Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ad41fce8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2310
Star
20933
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ad41fce8
编写于
12月 07, 2022
作者:
S
Sławomir Siwek
提交者:
GitHub
12月 07, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[PHI] Migrate squeeze and squeeze_grad kernels (#48634)
* squeeze kernel * squeze fwd * whitespace
上级
4aad4dc5
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
147 addition
and
36 deletion
+147
-36
paddle/fluid/operators/mkldnn/reshape_mkldnn_op.cc
paddle/fluid/operators/mkldnn/reshape_mkldnn_op.cc
+3
-36
paddle/phi/kernels/onednn/squeeze_grad_kernel.cc
paddle/phi/kernels/onednn/squeeze_grad_kernel.cc
+59
-0
paddle/phi/kernels/onednn/squeeze_kernel.cc
paddle/phi/kernels/onednn/squeeze_kernel.cc
+85
-0
未找到文件。
paddle/fluid/operators/mkldnn/reshape_mkldnn_op.cc
浏览文件 @
ad41fce8
...
...
@@ -21,7 +21,6 @@ enum class ReshapeKernelOpName {
reshape
,
reshape2
,
squeeze
,
squeeze2
,
flatten
,
flatten2
,
};
...
...
@@ -106,9 +105,6 @@ class ReshapeMKLDNNKernel : public framework::OpKernel<T> {
case
ReshapeKernelOpName
::
squeeze
:
InferShapeSqueezeOp
(
ctx
,
x_dims
,
out_dims
);
break
;
case
ReshapeKernelOpName
::
squeeze2
:
InferShapeSqueeze2Op
(
ctx
,
x_dims
,
out_dims
);
break
;
case
ReshapeKernelOpName
::
flatten
:
InferShapeFlattenOp
(
ctx
,
x_dims
,
out_dims
);
break
;
...
...
@@ -172,16 +168,6 @@ class ReshapeMKLDNNKernel : public framework::OpKernel<T> {
out_dims
=
GetOutputShape
(
axes
,
x_dims
,
true
);
}
void
InferShapeSqueeze2Op
(
const
framework
::
ExecutionContext
&
ctx
,
framework
::
DDim
&
x_dims
,
// NOLINT
framework
::
DDim
&
out_dims
)
const
{
// NOLINT
auto
*
out
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"Out"
);
auto
*
xshape
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"XShape"
);
auto
xshape_dims
=
xshape
->
dims
();
x_dims
=
phi
::
slice_ddim
(
xshape_dims
,
1
,
xshape_dims
.
size
());
out_dims
=
out
->
dims
();
}
void
InferShapeFlattenOp
(
const
framework
::
ExecutionContext
&
ctx
,
framework
::
DDim
&
x_dims
,
// NOLINT
framework
::
DDim
&
out_dims
)
const
{
// NOLINT
...
...
@@ -342,19 +328,16 @@ class ReshapeGradMKLDNNKernel : public ReshapeMKLDNNKernel<T, op_name> {
InferShapeReshapeSqueezeGradOp
(
ctx
,
x_dims
);
break
;
case
ReshapeKernelOpName
::
reshape2
:
InferShapeReshape2
Squeeze2
Flatten2GradOp
(
ctx
,
x_dims
);
InferShapeReshape2Flatten2GradOp
(
ctx
,
x_dims
);
break
;
case
ReshapeKernelOpName
::
squeeze
:
InferShapeReshapeSqueezeGradOp
(
ctx
,
x_dims
);
break
;
case
ReshapeKernelOpName
::
squeeze2
:
InferShapeReshape2Squeeze2Flatten2GradOp
(
ctx
,
x_dims
);
break
;
case
ReshapeKernelOpName
::
flatten
:
InferShapeFlattenGradOp
(
ctx
,
x_dims
);
break
;
case
ReshapeKernelOpName
::
flatten2
:
InferShapeReshape2
Squeeze2
Flatten2GradOp
(
ctx
,
x_dims
);
InferShapeReshape2Flatten2GradOp
(
ctx
,
x_dims
);
break
;
default:
PADDLE_THROW
(
paddle
::
platform
::
errors
::
OutOfRange
(
...
...
@@ -369,7 +352,7 @@ class ReshapeGradMKLDNNKernel : public ReshapeMKLDNNKernel<T, op_name> {
dx_dims
=
dx
->
dims
();
}
void
InferShapeReshape2
Squeeze2
Flatten2GradOp
(
void
InferShapeReshape2Flatten2GradOp
(
const
framework
::
ExecutionContext
&
ctx
,
framework
::
DDim
&
dx_dims
)
const
{
// NOLINT
auto
xshape_dims
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"XShape"
)
->
dims
();
...
...
@@ -401,22 +384,6 @@ REGISTER_OP_KERNEL(
ops
::
ReshapeGradMKLDNNKernel
<
paddle
::
platform
::
bfloat16
,
ReshapeKernelOpName
::
squeeze
>
);
REGISTER_OP_KERNEL
(
squeeze2
,
MKLDNN
,
paddle
::
platform
::
CPUPlace
,
ops
::
ReshapeMKLDNNKernel
<
float
,
ReshapeKernelOpName
::
squeeze2
>
,
ops
::
ReshapeMKLDNNKernel
<
paddle
::
platform
::
bfloat16
,
ReshapeKernelOpName
::
squeeze2
>
);
REGISTER_OP_KERNEL
(
squeeze2_grad
,
MKLDNN
,
paddle
::
platform
::
CPUPlace
,
ops
::
ReshapeGradMKLDNNKernel
<
float
,
ReshapeKernelOpName
::
squeeze2
>
,
ops
::
ReshapeGradMKLDNNKernel
<
paddle
::
platform
::
bfloat16
,
ReshapeKernelOpName
::
squeeze2
>
);
REGISTER_OP_KERNEL
(
reshape
,
MKLDNN
,
...
