Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
acb90787
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
acb90787
编写于
1月 30, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine unit test
上级
263e0197
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
59 addition
and
59 deletion
+59
-59
python/paddle/v2/fluid/tests/test_layer_norm_op.py
python/paddle/v2/fluid/tests/test_layer_norm_op.py
+59
-59
未找到文件。
python/paddle/v2/fluid/tests/test_layer_norm_op.py
浏览文件 @
acb90787
...
@@ -21,29 +21,19 @@ from paddle.v2.fluid.op import Operator
...
@@ -21,29 +21,19 @@ from paddle.v2.fluid.op import Operator
from
paddle.v2.fluid.framework
import
grad_var_name
from
paddle.v2.fluid.framework
import
grad_var_name
def
get_backward_op
(
scope
,
op
,
no_grad_set
):
backward_op
=
core
.
Operator
.
backward
(
op
,
no_grad_set
)
for
input
in
backward_op
.
input_vars
():
var
=
scope
.
var
(
input
)
var
.
get_tensor
()
for
output
in
backward_op
.
output_vars
():
var
=
scope
.
var
(
output
)
var
.
get_tensor
()
return
backward_op
def
_reference_layer_norm_naive
(
x
,
scale
,
beta
,
epsilon
,
begin_norm_axis
=
1
):
def
_reference_layer_norm_naive
(
x
,
scale
,
beta
,
epsilon
,
begin_norm_axis
=
1
):
old
_shape
=
x
.
shape
x
_shape
=
x
.
shape
N
=
reduce
(
mul
,
old
_shape
[
0
:
begin_norm_axis
],
1
)
N
=
reduce
(
mul
,
x
_shape
[
0
:
begin_norm_axis
],
1
)
D
=
reduce
(
mul
,
old_shape
[
begin_norm_axis
:
len
(
old
_shape
)],
1
)
D
=
reduce
(
mul
,
x_shape
[
begin_norm_axis
:
len
(
x
_shape
)],
1
)
x
.
shape
=
[
N
,
D
]
x
.
shape
=
[
N
,
D
]
mean
=
np
.
mean
(
x
,
axis
=
1
)
mean
=
np
.
mean
(
x
,
axis
=
1
)
var
=
np
.
var
(
x
,
axis
=
1
)
+
epsilon
var
=
np
.
var
(
x
,
axis
=
1
)
+
epsilon
output
=
scale
.
reshape
([
1
,
D
])
*
np
.
divide
(
output
=
scale
.
reshape
([
1
,
D
])
*
np
.
divide
(
(
x
-
mean
.
reshape
([
N
,
1
])),
(
x
-
mean
.
reshape
([
N
,
1
])),
(
np
.
sqrt
(
var
)).
reshape
([
N
,
1
]))
+
beta
.
reshape
([
1
,
D
])
(
np
.
sqrt
(
var
)).
reshape
([
N
,
1
]))
+
beta
.
reshape
([
1
,
D
])
output
.
shape
=
old_shape
x
.
shape
=
old
_shape
x
.
shape
,
output
.
shape
=
x_shape
,
x
_shape
return
output
,
mean
,
var
return
output
,
mean
,
var
...
@@ -52,27 +42,25 @@ def _reference_layer_norm_grad(x, grad_y, scale, mean, var, begin_norm_axis=1):
...
@@ -52,27 +42,25 @@ def _reference_layer_norm_grad(x, grad_y, scale, mean, var, begin_norm_axis=1):
scale_shape
=
scale
.
shape
scale_shape
=
scale
.
shape
N
=
reduce
(
mul
,
x_shape
[
0
:
begin_norm_axis
],
1
)
N
=
reduce
(
mul
,
x_shape
[
0
:
begin_norm_axis
],
1
)
D
=
reduce
(
mul
,
x_shape
[
begin_norm_axis
:
len
(
x_shape
)],
1
)
D
=
reduce
(
mul
,
x_shape
[
begin_norm_axis
:
len
(
x_shape
)],
1
)
grad_y
.
shape
=
[
N
,
D
]
x
.
shape
,
grad_y
.
shape
=
[
N
,
D
],
[
N
,
D
]
x
.
shape
=
[
N
,
D
]
var
.
shape
,
mean
.
shape
=
[
N
,
1
],
[
N
,
1
]
mean
.
