8
-4
paddle/fluid/operators/math/gru_compute.cu
paddle/fluid/operators/math/gru_compute.cu
+8
-6
paddle/fluid/operators/math/gru_compute.h
paddle/fluid/operators/math/gru_compute.h
+4
-2
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+44
-7
python/paddle/fluid/tests/unittests/test_gru_op.py
python/paddle/fluid/tests/unittests/test_gru_op.py
+29
-4
python/paddle/fluid/tests/unittests/test_gru_unit_op.py
python/paddle/fluid/tests/unittests/test_gru_unit_op.py
+23
-6
未找到文件。
paddle/fluid/API.spec
浏览文件 @
adba4384
...
@@ -70,8 +70,8 @@ paddle.fluid.layers.fc ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param
...
@@ -70,8 +70,8 @@ paddle.fluid.layers.fc ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param
paddle.fluid.layers.embedding ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32'))
paddle.fluid.layers.embedding ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32'))
paddle.fluid.layers.dynamic_lstm ArgSpec(args=['input', 'size', 'h_0', 'c_0', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'float32', None))
paddle.fluid.layers.dynamic_lstm ArgSpec(args=['input', 'size', 'h_0', 'c_0', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'float32', None))
paddle.fluid.layers.dynamic_lstmp ArgSpec(args=['input', 'size', 'proj_size', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'proj_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'tanh', 'float32', None))
paddle.fluid.layers.dynamic_lstmp ArgSpec(args=['input', 'size', 'proj_size', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'proj_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'tanh', 'float32', None))
paddle.fluid.layers.dynamic_gru ArgSpec(args=['input', 'size', 'param_attr', 'bias_attr', 'is_reverse', 'gate_activation', 'candidate_activation', 'h_0'
], varargs=None, keywords=None, defaults=(None, None, False, 'sigmoid', 'tanh', Non
e))
paddle.fluid.layers.dynamic_gru ArgSpec(args=['input', 'size', 'param_attr', 'bias_attr', 'is_reverse', 'gate_activation', 'candidate_activation', 'h_0'
, 'origin_mode'], varargs=None, keywords=None, defaults=(None, None, False, 'sigmoid', 'tanh', None, Fals
e))
paddle.fluid.layers.gru_unit ArgSpec(args=['input', 'hidden', 'size', 'param_attr', 'bias_attr', 'activation', 'gate_activation'
], varargs=None, keywords=None, defaults=(None, None, 'tanh', 'sigmoid'
))
paddle.fluid.layers.gru_unit ArgSpec(args=['input', 'hidden', 'size', 'param_attr', 'bias_attr', 'activation', 'gate_activation'
, 'origin_mode'], varargs=None, keywords=None, defaults=(None, None, 'tanh', 'sigmoid', False
))
paddle.fluid.layers.linear_chain_crf ArgSpec(args=['input', 'label', 'param_attr'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.linear_chain_crf ArgSpec(args=['input', 'label', 'param_attr'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.crf_decoding ArgSpec(args=['input', 'param_attr', 'label'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.crf_decoding ArgSpec(args=['input', 'param_attr', 'label'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.cos_sim ArgSpec(args=['X', 'Y'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.cos_sim ArgSpec(args=['X', 'Y'], varargs=None, keywords=None, defaults=None)
...
...
paddle/fluid/operators/gru_op.cc
浏览文件 @
adba4384
...
@@ -137,6 +137,10 @@ class GRUOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -137,6 +137,10 @@ class GRUOpMaker : public framework::OpProtoAndCheckerMaker {
"(bool, defalut: False) "
"(bool, defalut: False) "
"whether to compute reversed GRU."
)
"whether to compute reversed GRU."
)
.
SetDefault
(
false
);
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"origin_mode"
,
"bool"
"use origin mode in article https://arxiv.org/abs/1412.3555"
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
GRU Operator implements part calculations of the complete GRU as following:
GRU Operator implements part calculations of the complete GRU as following:
...
@@ -221,6 +225,7 @@ class GRUCPUKernel : public framework::OpKernel<T> {
...
@@ -221,6 +225,7 @@ class GRUCPUKernel : public framework::OpKernel<T> {
public:
public:
void
BatchCompute
(
const
framework
::
ExecutionContext
&
context
)
const
{
void
BatchCompute
(
const
framework
::
ExecutionContext
&
context
)
const
{
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
bool
origin_mode
=
context
.
Attr
<
bool
>
(
"origin_mode"
);
auto
*
input
=
context
.
Input
<
LoDTensor
>
(
"Input"
);
auto
*
input
=
context
.
Input
<
LoDTensor
>
(
"Input"
);
auto
*
h0
=
context
.
Input
<
Tensor
>
(
"H0"
);
auto
*
h0
=
context
.
Input
<
Tensor
>
(
"H0"
);
auto
*
weight
=
context
.
Input
<
Tensor
>
(
"Weight"
);
auto
*
weight
=
context
.
Input
<
Tensor
>
(
"Weight"
);
...
@@ -327,7 +332,7 @@ class GRUCPUKernel : public framework::OpKernel<T> {
...
@@ -327,7 +332,7 @@ class GRUCPUKernel : public framework::OpKernel<T> {
math
::
detail
::
forward_final_output
(
math
::
detail
::
forward_final_output
(
math
::
detail
::
forward
::
gru_finalOutput
<
T
>
(),
gru_value
,
frame_size
,
math
::
detail
::
forward
::
gru_finalOutput
<
T
>
(),
gru_value
,
frame_size
,
cur_batch_size
,
active_node
);
cur_batch_size
,
active_node
,
origin_mode
);
gru_value
.
prev_out_value
=
gru_value
.
output_value
;
gru_value
.
prev_out_value
=
gru_value
.
output_value
;
}
}
...
@@ -351,7 +356,7 @@ class GRUCPUKernel : public framework::OpKernel<T> {
...
@@ -351,7 +356,7 @@ class GRUCPUKernel : public framework::OpKernel<T> {
math
::
GRUUnitFunctor
<
DeviceContext
,
T
>::
compute
(
math
::
GRUUnitFunctor
<
DeviceContext
,
T
>::
compute
(
dev_ctx
,
gru_value
,
frame_size
,
cur_batch_size
,
active_node
,
dev_ctx
,
gru_value
,
frame_size
,
cur_batch_size
,
active_node
,
active_gate
);
active_gate
,
origin_mode
);
gru_value
.
prev_out_value
=
gru_value
.
output_value
;
gru_value
.
prev_out_value
=
gru_value
.
output_value
;
}
}
...
...
paddle/fluid/operators/gru_op.cu.cc
浏览文件 @
adba4384
...
@@ -21,6 +21,7 @@ template <typename DeviceContext, typename T>
...
@@ -21,6 +21,7 @@ template <typename DeviceContext, typename T>
class
GRUKernel
:
public
framework
::
OpKernel
<
T
>
{
class
GRUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
BatchCompute
(
const
framework
::
ExecutionContext
&
context
)
const
{
void
BatchCompute
(
const
framework
::
ExecutionContext
&
context
)
const
{
bool
origin_mode
=
context
.
Attr
<
bool
>
(
"origin_mode"
);
auto
*
input
=
context
.
Input
<
LoDTensor
>
(
"Input"
);
auto
*
input
=
context
.
Input
<
LoDTensor
>
(
"Input"
);
auto
*
h0
=
context
.
Input
<
Tensor
>
(
"H0"
);
auto
*
h0
=
context
.
Input
<
Tensor
>
(
"H0"
);
auto
*
weight
=
context
.
Input
<
Tensor
>
(
"Weight"
);
auto
*
weight
=
context
.
Input
<
Tensor
>
(
"Weight"
);
...
@@ -87,7 +88,7 @@ class GRUKernel : public framework::OpKernel<T> {
...
@@ -87,7 +88,7 @@ class GRUKernel : public framework::OpKernel<T> {
gru_value
.
reset_output_value
=
reset_hidden_prev_t
.
data
<
T
>
();
gru_value
.
reset_output_value
=
reset_hidden_prev_t
.
data
<
T
>
();
math
::
GRUUnitFunctor
<
DeviceContext
,
T
>::
compute
(
math
::
GRUUnitFunctor
<
DeviceContext
,
T
>::
compute
(
dev_ctx
,
gru_value
,
frame_size
,
cur_batch_size
,
active_node
,
dev_ctx
,
gru_value
,
frame_size
,
cur_batch_size
,
active_node
,
active_gate
);
active_gate
,
origin_mode
);
gru_value
.
prev_out_value
=
gru_value
.
output_value
;
gru_value
.
prev_out_value
=
gru_value
.
output_value
;
}
}
...
