未验证 提交 ad6c3b92 编写于 作者: S shangliang Xu 提交者: GitHub

[dev] fix dice_loss bug (#34757)

* fix dice_loss bug
上级 e84b2e9b
......@@ -7105,11 +7105,11 @@ def dice_loss(input, label, epsilon=0.00001, name=None):
Parameters:
input (Tensor): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_D]`, where :math:`N_1` is
the batch_size, :math:`N_D` is 1. It is usually the output predictions of sigmoid activation.
The data type can be float32 or float64.
label (Tensor): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_D]`.
where :math:`N_1` is the batch_size, :math:`N_D` is 1. The data type can be float32 or float64.
input (Tensor): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_k, D]`, where :math:`N_1` is
the batch_size, :math:`D` is the number of categories. It is usually the output
predictions of sigmoid activation. The data type can be float32 or float64.
label (Tensor): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_k, 1]`.
where :math:`N_1` is the batch_size. The data type can be int32 or int64.
epsilon (float): The epsilon will be added to the numerator and denominator.
If both input and label are empty, it makes sure dice is 1.
Default: 0.00001
......@@ -7131,6 +7131,21 @@ def dice_loss(input, label, epsilon=0.00001, name=None):
predictions = F.softmax(x)
loss = F.dice_loss(input=predictions, label=label)
"""
assert input.dtype in (paddle.float32, paddle.float64)
assert label.dtype in (paddle.int32, paddle.int64)
assert len(input.shape) >= 2, \
"The rank of input should be greater than or equal to 2."
assert len(input.shape) == len(label.shape), (
"The rank of input and label should be equal, "
"but received input: %d, label: %d." %
(len(input.shape), len(label.shape)))
assert label.shape[-1] == 1, ("The last dimension of label should be 1, "
"but received %d." % label.shape[-1])
assert input.shape[:-1] == label.shape[:-1], (
"All dimensions should be equal except the last one.")
assert input.numel() > 0 and label.numel() > 0, \
"Any dimension of input and label cannot be equal to 0."
label = one_hot(label, depth=input.shape[-1])
reduce_dim = list(range(1, len(input.shape)))
inse = reduce_sum(input * label, dim=reduce_dim)
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid.layers.nn as nn
num_classes = 4
eps = 1e-6
class TestDiceLossValue(unittest.TestCase):
def test_dice_loss(self):
input_ = paddle.rand([2, 3, num_classes])
label_ = paddle.randint(0, num_classes, [2, 3, 1], dtype=paddle.int64)
input_np, label_np = input_.numpy(), label_.numpy()
eye_np = np.eye(num_classes)
label_np = np.float32(eye_np[np.squeeze(label_np)])
input_np = np.reshape(input_np, [2, -1])
label_np = np.reshape(label_np, [2, -1])
intersection_np = np.sum(input_np * label_np, axis=-1)
union_np = input_np.sum(-1) + label_np.sum(-1)
dice_np = np.mean(1 - 2 * intersection_np / (union_np + eps))
dice_paddle = nn.dice_loss(input_, label_, eps)
self.assertTrue(np.isclose(dice_np, dice_paddle.numpy()).all())
class TestDiceLossInvalidInput(unittest.TestCase):
def test_error(self):
def test_invalid_dtype():
input_ = paddle.rand([2, 3, num_classes], dtype=paddle.float32)
label_ = paddle.randint(
0, num_classes, [2, 3, 1], dtype=paddle.int64)
nn.dice_loss(input_, label_.astype(paddle.float32))
self.assertRaises(AssertionError, test_invalid_dtype)
def test_zero_shape_input():
input_ = paddle.rand([0, 3, num_classes], dtype=paddle.float32)
label_ = paddle.randint(
0, num_classes, [0, 3, 1], dtype=paddle.int64)
nn.dice_loss(input_, label_)
self.assertRaises(AssertionError, test_zero_shape_input)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册