shape
=
[
N
,
1
]
var
.
shape
=
[
N
,
1
]
scale
.
shape
=
[
1
,
D
]
scale
.
shape
=
[
1
,
D
]
# d_bias
d_bias
=
np
.
sum
(
grad_y
,
axis
=
0
).
reshape
([
1
,
D
])
d_bias
=
np
.
sum
(
grad_y
,
axis
=
0
).
reshape
([
1
,
D
])
# d_scale
d_scale
=
np
.
sum
(((
x
-
mean
)
*
np
.
sqrt
(
1
/
var
))
*
grad_y
,
d_scale
=
np
.
sum
(((
x
-
mean
)
*
np
.
sqrt
(
1
/
var
))
*
grad_y
,
axis
=
0
).
reshape
([
1
,
D
])
axis
=
0
).
reshape
([
1
,
D
])
# dx
dx_end
=
scale
*
np
.
sqrt
(
1.0
/
var
)
*
grad_y
dx_end
=
scale
*
np
.
sqrt
(
1.0
/
var
)
*
grad_y
d_mean_0
=
np
.
sum
(
-
np
.
sqrt
(
1.0
/
var
)
*
grad_y
*
scale
,
axis
=
1
).
reshape
(
d_mean_0
=
np
.
sum
(
-
np
.
sqrt
(
1.0
/
var
)
*
grad_y
*
scale
,
axis
=
1
).
reshape
(
[
N
,
1
])
[
N
,
1
])
# d_mean_1 = np.sum(-1.0 / var * (x - mean) * grad_y, axis=1).reshape(
# d_mean_1 = np.sum(-1.0 / var * (x - mean) * grad_y, axis=1).reshape(
# [N, 1]) * (-1.0 / D * np.sqrt(1.0 / var) *
# [N, 1]) * (-1.0 / D * np.sqrt(1.0 / var) *
# np.sum(x - mean, axis=1).reshape([N, 1])).reshape([N, 1])
# np.sum(x - mean, axis=1).reshape([N, 1])).reshape([N, 1])
d_mean
=
1.0
/
D
*
d_mean_0
d_mean
=
1.0
/
D
*
d_mean_0
d_std
=
np
.
sum
(
d_std
=
np
.
sum
(
-
1.0
/
var
*
(
x
-
mean
)
*
grad_y
*
scale
,
axis
=
1
).
reshape
([
N
,
1
])
*
(
-
(
1.0
/
var
)
*
(
x
-
mean
)
*
grad_y
*
scale
,
axis
=
1
).
reshape
([
N
,
1
])
*
(
1.0
/
D
*
np
.
sqrt
(
1.0
/
var
).
reshape
([
N
,
1
])
*
(
x
-
mean
))
1.0
/
D
*
np
.
sqrt
(
1.0
/
var
).
reshape
([
N
,
1
])
*
(
x
-
mean
))
grad_x
=
dx_end
+
d_mean
+
d_std
grad_x
=
dx_end
+
d_mean
+
d_std
...
@@ -83,6 +71,17 @@ def _reference_layer_norm_grad(x, grad_y, scale, mean, var, begin_norm_axis=1):
...
@@ -83,6 +71,17 @@ def _reference_layer_norm_grad(x, grad_y, scale, mean, var, begin_norm_axis=1):
return
grad_x
,
d_scale
,
d_bias
return
grad_x
,
d_scale
,
d_bias
def
get_backward_op
(
scope
,
op
,
no_grad_set
):
backward_op
=
core
.
Operator
.
backward
(
op
,
no_grad_set
)
for
input
in
backward_op
.
input_vars
():
var
=
scope
.
var
(
input
)
var
.
get_tensor
()
for
output
in
backward_op
.
output_vars
():
var
=
scope
.
var
(
output
)
var
.
get_tensor
()
return
backward_op
def
create_or_get_tensor
(
scope
,
var_name
,
var
,
place
):
def
create_or_get_tensor
(
scope
,
var_name
,
var
,
place
):
tensor
=
scope
.
var
(
var_name
).
get_tensor
()
tensor
=
scope
.
var
(
var_name
).
get_tensor
()
if
var
is
not
None
:
if
var
is
not
None
:
...
@@ -145,8 +144,9 @@ class TestLayerNormdOp(OpTest):
...