...
paddle/fluid/operators/gru_op.h
浏览文件 @
adba4384
...
@@ -41,6 +41,7 @@ template <typename DeviceContext, typename T>
...
@@ -41,6 +41,7 @@ template <typename DeviceContext, typename T>
class
GRUGradKernel
:
public
framework
::
OpKernel
<
T
>
{
class
GRUGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
BatchCompute
(
const
framework
::
ExecutionContext
&
context
)
const
{
void
BatchCompute
(
const
framework
::
ExecutionContext
&
context
)
const
{
bool
origin_mode
=
context
.
Attr
<
bool
>
(
"origin_mode"
);
auto
*
h0
=
context
.
Input
<
Tensor
>
(
"H0"
);
auto
*
h0
=
context
.
Input
<
Tensor
>
(
"H0"
);
auto
*
weight
=
context
.
Input
<
Tensor
>
(
"Weight"
);
auto
*
weight
=
context
.
Input
<
Tensor
>
(
"Weight"
);
const
T
*
weight_data
=
weight
->
data
<
T
>
();
const
T
*
weight_data
=
weight
->
data
<
T
>
();
...
@@ -146,7 +147,7 @@ class GRUGradKernel : public framework::OpKernel<T> {
...
@@ -146,7 +147,7 @@ class GRUGradKernel : public framework::OpKernel<T> {
math
::
GRUUnitGradFunctor
<
DeviceContext
,
T
>::
compute
(
math
::
GRUUnitGradFunctor
<
DeviceContext
,
T
>::
compute
(
dev_ctx
,
gru_value
,
gru_grad
,
frame_size
,
cur_batch_size
,
active_node
,
dev_ctx
,
gru_value
,
gru_grad
,
frame_size
,
cur_batch_size
,
active_node
,
active_gate
);
active_gate
,
origin_mode
);
}
}
if
(
input_grad
)
{
if
(
input_grad
)
{
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
...
...
paddle/fluid/operators/gru_unit_op.cc
浏览文件 @
adba4384
...
@@ -111,6 +111,13 @@ class GRUUnitOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -111,6 +111,13 @@ class GRUUnitOpMaker : public framework::OpProtoAndCheckerMaker {
"The activation type used in update gate and reset gate."
)
"The activation type used in update gate and reset gate."
)
.
SetDefault
(
sigmoid
)
.
SetDefault
(
sigmoid
)
.
InEnum
({
identity
,
sigmoid
,
tanh
,
relu
});
.
InEnum
({
identity
,
sigmoid
,
tanh
,
relu
});
AddAttr
<
bool
>
(
"origin_mode"
,
"bool"
"use origin mode in article <Learning Phrase Representations "
"using RNN Encoder–Decoder
\n
"
"for Statistical Machine "
"Translation>(https://arxiv.org/pdf/1406.1078.pdf)"
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
GRUUnit Operator implements partial calculations of the GRU unit as following:
GRUUnit Operator implements partial calculations of the GRU unit as following:
...
...
paddle/fluid/operators/gru_unit_op.h
浏览文件 @
adba4384
...
@@ -113,7 +113,11 @@ class GRUUnitKernel : public framework::OpKernel<T> {
...
@@ -113,7 +113,11 @@ class GRUUnitKernel : public framework::OpKernel<T> {
auto
c
=
g
.
slice
(
c_offsets
,
extents
);
// output candidate
auto
c
=
g
.
slice
(
c_offsets
,
extents
);
// output candidate
// calculate final output
// calculate final output
h
.
device
(
place
)
=
u
*
(
c
-
h_p
)
+
h_p
;
if
(
context
.
Attr
<
bool
>
(
"origin_mode"
))
{
h
.
device
(
place
)
=
c
+
u
*
(
h_p
-
c
);
// (1 - u) * c + u * h_p
}
else
{
h
.
device
(
place
)
=
u
*
(
c
-
h_p
)
+
h_p
;
// u * c + (1 - u) * h_p
}
}
}
};
};
...
@@ -180,11 +184,19 @@ class GRUUnitGradKernel : public framework::OpKernel<T> {
...
@@ -180,11 +184,19 @@ class GRUUnitGradKernel : public framework::OpKernel<T> {
auto
c
=
g
.
slice
(
c_offsets
,
extents
);
// output candidate
auto
c
=
g
.
slice
(
c_offsets
,
extents
);
// output candidate
// backward for unactivated update gate
// backward for unactivated update gate
ActGradCompute
(
context
.
Attr
<
int
>
(
"gate_activation"
),
place
,
u
,
u
,
if
(
context
.
Attr
<
bool
>
(
"origin_mode"
))
{
d_g
.
slice
(
u_offsets
,
extents
),
d_h
*
(
c
-
h_p
));
ActGradCompute
(
context
.
Attr
<
int
>
(
"gate_activation"
),
place
,
u
,
u
,
// backward for unactivated output candidate
d_g
.
slice
(
u_offsets
,
extents
),
d_h
*
(
h_p
-
c
));
ActGradCompute
(
context
.
Attr
<
int
>
(
"activation"
),
place
,
c
,
c
,
// backward for unactivated output candidate
d_g
.
slice
(
c_offsets
,
extents
),
d_h
*
u
);
ActGradCompute
(
context
.
Attr
<
int
>
(
"activation"
),
place
,
c
,
c
,
d_g
.
slice
(
c_offsets
,
extents
),
d_h
*
(
1
-
u
));
}
else
{
ActGradCompute
(
context
.
Attr
<
int
>
(
"gate_activation"
),
place
,
u
,
u
,
d_g
.
slice
(
u_offsets
,
extents
),
d_h
*
(
c
-
h_p
));
// backward for unactivated output candidate
ActGradCompute
(
context
.
Attr
<
int
>
(
"activation"
),
place
,
c
,
c
,
d_g
.
slice
(
c_offsets
,
extents
),
d_h
*
u
);
}
// backward for reset_hidden_prev
// backward for reset_hidden_prev
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
context
);
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
context
);
blas
.
GEMM
(
false
,
true
,
batch_size
,
frame_size
,
frame_size
,
1
,
blas
.
GEMM
(
false
,
true
,
batch_size
,
frame_size
,
frame_size
,
1
,
...
@@ -213,7 +225,11 @@ class GRUUnitGradKernel : public framework::OpKernel<T> {
...
@@ -213,7 +225,11 @@ class GRUUnitGradKernel : public framework::OpKernel<T> {
T
*
hidden_prev_grad_data
=
T
*
hidden_prev_grad_data
=
hidden_prev_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
hidden_prev_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
d_h_p
=
EigenMatrix
<
T
>::
From
(
*
hidden_prev_grad
);
auto
d_h_p
=
EigenMatrix
<
T
>::
From
(
*
hidden_prev_grad
);
d_h_p
.
device
(
place
)
=
d_r_h_p
*
r
+
d_h
*
(
u
.
constant
(
T
(
1
))
-
u
);
if
(
context
.
Attr
<
bool
>
(
"origin_mode"
))
{
d_h_p
.
device
(
place
)
=
d_r_h_p
*
r
+
d_h
*
u
;
}
else
{
d_h_p
.
device
(
place
)
=
d_r_h_p
*
r
+
d_h
*
(
1
-
u
);
}
blas
.
GEMM
(
false
,
true
,
batch_size
,
frame_size
,
frame_size
*
2
,
1
,
blas
.
GEMM
(
false
,
true
,
batch_size
,
frame_size
,
frame_size
*
2
,
1
,
gate_grad_data
,
frame_size
*
3
,
weight_data
,
frame_size
*
2
,
1
,
gate_grad_data
,
frame_size
*
3
,
weight_data
,
frame_size
*
2
,
1
,
hidden_prev_grad_data
,
frame_size
);
hidden_prev_grad_data
,
frame_size
);
...
...
paddle/fluid/operators/math/detail/gru_cpu_kernel.h
浏览文件 @
adba4384
...
@@ -56,7 +56,8 @@ template <class OpFinalOutput, typename T>
...