...
paddle/phi/kernels/onednn/squeeze_grad_kernel.cc
0 → 100644
浏览文件 @
ad41fce8
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/squeeze_grad_kernel.h"
#include "paddle/phi/backends/onednn/onednn_reuse.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
SqueezeGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
xshape
,
const
DenseTensor
&
dout
,
const
IntArray
&
axes
,
DenseTensor
*
dx
)
{
auto
dout_vec_dims
=
vectorize
(
dout
.
dims
());
auto
dout_type
=
funcs
::
ToOneDNNDataType
(
dout
.
dtype
());
funcs
::
ReorderOneDNNHandler
reorder_handler
(
dout_vec_dims
,
dout
.
dtype
(),
dout_type
,
dev_ctx
.
GetEngine
());
auto
reorder_src_memory_p
=
reorder_handler
.
AcquireSrcMemory
(
dout
.
mem_desc
(),
funcs
::
to_void_cast
(
dout
.
data
<
T
>
()));
auto
reorder_dst_memory_p
=
reorder_handler
.
AcquireDstMemory
(
dx
,
funcs
::
GetPlainOneDNNFormat
(
dout_vec_dims
.
size
()),
dev_ctx
.
GetPlace
());
auto
reorder_p
=
reorder_handler
.
AcquireReorder
(
reorder_dst_memory_p
,
reorder_src_memory_p
);
auto
&
astream
=
OneDNNContext
::
tls
().
get_stream
();
reorder_p
->
execute
(
astream
,
*
reorder_src_memory_p
,
*
reorder_dst_memory_p
);
astream
.
wait
();
auto
dx_dims
=
slice_ddim
(
xshape
.
dims
(),
1
,
xshape
.
dims
().
size
());
dx
->
Resize
(
dx_dims
);
reorder_dst_memory_p
->
get_desc
().
reshape
(
vectorize
(
dx_dims
));
}
}
// namespace phi
PD_REGISTER_KERNEL
(
squeeze_grad
,
OneDNN
,
ONEDNN
,
phi
::
SqueezeGradKernel
,
float
,
phi
::
dtype
::
bfloat16
)
{}
paddle/phi/kernels/onednn/squeeze_kernel.cc
0 → 100644
浏览文件 @
ad41fce8
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/squeeze_kernel.h"
#include "paddle/phi/backends/onednn/onednn_reuse.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/unsqueeze.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ExecuteSqueeze
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DDim
&
x_dims
,
const
DDim
&
out_dims
,
DenseTensor
*
out
)
{
auto
x_vec_dims
=
vectorize
(
x_dims
);
funcs
::
ReorderOneDNNHandler
reorder_handler
(
x_vec_dims
,
x
.
dtype
(),
funcs
::
ToOneDNNDataType
(
x
.
dtype
()),
dev_ctx
.
GetEngine
());
auto
reorder_src_memory_p
=
reorder_handler
.
AcquireSrcMemory
(
x
.
mem_desc
(),
funcs
::
to_void_cast
(
x
.
data
<
T
>
()));
out
->
Resize
(
x_dims
);
// to match x numel, format is changed later
// reorder is done into a plain tag to allow usage with blocked formats
auto
reorder_dst_memory_p
=
reorder_handler
.
AcquireDstMemory
(
out
,
funcs
::
GetPlainOneDNNFormat
(
x_dims
.
size
()),
dev_ctx
.
GetPlace
());
auto
reorder_p
=
reorder_handler
.
AcquireReorder
(
reorder_dst_memory_p
,
reorder_src_memory_p
);
auto
&
astream
=
OneDNNContext
::
tls
().
get_stream
();
reorder_p
->
execute
(
astream
,
*
reorder_src_memory_p
,
*
reorder_dst_memory_p
);
astream
.
wait
();
out
->
Resize
(
out_dims
);
out
->
set_mem_desc
(
reorder_dst_memory_p
->
get_desc
().
reshape
(
vectorize
(
out_dims
)));
}
template
<
typename
T
,
typename
Context
>
void
SqueezeKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
IntArray
&
axes
,
DenseTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
std
::
vector
<
int32_t
>
tmp
(
axes
.
GetData
().
begin
(),
axes
.
GetData
().
end
());
auto
out_dims
=
funcs
::
GetOutputSqueezeShape
(
tmp
,
x_dims
,
true
);
ExecuteSqueeze
<
T
,
Context
>
(
dev_ctx
,
x
,
x_dims
,
out_dims
,
out
);
}
template
<
typename
T
,
typename
Context
>
void
SqueezeWithXShapeKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
IntArray
&
axes
,
DenseTensor
*
out
,
DenseTensor
*
xshape
)
{
auto
x_dims
=
slice_ddim
(
xshape
->
dims
(),
1
,
xshape
->
dims
().
size
());
auto
out_dims
=
out
->
dims
();
ExecuteSqueeze
<
T
,
Context
>
(
dev_ctx
,
x
,
x_dims
,
out_dims
,
out
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
squeeze
,
OneDNN
,
ONEDNN
,
phi
::
SqueezeKernel
,
float
,
phi
::
dtype
::
bfloat16
)
{}
PD_REGISTER_KERNEL
(
squeeze_with_xshape
,
OneDNN
,
ONEDNN
,
phi
::
SqueezeWithXShapeKernel
,
float
,
phi
::
dtype
::
bfloat16
)
{}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录