@@ -56,7 +56,8 @@ template <class OpFinalOutput, typename T>
void
hl_naive_gru_forward_final_output
(
OpFinalOutput
op_final_output
,
void
hl_naive_gru_forward_final_output
(
OpFinalOutput
op_final_output
,
T
*
gate_value
,
T
*
prev_output_value
,
T
*
gate_value
,
T
*
prev_output_value
,
T
*
output_value
,
int
frame_size
,
T
*
output_value
,
int
frame_size
,
ActivationType
active_node
)
{
ActivationType
active_node
,
bool
origin_mode
)
{
T
r_value_update_gate
;
T
r_value_update_gate
;
T
r_value_frame_state
;
T
r_value_frame_state
;
T
r_prev_out
=
0
;
T
r_prev_out
=
0
;
...
@@ -72,7 +73,7 @@ void hl_naive_gru_forward_final_output(OpFinalOutput op_final_output,
...
@@ -72,7 +73,7 @@ void hl_naive_gru_forward_final_output(OpFinalOutput op_final_output,
}
}
op_final_output
(
&
r_value_update_gate
,
&
r_value_frame_state
,
&
r_prev_out
,
op_final_output
(
&
r_value_update_gate
,
&
r_value_frame_state
,
&
r_prev_out
,
&
r_output
,
active_node
);
&
r_output
,
active_node
,
origin_mode
);
frame_state
[
i
]
=
r_value_frame_state
;
frame_state
[
i
]
=
r_value_frame_state
;
output_value
[
i
]
=
r_output
;
output_value
[
i
]
=
r_output
;
...
@@ -146,7 +147,8 @@ template <class OpFinalOutput, typename T>
...
@@ -146,7 +147,8 @@ template <class OpFinalOutput, typename T>
void
hl_avx_gru_forward_final_output
(
OpFinalOutput
op_final_output
,
void
hl_avx_gru_forward_final_output
(
OpFinalOutput
op_final_output
,
T
*
gate_value
,
T
*
prev_output_value
,
T
*
gate_value
,
T
*
prev_output_value
,
T
*
output_value
,
int
frame_size
,
T
*
output_value
,
int
frame_size
,
ActivationType
active_node
)
{
ActivationType
active_node
,
bool
origin_mode
)
{
#ifdef __AVX__
#ifdef __AVX__
__m256
r_value_update_gate
,
r_value_update_gate_last
=
_mm256_set1_ps
(
0.0
f
);
__m256
r_value_update_gate
,
r_value_update_gate_last
=
_mm256_set1_ps
(
0.0
f
);
__m256
r_value_frame_state
,
r_value_frame_state_last
=
_mm256_set1_ps
(
0.0
f
);
__m256
r_value_frame_state
,
r_value_frame_state_last
=
_mm256_set1_ps
(
0.0
f
);
...
@@ -180,7 +182,7 @@ void hl_avx_gru_forward_final_output(OpFinalOutput op_final_output,
...
@@ -180,7 +182,7 @@ void hl_avx_gru_forward_final_output(OpFinalOutput op_final_output,
}
}
op_final_output
(
&
r_value_update_gate
,
&
r_value_frame_state
,
&
r_prev_out
,
op_final_output
(
&
r_value_update_gate
,
&
r_value_frame_state
,
&
r_prev_out
,
&
r_output
,
active_node
);
&
r_output
,
active_node
,
origin_mode
);
_mm256_storeu_ps
(
reinterpret_cast
<
float
*>
(
frame_state
+
i
),
_mm256_storeu_ps
(
reinterpret_cast
<
float
*>
(
frame_state
+
i
),
r_value_frame_state
);
r_value_frame_state
);
...
@@ -190,7 +192,7 @@ void hl_avx_gru_forward_final_output(OpFinalOutput op_final_output,
...
@@ -190,7 +192,7 @@ void hl_avx_gru_forward_final_output(OpFinalOutput op_final_output,
if
(
rest
>
0
)
{
if
(
rest
>
0
)
{
i
=
n
-
block
;
i
=
n
-
block
;
op_final_output
(
&
r_value_update_gate_last
,
&
r_value_frame_state_last
,
op_final_output
(
&
r_value_update_gate_last
,
&
r_value_frame_state_last
,
&
r_prev_out_last
,
&
r_output
,
active_node
);
&
r_prev_out_last
,
&
r_output
,
active_node
,
origin_mode
);
_mm256_storeu_ps
(
reinterpret_cast
<
float
*>
(
frame_state
+
i
),
_mm256_storeu_ps
(
reinterpret_cast
<
float
*>
(
frame_state
+
i
),
r_value_frame_state_last
);
r_value_frame_state_last
);
...
@@ -227,17 +229,18 @@ inline void forward_reset_output(OpResetOutput op_reset_output,
...
@@ -227,17 +229,18 @@ inline void forward_reset_output(OpResetOutput op_reset_output,
template
<
class
OpFinalOutput
,
typename
T
>
template
<
class
OpFinalOutput
,
typename
T
>
inline
void
forward_final_output
(
OpFinalOutput
op_final_output
,
inline
void
forward_final_output
(
OpFinalOutput
op_final_output
,
GRUMetaValue
<
T
>
value
,
int
frame_size
,
GRUMetaValue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
ActivationType
active_node
)
{
int
batch_size
,
ActivationType
active_node
,
bool
origin_mode
)
{
for
(
int
b
=
0
;
b
<
batch_size
;
b
++
)
{
for
(
int
b
=
0
;
b
<
batch_size
;
b
++
)
{
if
(
OpFinalOutput
::
avx
&&
(
frame_size
>
static_cast
<
int
>
(
8
-
1
))
&&
if
(
OpFinalOutput
::
avx
&&
(
frame_size
>
static_cast
<
int
>
(
8
-
1
))
&&
(
sizeof
(
T
)
==
4
))
{
(
sizeof
(
T
)
==
4
))
{
hl_avx_gru_forward_final_output
(
op_final_output
,
value
.
gate_value
,
hl_avx_gru_forward_final_output
(
op_final_output
,
value
.
gate_value
,
value
.
prev_out_value
,
value
.
output_value
,
value
.
prev_out_value
,
value
.
output_value
,
frame_size
,
active_node
);
frame_size
,
active_node
,
origin_mode
);
}
else
{
}
else
{
hl_naive_gru_forward_final_output
(
hl_naive_gru_forward_final_output
(
op_final_output
,
value
.
gate_value
,
value
.
prev_out_value
,
op_final_output
,
value
.
gate_value
,
value
.
prev_out_value
,
value
.
output_value
,
frame_size
,
active_node
);
value
.
output_value
,
frame_size
,
active_node
,
origin_mode
);
}
}
value
.
gate_value
+=
frame_size
*
3
;
value
.
gate_value
+=
frame_size
*
3
;
...
@@ -253,7 +256,8 @@ void hl_naive_gru_backward_state_grad(OpStateGrad op_state_grad, T *gate_value,
...
@@ -253,7 +256,8 @@ void hl_naive_gru_backward_state_grad(OpStateGrad op_state_grad, T *gate_value,
T
*
gate_grad
,
T
*
prev_out_value
,
T
*
gate_grad
,
T
*
prev_out_value
,
T
*
prev_out_grad
,
T
*
output_grad
,
T
*
prev_out_grad
,
T
*
output_grad
,
int
frame_size
,
int
frame_size
,
ActivationType
active_node
)
{
ActivationType
active_node
,
bool
origin_mode
)
{
T
r_update_gate_value
;
T
r_update_gate_value
;
T
r_update_gate_grad
;
T
r_update_gate_grad
;
T
r_frame_state_value
;
T
r_frame_state_value
;
...
@@ -279,7 +283,7 @@ void hl_naive_gru_backward_state_grad(OpStateGrad op_state_grad, T *gate_value,
...
@@ -279,7 +283,7 @@ void hl_naive_gru_backward_state_grad(OpStateGrad op_state_grad, T *gate_value,
op_state_grad
(
&
r_update_gate_value
,
&
r_update_gate_grad
,
op_state_grad
(
&
r_update_gate_value
,
&
r_update_gate_grad
,
&
r_frame_state_value
,
&
r_frame_state_grad
,
&
r_prev_out_value
,
&
r_frame_state_value
,
&
r_frame_state_grad
,
&
r_prev_out_value
,
&
r_prev_out_grad
,
&
r_out_grad
,
active_node
);
&
r_prev_out_grad
,
&
r_out_grad
,
active_node
,
origin_mode
);
update_gate_grad
[
i
]
=
r_update_gate_grad
;
update_gate_grad
[
i
]
=
r_update_gate_grad
;
frame_state_grad
[
i
]
=
r_frame_state_grad
;
frame_state_grad
[
i
]
=
r_frame_state_grad
;
...
@@ -338,8 +342,8 @@ template <class OpStateGrad, typename T>
...
@@ -338,8 +342,8 @@ template <class OpStateGrad, typename T>
void
hl_avx_gru_backward_state_grad
(
OpStateGrad
op_state_grad
,
T
*
gate_value
,
void
hl_avx_gru_backward_state_grad
(
OpStateGrad
op_state_grad
,
T
*
gate_value
,
T
*
gate_grad
,
T
*
prev_out_value
,
T
*
gate_grad
,
T
*
prev_out_value
,
T
*
prev_out_grad
,
T
*
output_grad
,
T
*
prev_out_grad
,
T
*
output_grad
,
int
frame_size
,
int
frame_size
,
ActivationType
active_node
,
ActivationType
active_n
ode
)
{
bool
origin_m
ode
)
{
#ifdef __AVX__
#ifdef __AVX__
__m256
r_update_gate_value
;
__m256
r_update_gate_value
;
__m256
r_update_gate_grad
;
__m256
r_update_gate_grad
;
...
@@ -368,7 +372,7 @@ void hl_avx_gru_backward_state_grad(OpStateGrad op_state_grad, T *gate_value,
...
@@ -368,7 +372,7 @@ void hl_avx_gru_backward_state_grad(OpStateGrad op_state_grad, T *gate_value,
op_state_grad
(
&
r_update_gate_value
,
&
r_update_gate_grad
,
op_state_grad
(
&
r_update_gate_value
,
&
r_update_gate_grad
,
&
r_frame_state_value
,
&
r_frame_state_grad
,
&
r_prev_out_value
,
&
r_frame_state_value
,
&
r_frame_state_grad
,
&
r_prev_out_value
,
&
r_prev_out_grad
,
&
r_out_grad
,
active_node
);
&
r_prev_out_grad
,
&
r_out_grad
,
active_node
,
origin_mode
);
update_gate_grad
[
i
]
=
r_update_gate_grad
;
update_gate_grad
[
i
]
=
r_update_gate_grad
;
frame_state_grad
[
i
]
=
r_frame_state_grad
;
frame_state_grad
[
i
]
=
r_frame_state_grad
;
...
@@ -431,16 +435,18 @@ template <class OpStateGrad, typename T>
...
@@ -431,16 +435,18 @@ template <class OpStateGrad, typename T>
inline
void
backward_state_grad
(
OpStateGrad
op_state_grad
,
inline
void
backward_state_grad
(
OpStateGrad
op_state_grad
,
GRUMetaValue
<
T
>
value
,
GRUMetaGrad
<
T
>
grad
,
GRUMetaValue
<
T
>
value
,
GRUMetaGrad
<
T
>
grad
,
int
frame_size
,
int
batch_size
,
int
frame_size
,
int
batch_size
,
ActivationType
active_node
)
{
ActivationType
active_node
,
bool
origin_mode
)
{
for
(
int
b
=
0
;
b
<
batch_size
;
b
++
)
{
for
(
int
b
=
0
;
b
<
batch_size
;
b
++
)
{
if
(
OpStateGrad
::
avx
&&
!
(
frame_size
&
(
8
-
1
))
&&
(
sizeof
(
T
)
==
4
))
{
if
(
OpStateGrad
::
avx
&&
!
(
frame_size
&
(
8
-
1
))
&&
(
sizeof
(
T
)
==
4
))
{
hl_avx_gru_backward_state_grad
(
hl_avx_gru_backward_state_grad
(
op_state_grad
,
value
.
gate_value
,
op_state_grad
,
value
.
gate_value
,
grad
.
gate_grad
,
value
.
prev_out_value
,
grad
.
gate_grad
,
value
.
prev_out_value
,
grad
.
prev_out_grad
,
grad
.
output_grad
,
frame_size
,
active_node
);
grad
.
prev_out_grad
,
grad
.
output_grad
,
frame_size
,
active_node
,
origin_mode
);
}
else
{
}
else
{
hl_naive_gru_backward_state_grad
(
hl_naive_gru_backward_state_grad
(
op_state_grad
,
value
.
gate_value
,
op_state_grad
,
value
.
gate_value
,
grad
.
gate_grad
,
value
.
prev_out_value
,
grad
.
gate_grad
,
value
.
prev_out_value
,
grad
.
prev_out_grad
,
grad
.
output_grad
,
frame_size
,
active_node
);
grad
.
prev_out_grad
,
grad
.
output_grad
,
frame_size
,
active_node
,
origin_mode
);
}
}
value
.
gate_value
+=
frame_size
*
3
;
value
.
gate_value
+=
frame_size
*
3
;
...
...
paddle/fluid/operators/math/detail/gru_gpu_kernel.h
浏览文件 @
adba4384
...
@@ -72,7 +72,8 @@ __global__ void KeGruForwardFinalOutput(OpFinalOutput op_final_output,
...
@@ -72,7 +72,8 @@ __global__ void KeGruForwardFinalOutput(OpFinalOutput op_final_output,
T
*
gate_value
,
T
*
prev_output_value
,
T
*
gate_value
,
T
*
prev_output_value
,
T
*
output_value
,
int
frame_size
,
T
*
output_value
,
int
frame_size
,
int
batch_size
,
int
batch_size
,
ActivationType
active_node
)
{
ActivationType
active_node
,
bool
origin_mode
)
{
const
int
frame_idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
const
int
frame_idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
frame_idx
>=
frame_size
)
return
;
if
(
frame_idx
>=
frame_size
)
return
;
int
batch_idx
=
0
;
int
batch_idx
=
0
;
...
@@ -94,7 +95,7 @@ __global__ void KeGruForwardFinalOutput(OpFinalOutput op_final_output,
...
@@ -94,7 +95,7 @@ __global__ void KeGruForwardFinalOutput(OpFinalOutput op_final_output,
}
}
op_final_output
(
&
r_value_update_gate
,
&
r_value_frame_state
,
&
r_prev_out
,
op_final_output
(
&
r_value_update_gate
,
&
r_value_frame_state
,
&
r_prev_out
,
&
r_output
,
active_node
);
&
r_output
,
active_node
,
origin_mode
);
gate_value
[
frame_idx
+
frame_size
*
2
]
=
r_value_frame_state
;
gate_value
[
frame_idx
+
frame_size
*
2
]
=
r_value_frame_state
;
output_value
[
frame_idx
]
=
r_output
;
output_value
[
frame_idx
]
=
r_output
;
...
@@ -109,7 +110,8 @@ __global__ void KeGruBackwardStateGrad(OpStateGrad op_state_grad, T *gate_value,
...
@@ -109,7 +110,8 @@ __global__ void KeGruBackwardStateGrad(OpStateGrad op_state_grad, T *gate_value,
T
*
gate_grad
,
T
*
prev_out_value
,
T
*
gate_grad
,
T
*
prev_out_value
,
T
*
prev_out_grad
,
T
*
output_grad
,
T
*
prev_out_grad
,
T
*
output_grad
,
int
frame_size
,
int
batch_size
,
int
frame_size
,
int
batch_size
,
ActivationType
active_node
)
{
ActivationType
active_node
,
bool
origin_mode
)
{
const
int
frame_idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
const
int
frame_idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
frame_idx
>=
frame_size
)
return
;
if
(
frame_idx
>=
frame_size
)
return
;
int
batch_idx
=
0
;
int
batch_idx
=
0
;
...
@@ -139,7 +141,7 @@ __global__ void KeGruBackwardStateGrad(OpStateGrad op_state_grad, T *gate_value,
...
@@ -139,7 +141,7 @@ __global__ void KeGruBackwardStateGrad(OpStateGrad op_state_grad, T *gate_value,
op_state_grad
(
&
r_update_gate_value
,
&
r_update_gate_grad
,
&
r_frame_state_value
,
op_state_grad
(
&
r_update_gate_value
,
&
r_update_gate_grad
,
&
r_frame_state_value
,
&
r_frame_state_grad
,
&
r_prev_out_value
,
&
r_prev_out_grad
,
&
r_frame_state_grad
,
&
r_prev_out_value
,
&
r_prev_out_grad
,
&
r_out_grad
,
active_node
);
&
r_out_grad
,
active_node
,
origin_mode
);
gate_grad
[
frame_idx
+
frame_size
*
0
]
=
r_update_gate_grad
;
gate_grad
[
frame_idx
+
frame_size
*
0
]
=
r_update_gate_grad
;
gate_grad
[
frame_idx
+
frame_size
*
2
]
=
r_frame_state_grad
;
gate_grad
[
frame_idx
+
frame_size
*
2
]
=
r_frame_state_grad
;
...
...
paddle/fluid/operators/math/detail/gru_kernel.h
浏览文件 @
adba4384
...
@@ -57,10 +57,16 @@ class gru_finalOutput {
...
@@ -57,10 +57,16 @@ class gru_finalOutput {
public:
public:
HOSTDEVICE
void
operator
()(
T
*
value_update_gate
,
T
*
value_frame_state
,
HOSTDEVICE
void
operator
()(
T
*
value_update_gate
,
T
*
value_frame_state
,
T
*
prev_out
,
T
*
value_output
,
T
*
prev_out
,
T
*
value_output
,
ActivationType
act_input
)
{
ActivationType
act_input
,
bool
origin_mode
)
{
*
value_frame_state
=
activation
(
*
value_frame_state
,
act_input
);
*
value_frame_state
=
activation
(
*
value_frame_state
,
act_input
);
*
value_output
=
*
prev_out
-
((
*
value_update_gate
)
*
(
*
prev_out
))
+
if
(
origin_mode
)
{
((
*
value_update_gate
)
*
(
*
value_frame_state
));
*
value_output
=
((
*
value_update_gate
)
*
(
*
prev_out
))
+
*
value_frame_state
-
((
*
value_update_gate
)
*
(
*
value_frame_state
));
}
else
{
*
value_output
=
*
prev_out
-
((
*
value_update_gate
)
*
(
*
prev_out
))
+
((
*
value_update_gate
)
*
(
*
value_frame_state
));
}
}
}
#ifndef __NVCC__
#ifndef __NVCC__
#ifndef __AVX__
#ifndef __AVX__
...
@@ -69,11 +75,20 @@ class gru_finalOutput {
...
@@ -69,11 +75,20 @@ class gru_finalOutput {
static
const
bool
avx
=
true
;
static
const
bool
avx
=
true
;
HOSTDEVICE
void
operator
()(
__m256
*
value_update_gate
,
HOSTDEVICE
void
operator
()(
__m256
*
value_update_gate
,
__m256
*
value_frame_state
,
__m256
*
prev_out
,
__m256
*
value_frame_state
,
__m256
*
prev_out
,
__m256
*
value_output
,
ActivationType
act_input
)
{
__m256
*
value_output
,
ActivationType
act_input
,
bool
origin_mode
)
{
*
value_frame_state
=
activation
(
*
value_frame_state
,
act_input
);
*
value_frame_state
=
activation
(
*
value_frame_state
,
act_input
);
*
value_output
=
_mm256_add_ps
(
if
(
origin_mode
)
{
_mm256_sub_ps
(
*
prev_out
,
_mm256_mul_ps
(
*
value_update_gate
,
*
prev_out
)),
*
value_output
=
_mm256_sub_ps
(
_mm256_mul_ps
(
*
value_update_gate
,
*
value_frame_state
));
_mm256_add_ps
(
_mm256_mul_ps
(
*
value_update_gate
,
*
prev_out
),
*
value_frame_state
),
_mm256_mul_ps
(
*
value_update_gate
,
*
value_frame_state
));
}
else
{
*
value_output
=
_mm256_add_ps
(
_mm256_sub_ps
(
*
prev_out
,
_mm256_mul_ps
(
*
value_update_gate
,
*
prev_out
)),
_mm256_mul_ps
(
*
value_update_gate
,
*
value_frame_state
));
}
}
}
#endif
#endif
#endif
#endif
...
@@ -88,13 +103,23 @@ class gru_stateGrad {
...
@@ -88,13 +103,23 @@ class gru_stateGrad {
HOSTDEVICE
void
operator
()(
T
*
value_update_gate
,
T
*
grad_update_gate
,
HOSTDEVICE
void
operator
()(
T
*
value_update_gate
,
T
*
grad_update_gate
,
T
*
value_frame_state
,
T
*
grad_frame_state
,
T
*
value_frame_state
,
T
*
grad_frame_state
,
T
*
value_prev_out
,
T
*
grad_prev_out
,
T
*
value_prev_out
,
T
*
grad_prev_out
,
T
*
grad_output
,
ActivationType
act_input
)
{
T
*
grad_output
,
ActivationType
act_input
,
*
grad_update_gate
=
(
*
grad_output
*
(
*
value_frame_state
));
bool
origin_mode
)
{
*
grad_update_gate
-=
(
*
grad_output
*
(
*
value_prev_out
));
if
(
origin_mode
)
{
*
grad_prev_out
-=
(
*
grad_output
*
(
*
value_update_gate
));
*
grad_update_gate
=
*
grad_prev_out
+=
*
grad_output
;
(
*
grad_output
)
*
((
*
value_prev_out
)
-
(
*
value_frame_state
));
*
grad_frame_state
=
activation
(
*
grad_output
*
(
*
value_update_gate
),
*
grad_prev_out
+=
(
*
grad_output
*
(
*
value_update_gate
));
*
value_frame_state
,
act_input
);
*
grad_frame_state
=
activation
(
*
grad_output
*
(
static_cast
<
T
>
(
1.0
)
-
(
*
value_update_gate
)),
*
value_frame_state
,
act_input
);
}
else
{
*
grad_update_gate
=
(
*
grad_output
)
*
((
*
value_frame_state
)
-
(
*
value_prev_out
));
*
grad_prev_out
+=
(
*
grad_output
*
(
static_cast
<
T
>
(
1.0
)
-
*
value_update_gate
));
*
grad_frame_state
=
activation
(
*
grad_output
*
(
*
value_update_gate
),
*
value_frame_state
,
act_input
);
}
}
}
#ifndef __NVCC__
#ifndef __NVCC__
#ifndef __AVX__
#ifndef __AVX__
...
@@ -106,17 +131,27 @@ class gru_stateGrad {
...
@@ -106,17 +131,27 @@ class gru_stateGrad {
__m256
*
value_frame_state
,
__m256
*
value_frame_state
,
__m256
*
grad_frame_state
,
__m256
*
value_prev_out
,
__m256
*
grad_frame_state
,
__m256
*
value_prev_out
,
__m256
*
grad_prev_out
,
__m256
*
grad_output
,
__m256
*
grad_prev_out
,
__m256
*
grad_output
,
ActivationType
act_input
)
{
ActivationType
act_input
,
bool
origin_mode
)
{
*
grad_update_gate
=
_mm256_mul_ps
(
*
grad_output
,
*
value_frame_state
);
if
(
origin_mode
)
{
*
grad_update_gate
=
_mm256_sub_ps
(
*
grad_update_gate
=
_mm256_mul_ps
(
*
grad_update_gate
,
_mm256_mul_ps
(
*
grad_output
,
*
value_prev_out
));
*
grad_output
,
_mm256_sub_ps
(
*
value_prev_out
,
*
value_frame_state
));
*
grad_prev_out
=
_mm256_add_ps
(
*
grad_prev_out
=
_mm256_add_ps
(
_mm256_sub_ps
(
*
grad_prev_out
,
*
grad_prev_out
,
_mm256_mul_ps
(
*
grad_output
,
*
value_update_gate
));
_mm256_mul_ps
(
*
grad_output
,
*
value_update_gate
)),
*
grad_frame_state
=
activation
(
*
grad_output
);
_mm256_mul_ps
(
*
grad_output
,
_mm256_sub_ps
(
_mm256_set1_ps
(
1.0
f
),
*
grad_frame_state
=
*
value_update_gate
)),
activation
(
_mm256_mul_ps
(
*
grad_output
,
*
value_update_gate
),
*
value_frame_state
,
act_input
);
*
value_frame_state
,
act_input
);
}
else
{
*
grad_update_gate
=
_mm256_mul_ps
(
*
grad_output
,
_mm256_sub_ps
(
*
value_frame_state
,
*
value_prev_out
));
*
grad_prev_out
=
_mm256_add_ps
(
*
grad_prev_out
,
_mm256_mul_ps
(
*
grad_output
,
_mm256_sub_ps
(
_mm256_set1_ps
(
1.0
f
),
*
value_update_gate
)));
*
grad_frame_state
=
activation
(
_mm256_mul_ps
(
*
grad_output
,
*
value_update_gate
),
*
value_frame_state
,
act_input
);
}
}
}
#endif
#endif
#endif
#endif
...
...
paddle/fluid/operators/math/gru_compute.cc
浏览文件 @
adba4384
...
@@ -23,7 +23,8 @@ struct GRUUnitFunctor<platform::CPUDeviceContext, T> {
...
@@ -23,7 +23,8 @@ struct GRUUnitFunctor<platform::CPUDeviceContext, T> {
static
void
compute
(
const
platform
::
CPUDeviceContext
&
context
,
static
void
compute
(
const
platform
::
CPUDeviceContext
&
context
,
GRUMetaValue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
GRUMetaValue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
const
detail
::
ActivationType
active_node
,
const
detail
::
ActivationType
active_node
,
const
detail
::
ActivationType
active_gate
)
{
const
detail
::
ActivationType
active_gate
,
bool
origin_mode
)
{
#ifndef __NVCC__
#ifndef __NVCC__
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
if
(
value
.
prev_out_value
)
{
if
(
value
.
prev_out_value
)
{
...
@@ -43,7 +44,8 @@ struct GRUUnitFunctor<platform::CPUDeviceContext, T> {
...
@@ -43,7 +44,8 @@ struct GRUUnitFunctor<platform::CPUDeviceContext, T> {
}
}
detail
::
forward_final_output
(
detail
::
forward
::
gru_finalOutput
<
T
>
(),
value
,
detail
::
forward_final_output
(
detail
::
forward
::
gru_finalOutput
<
T
>
(),
value
,
frame_size
,
batch_size
,
active_node
);
frame_size
,
batch_size
,
active_node
,
origin_mode
);
#endif
#endif
}
}
};
};
...
@@ -54,10 +56,12 @@ struct GRUUnitGradFunctor<platform::CPUDeviceContext, T> {
...
@@ -54,10 +56,12 @@ struct GRUUnitGradFunctor<platform::CPUDeviceContext, T> {
GRUMetaValue
<
T
>
value
,
GRUMetaGrad
<
T
>
grad
,
GRUMetaValue
<
T
>
value
,
GRUMetaGrad
<
T
>
grad
,
int
frame_size
,
int
batch_size
,
int
frame_size
,
int
batch_size
,
const
detail
::
ActivationType
active_node
,
const
detail
::
ActivationType
active_node
,
const
detail
::
ActivationType
active_gate
)
{
const
detail
::
ActivationType
active_gate
,
bool
origin_mode
)
{
#ifndef __NVCC__
#ifndef __NVCC__
detail
::
backward_state_grad
(
detail
::
backward
::
gru_stateGrad
<
T
>
(),
value
,
detail
::
backward_state_grad
(
detail
::
backward
::
gru_stateGrad
<
T
>
(),
value
,
grad
,
frame_size
,
batch_size
,
active_node
);
grad
,
frame_size
,
batch_size
,
active_node
,
origin_mode
);
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
if
(
value
.
prev_out_value
&&
grad
.
prev_out_grad
)
{
if
(
value
.
prev_out_value
&&
grad
.
prev_out_grad
)
{
blas
.
GEMM
(
false
,
true
,
batch_size
,
frame_size
,
frame_size
,
1
,
blas
.
GEMM
(
false
,
true
,
batch_size
,
frame_size
,
frame_size
,
1
,
...
...
paddle/fluid/operators/math/gru_compute.cu
浏览文件 @
adba4384
...
@@ -24,7 +24,8 @@ struct GRUUnitFunctor<platform::CUDADeviceContext, T> {
...
@@ -24,7 +24,8 @@ struct GRUUnitFunctor<platform::CUDADeviceContext, T> {
static
void
compute
(
const
platform
::
CUDADeviceContext
&
context
,
static
void
compute
(
const
platform
::
CUDADeviceContext
&
context
,
GRUMetaValue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
GRUMetaValue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
const
detail
::
ActivationType
active_node
,
const
detail
::
ActivationType
active_node
,
const
detail
::
ActivationType
active_gate
)
{
const
detail
::
ActivationType
active_gate
,
bool
origin_mode
)
{
auto
stream
=
context
.
stream
();
auto
stream
=
context
.
stream
();
dim3
threads
;
dim3
threads
;
dim3
grid
;
dim3
grid
;
...
@@ -73,14 +74,14 @@ struct GRUUnitFunctor<platform::CUDADeviceContext, T> {
...
@@ -73,14 +74,14 @@ struct GRUUnitFunctor<platform::CUDADeviceContext, T> {
T
><<<
grid
,
threads
,
0
,
stream
>>>
(
T
><<<
grid
,
threads
,
0
,
stream
>>>
(
detail
::
forward
::
gru_finalOutput
<
T
>
(),
value
.
gate_value
,
detail
::
forward
::
gru_finalOutput
<
T
>
(),
value
.
gate_value
,
value
.
prev_out_value
,
value
.
output_value
,
frame_size
,
batch_size
,
value
.
prev_out_value
,
value
.
output_value
,
frame_size
,
batch_size
,
active_node
);
active_node
,
origin_mode
);
}
else
{
}
else
{
detail
::
KeGruForwardFinalOutput
<
detail
::
forward
::
gru_finalOutput
<
T
>
,
detail
::
KeGruForwardFinalOutput
<
detail
::
forward
::
gru_finalOutput
<
T
>
,
/* is_batch= */
true
,
/* is_batch= */
true
,
T
><<<
grid
,
threads
,
0
,
stream
>>>
(
T
><<<
grid
,
threads
,
0
,
stream
>>>
(
detail
::
forward
::
gru_finalOutput
<
T
>
(),
value
.
gate_value
,
detail
::
forward
::
gru_finalOutput
<
T
>
(),
value
.
gate_value
,
value
.
prev_out_value
,
value
.
output_value
,
frame_size
,
batch_size
,
value
.
prev_out_value
,
value
.
output_value
,
frame_size
,
batch_size
,
active_node
);
active_node
,
origin_mode
);
}
}
}
}
};
};
...
@@ -91,7 +92,8 @@ struct GRUUnitGradFunctor<platform::CUDADeviceContext, T> {
...
@@ -91,7 +92,8 @@ struct GRUUnitGradFunctor<platform::CUDADeviceContext, T> {
GRUMetaValue
<
T
>
value
,
GRUMetaGrad
<
T
>
grad
,
GRUMetaValue
<
T
>
value
,
GRUMetaGrad
<
T
>
grad
,
int
frame_size
,
int
batch_size
,
int
frame_size
,
int
batch_size
,
const
detail
::
ActivationType
active_node
,
const
detail
::
ActivationType
active_node
,
const
detail
::
ActivationType
active_gate
)
{
const
detail
::
ActivationType
active_gate
,
bool
origin_mode
)
{
auto
stream
=
context
.
stream
();
auto
stream
=
context
.
stream
();
dim3
threads
;
dim3
threads
;
dim3
grid
;
dim3
grid
;
...
@@ -111,14 +113,14 @@ struct GRUUnitGradFunctor<platform::CUDADeviceContext, T> {
...
@@ -111,14 +113,14 @@ struct GRUUnitGradFunctor<platform::CUDADeviceContext, T> {
/* is_batch= */
false
><<<
grid
,
threads
,
0
,
stream
>>>
(
/* is_batch= */
false
><<<
grid
,
threads
,
0
,
stream
>>>
(
detail
::
backward
::
gru_stateGrad
<
T
>
(),
value
.
gate_value
,
detail
::
backward
::
gru_stateGrad
<
T
>
(),
value
.
gate_value
,
grad
.
gate_grad
,
value
.
prev_out_value
,
grad
.
prev_out_grad
,
grad
.
gate_grad
,
value
.
prev_out_value
,
grad
.
prev_out_grad
,
grad
.
output_grad
,
frame_size
,
batch_size
,
active_node
);
grad
.
output_grad
,
frame_size
,
batch_size
,
active_node
,
origin_mode
);
}
else
{
}
else
{
detail
::
KeGruBackwardStateGrad
<
detail
::
KeGruBackwardStateGrad
<
detail
::
backward
::
gru_stateGrad
<
T
>
,
detail
::
backward
::
gru_stateGrad
<
T
>
,
/* is_batch= */
true
><<<
grid
,
threads
,
0
,
stream
>>>
(
/* is_batch= */
true
><<<
grid
,
threads
,
0
,
stream
>>>
(
detail
::
backward
::
gru_stateGrad
<
T
>
(),
value
.
gate_value
,
detail
::
backward
::
gru_stateGrad
<
T
>
(),
value
.
gate_value
,
grad
.
gate_grad
,
value
.
prev_out_value
,
grad
.
prev_out_grad
,
grad
.
gate_grad
,
value
.
prev_out_value
,
grad
.
prev_out_grad
,
grad
.
output_grad
,
frame_size
,
batch_size
,
active_node
);
grad
.
output_grad
,
frame_size
,
batch_size
,
active_node
,
origin_mode
);
}
}
auto
blas
=
math
::
GetBlas
<
platform
::
CUDADeviceContext
,
T
>
(
context
);
auto
blas
=
math
::
GetBlas
<
platform
::
CUDADeviceContext
,
T
>
(
context
);
...
...
paddle/fluid/operators/math/gru_compute.h
浏览文件 @
adba4384
...
@@ -44,7 +44,8 @@ struct GRUUnitFunctor {
...
@@ -44,7 +44,8 @@ struct GRUUnitFunctor {
static
void
compute
(
const
DeviceContext
&
context
,
GRUMetaValue
<
T
>
value
,
static
void
compute
(
const
DeviceContext
&
context
,
GRUMetaValue
<
T
>
value
,
int
frame_size
,
int
batch_size
,
int
frame_size
,
int
batch_size
,
const
detail
::
ActivationType
active_node
,
const
detail
::
ActivationType
active_node
,
const
detail
::
ActivationType
active_gate
);
const
detail
::
ActivationType
active_gate
,
bool
origin_mode
);
};
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
...
@@ -52,7 +53,8 @@ struct GRUUnitGradFunctor {
...
@@ -52,7 +53,8 @@ struct GRUUnitGradFunctor {
static
void
compute
(
const
DeviceContext
&
context
,
GRUMetaValue
<
T
>
value
,
static
void
compute
(
const
DeviceContext
&
context
,
GRUMetaValue
<
T
>
value
,
GRUMetaGrad
<
T
>
grad
,
int
frame_size
,
int
batch_size
,
GRUMetaGrad
<
T
>
grad
,
int
frame_size
,
int
batch_size
,
const
detail
::
ActivationType
active_node
,
const
detail
::
ActivationType
active_node
,
const
detail
::
ActivationType
active_gate
);
const
detail
::
ActivationType
active_gate
,
bool
origin_mode
);
};
};
}
// namespace math
}
// namespace math
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
adba4384
...
@@ -864,12 +864,14 @@ def dynamic_gru(input,
...
@@ -864,12 +864,14 @@ def dynamic_gru(input,
is_reverse
=
False
,
is_reverse
=
False
,
gate_activation
=
'sigmoid'
,
gate_activation
=
'sigmoid'
,
candidate_activation
=
'tanh'
,
candidate_activation
=
'tanh'
,
h_0
=
None
):
h_0
=
None
,
origin_mode
=
False
):
"""
"""
**Gated Recurrent Unit (GRU) Layer**
**Gated Recurrent Unit (GRU) Layer**
Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
if origin_mode is False, then the equation of a gru step is from paper
Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
`Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
The formula is as follows:
The formula is as follows:
...
@@ -883,6 +885,21 @@ def dynamic_gru(input,
...
@@ -883,6 +885,21 @@ def dynamic_gru(input,
h_t & = (1-u_t) \odot h_{t-1} + u_t \odot
\\
tilde{h_t}
h_t & = (1-u_t) \odot h_{t-1} + u_t \odot
\\
tilde{h_t}
if origin_mode is True then the equation is from paper
Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
.. math::
u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)
r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)
\\
tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
h_t & = u_t \odot h_{t-1} + (1-u_t) \odot
\\
tilde{h_t}
The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
is the update gate and reset gate activation function and :math:`sigmoid`
is the update gate and reset gate activation function and :math:`sigmoid`
is usually used for it. :math:`act_c` is the activation function for
is usually used for it. :math:`act_c` is the activation function for
...
@@ -980,7 +997,8 @@ def dynamic_gru(input,
...
@@ -980,7 +997,8 @@ def dynamic_gru(input,
attrs
=
{
attrs
=
{
'is_reverse'
:
is_reverse
,
'is_reverse'
:
is_reverse
,
'gate_activation'
:
gate_activation
,
'gate_activation'
:
gate_activation
,
'activation'
:
candidate_activation
'activation'
:
candidate_activation
,
'origin_mode'
:
origin_mode
})
})
return
hidden
return
hidden
...
@@ -991,9 +1009,14 @@ def gru_unit(input,
...
@@ -991,9 +1009,14 @@ def gru_unit(input,
param_attr
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
bias_attr
=
None
,
activation
=
'tanh'
,
activation
=
'tanh'
,
gate_activation
=
'sigmoid'
):
gate_activation
=
'sigmoid'
,
origin_mode
=
False
):
"""
"""
GRU unit layer. The equation of a gru step is:
**GRU unit layer**
if origin_mode is True, then the equation of a gru step is from paper
`Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
.. math::
.. math::
u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
...
@@ -1002,7 +1025,21 @@ def gru_unit(input,
...
@@ -1002,7 +1025,21 @@ def gru_unit(input,
m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)
if origin_mode is False, then the equation of a gru step is from paper
`Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_
.. math::
u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)
The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
of the equation above, the :math:`z_t` is split into 3 parts -
of the equation above, the :math:`z_t` is split into 3 parts -
...
...
python/paddle/fluid/tests/unittests/test_gru_op.py
浏览文件 @
adba4384
...
@@ -31,7 +31,8 @@ def gru(
...
@@ -31,7 +31,8 @@ def gru(
is_reverse
,
is_reverse
,
act_state
,
act_state
,
act_gate
,
act_gate
,
dtype
=
'float32'
):
dtype
=
'float32'
,
origin_mode
=
False
):
def
_seq_to_batch
(
lod
,
is_reverse
):
def
_seq_to_batch
(
lod
,
is_reverse
):
idx_in_seq_list
=
[]
idx_in_seq_list
=
[]
seq_lens
=
lod
[
0
]
seq_lens
=
lod
[
0
]
...
@@ -66,7 +67,10 @@ def gru(
...
@@ -66,7 +67,10 @@ def gru(
w_c
=
w
.
flatten
()[
D
*
D
*
2
:].
reshape
((
D
,
D
))
w_c
=
w
.
flatten
()[
D
*
D
*
2
:].
reshape
((
D
,
D
))
c
=
act_state
(
np
.
dot
(
r_h_p
,
w_c
)
+
g
[:,
D
*
2
:])
c
=
act_state
(
np
.
dot
(
r_h_p
,
w_c
)
+
g
[:,
D
*
2
:])
g
=
np
.
hstack
((
u_r
,
c
))
g
=
np
.
hstack
((
u_r
,
c
))
h
=
u
*
c
+
(
1
-
u
)
*
h_p
if
origin_mode
:
h
=
(
1
-
u
)
*
c
+
u
*
h_p
else
:
h
=
u
*
c
+
(
1
-
u
)
*
h_p
return
g
,
r_h_p
,
h
return
g
,
r_h_p
,
h
T
=
sum
(
lod
[
0
])
T
=
sum
(
lod
[
0
])
...
@@ -110,6 +114,7 @@ class TestGRUOp(OpTest):
...
@@ -110,6 +114,7 @@ class TestGRUOp(OpTest):
self
.
act_state
=
'tanh'
self
.
act_state
=
'tanh'
self
.
act_gate
=
'sigmoid'
self
.
act_gate
=
'sigmoid'
self
.
dtype
=
'float64'
self
.
dtype
=
'float64'
self
.
origin_mode
=
False
self
.
set_confs
()
self
.
set_confs
()
T
=
sum
(
self
.
lod
[
0
])
T
=
sum
(
self
.
lod
[
0
])
...
@@ -126,7 +131,8 @@ class TestGRUOp(OpTest):
...
@@ -126,7 +131,8 @@ class TestGRUOp(OpTest):
batch_gate
,
batch_reset_hidden_prev
,
batch_hidden
,
hidden
=
gru
(
batch_gate
,
batch_reset_hidden_prev
,
batch_hidden
,
hidden
=
gru
(
input
,
self
.
lod
,
h0
,
weight
,
bias
,
self
.
is_reverse
,
input
,
self
.
lod
,
h0
,
weight
,
bias
,
self
.
is_reverse
,
ACTIVATION
[
self
.
act_state
],
ACTIVATION
[
self
.
act_gate
],
self
.
dtype
)
ACTIVATION
[
self
.
act_state
],
ACTIVATION
[
self
.
act_gate
],
self
.
dtype
,
self
.
origin_mode
)
self
.
inputs
=
{
'Input'
:
(
input
,
self
.
lod
),
'Weight'
:
weight
}
self
.
inputs
=
{
'Input'
:
(
input
,
self
.
lod
),
'Weight'
:
weight
}
if
self
.
with_bias
:
if
self
.
with_bias
:
...
@@ -145,7 +151,8 @@ class TestGRUOp(OpTest):
...
@@ -145,7 +151,8 @@ class TestGRUOp(OpTest):
self
.
attrs
=
{
self
.
attrs
=
{
'activation'
:
self
.
act_state
,
'activation'
:
self
.
act_state
,
'gate_activation'
:
self
.
act_gate
,
'gate_activation'
:
self
.
act_gate
,
'is_reverse'
:
self
.
is_reverse
'is_reverse'
:
self
.
is_reverse
,
'origin_mode'
:
self
.
origin_mode
}
}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
...
@@ -155,12 +162,24 @@ class TestGRUOp(OpTest):
...
@@ -155,12 +162,24 @@ class TestGRUOp(OpTest):
self
.
check_grad
([
'Input'
,
'H0'
,
'Weight'
,
'Bias'
],
[
'Hidden'
])
self
.
check_grad
([
'Input'
,
'H0'
,
'Weight'
,
'Bias'
],
[
'Hidden'
])
class
TestGRUOriginMode
(
TestGRUOp
):
def
set_confs
(
self
):
self
.
origin_mode
=
True
class
TestGRUOp2
(
TestGRUOp
):
class
TestGRUOp2
(
TestGRUOp
):
def
set_confs
(
self
):
def
set_confs
(
self
):
self
.
D
=
19
self
.
D
=
19
self
.
dtype
=
'float32'
self
.
dtype
=
'float32'
class
TestGRUOp2OriginMode
(
TestGRUOp
):
def
set_confs
(
self
):
self
.
D
=
19
self
.
dtype
=
'float32'
self
.
origin_mode
=
True
class
TestGRUOpNoInitial
(
TestGRUOp
):
class
TestGRUOpNoInitial
(
TestGRUOp
):
def
set_confs
(
self
):
def
set_confs
(
self
):
self
.
with_h0
=
False
self
.
with_h0
=
False
...
@@ -182,5 +201,11 @@ class TestGRUOpReverse(TestGRUOp):
...
@@ -182,5 +201,11 @@ class TestGRUOpReverse(TestGRUOp):
self
.
is_reverse
=
True
self
.
is_reverse
=
True
class
TestGRUOpReverseOriginMode
(
TestGRUOp
):
def
set_confs
(
self
):
self
.
is_reverse
=
True
self
.
origin_mode
=
True
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_gru_unit_op.py
浏览文件 @
adba4384
...
@@ -53,7 +53,7 @@ class TestGRUUnitOp(OpTest):
...
@@ -53,7 +53,7 @@ class TestGRUUnitOp(OpTest):
GRUActivationType
.
relu
:
relu
,
GRUActivationType
.
relu
:
relu
,
}
}
def
set_inputs
(
self
):
def
set_inputs
(
self
,
origin_mode
=
False
):
batch_size
=
self
.
batch_size
batch_size
=
self
.
batch_size
frame_size
=
self
.
frame_size
frame_size
=
self
.
frame_size
self
.
op_type
=
'gru_unit'
self
.
op_type
=
'gru_unit'
...
@@ -68,10 +68,11 @@ class TestGRUUnitOp(OpTest):
...
@@ -68,10 +68,11 @@ class TestGRUUnitOp(OpTest):
}
}
self
.
attrs
=
{
self
.
attrs
=
{
'activation'
:
GRUActivationType
.
tanh
,
'activation'
:
GRUActivationType
.
tanh
,
'gate_activation'
:
GRUActivationType
.
sigmoid
'gate_activation'
:
GRUActivationType
.
sigmoid
,
'origin_mode'
:
origin_mode
}
}
def
set_outputs
(
self
):
def
set_outputs
(
self
,
origin_mode
=
False
):
# GRU calculations
# GRU calculations
batch_size
=
self
.
batch_size
batch_size
=
self
.
batch_size
frame_size
=
self
.
frame_size
frame_size
=
self
.
frame_size
...
@@ -93,7 +94,10 @@ class TestGRUUnitOp(OpTest):
...
@@ -93,7 +94,10 @@ class TestGRUUnitOp(OpTest):
c
=
self
.
activate
[
self
.
attrs
[
'activation'
]](
np
.
dot
(
r_h_p
,
w_c
)
+
c
=
self
.
activate
[
self
.
attrs
[
'activation'
]](
np
.
dot
(
r_h_p
,
w_c
)
+
g
[:,
frame_size
*
2
:])
g
[:,
frame_size
*
2
:])
g
=
np
.
hstack
((
u_r
,
c
))
g
=
np
.
hstack
((
u_r
,
c
))
h
=
u
*
c
+
(
1
-
u
)
*
h_p
if
origin_mode
:
h
=
(
1
-
u
)
*
c
+
u
*
h_p
else
:
h
=
u
*
c
+
(
1
-
u
)
*
h_p
self
.
outputs
=
{
self
.
outputs
=
{
'Gate'
:
g
.
astype
(
'float64'
),
'Gate'
:
g
.
astype
(
'float64'
),
'ResetHiddenPrev'
:
r_h_p
.
astype
(
'float64'
),
'ResetHiddenPrev'
:
r_h_p
.
astype
(
'float64'
),
...
@@ -111,8 +115,14 @@ class TestGRUUnitOp(OpTest):
...
@@ -111,8 +115,14 @@ class TestGRUUnitOp(OpTest):
self
.
check_grad
([
'Input'
,
'HiddenPrev'
,
'Weight'
],
[
'Hidden'
])
self
.
check_grad
([
'Input'
,
'HiddenPrev'
,
'Weight'
],
[
'Hidden'
])
class
TestGRUUnitOpOriginMode
(
TestGRUUnitOp
):
def
setUp
(
self
):
self
.
set_inputs
(
origin_mode
=
True
)
self
.
set_outputs
(
origin_mode
=
True
)
class
TestGRUUnitOpWithBias
(
TestGRUUnitOp
):
class
TestGRUUnitOpWithBias
(
TestGRUUnitOp
):
def
set_inputs
(
self
):
def
set_inputs
(
self
,
origin_mode
=
False
):
batch_size
=
self
.
batch_size
batch_size
=
self
.
batch_size
frame_size
=
self
.
frame_size
frame_size
=
self
.
frame_size
super
(
TestGRUUnitOpWithBias
,
self
).
set_inputs
()
super
(
TestGRUUnitOpWithBias
,
self
).
set_inputs
()
...
@@ -120,7 +130,8 @@ class TestGRUUnitOpWithBias(TestGRUUnitOp):
...
@@ -120,7 +130,8 @@ class TestGRUUnitOpWithBias(TestGRUUnitOp):
-
0.1
,
0.1
,
(
1
,
frame_size
*
3
)).
astype
(
'float64'
)
-
0.1
,
0.1
,
(
1
,
frame_size
*
3
)).
astype
(
'float64'
)
self
.
attrs
=
{
self
.
attrs
=
{
'activation'
:
GRUActivationType
.
identity
,
'activation'
:
GRUActivationType
.
identity
,
'gate_activation'
:
GRUActivationType
.
sigmoid
'gate_activation'
:
GRUActivationType
.
sigmoid
,
'origin_mode'
:
origin_mode
}
}
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
...
@@ -132,5 +143,11 @@ class TestGRUUnitOpWithBias(TestGRUUnitOp):
...
@@ -132,5 +143,11 @@ class TestGRUUnitOpWithBias(TestGRUUnitOp):
no_grad_set
=
set
(
'Input'
))
no_grad_set
=
set
(
'Input'
))
class
TestGRUUnitOpWithBiasOriginMode
(
TestGRUUnitOpWithBias
):
def
setUp
(
self
):
self
.
set_inputs
(
origin_mode
=
True
)
self
.
set_outputs
(
origin_mode
=
True
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录