@@ -145,8 +144,9 @@ class TestLayerNormdOp(OpTest):
self
.
assertLessEqual
(
max_diff
,
max_relative_error
,
err_msg
())
self
.
assertLessEqual
(
max_diff
,
max_relative_error
,
err_msg
())
def
test_forward_backward
(
self
):
def
check_forward_backward
(
self
,
shape
,
begin_norm_axis
):
def
test_with_place
(
place
,
shape
,
begin_norm_axis
=
1
):
def
test_with_place
(
place
,
shape
,
begin_norm_axis
=
1
):
# setUp
assert
begin_norm_axis
>
0
and
begin_norm_axis
<
len
(
assert
begin_norm_axis
>
0
and
begin_norm_axis
<
len
(
shape
),
'begin_norm_axis must be between 0 and len(shape)-1.'
shape
),
'begin_norm_axis must be between 0 and len(shape)-1.'
# attr
# attr
...
@@ -158,30 +158,35 @@ class TestLayerNormdOp(OpTest):
...
@@ -158,30 +158,35 @@ class TestLayerNormdOp(OpTest):
x_val
=
np
.
random
.
random_sample
(
x_shape
).
astype
(
np
.
float32
)
x_val
=
np
.
random
.
random_sample
(
x_shape
).
astype
(
np
.
float32
)
scale_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
scale_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
bias_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
bias_val
=
np
.
random
.
random_sample
(
scale_shape
).
astype
(
np
.
float32
)
y_grad
=
np
.
random
.
random_sample
(
x_shape
).
astype
(
np
.
float32
)
# run forward
# run forward
y_out
,
saved_mean
,
var_ref
=
_reference_layer_norm_naive
(
y_out
,
saved_mean
,
var_ref
=
_reference_layer_norm_naive
(
x_val
,
scale_val
,
bias_val
,
epsilon
,
begin_norm_axis
)
x_val
,
scale_val
,
bias_val
,
epsilon
,
begin_norm_axis
)
naive_fw
=
{
"Y"
:
y_out
,
"Mean"
:
saved_mean
,
"Variance"
:
var_ref
}
# for gradient test
# get gradient
y_grad
=
np
.
random
.
random_sample
(
x_shape
).
astype
(
np
.
float32
)
x_grad_ref
,
scale_grad_ref
,
bias_grad_ref
=
_reference_layer_norm_grad
(
x_grad_ref
,
scale_grad_ref
,
bias_grad_ref
=
_reference_layer_norm_grad
(
x_val
,
y_grad
,
scale_val
,
saved_mean
,
var_ref
,
begin_norm_axis
)
x_val
,
y_grad
,
scale_val
,
saved_mean
,
var_ref
,
begin_norm_axis
)
naive_grad
=
{
"X"
:
x_grad_ref
,
"Scale"
:
scale_grad_ref
,
"Bias"
:
bias_grad_ref
}
scope
=
core
.
Scope
()
scope
=
core
.
Scope
()
# create input
# create input
x_tensor
=
create_or_get_tensor
(
scope
,
"X"
,
x_val
,
place
)
input_map
=
{
"X"
:
x_val
,
"Scale"
:
scale_val
,
"Bias"
:
bias_val
}
scale_tensor
=
create_or_get_tensor
(
scope
,
"Scale"
,
scale_val
,
for
i_name
in
input_map
:
place
)
create_or_get_tensor
(
scope
,
i_name
,
input_map
[
i_name
],
place
)
bias_tensor
=
create_or_get_tensor
(
scope
,
"Bias"
,
bias_val
,
place
)
# create output
# create output
y_tensor
=
create_or_get_tensor
(
scope
,
"Y"
,
None
,
place
)
output_map
=
{
"Y"
:
None
,
"Mean"
:
None
,
"Variance"
:
None
}
mean_tensor
=
create_or_get_tensor
(
scope
,
"Mean"
,
None
,
place
)
output_tensor
=
{}
variance_tensor
=
create_or_get_tensor
(
scope
,
"Variance"
,
None
,
for
o_name
in
output_map
:
place
)
output_tensor
[
o_name
]
=
create_or_get_tensor
(
scope
,
o_name
,
output_map
[
o_name
],
place
)
layer_norm_op
=
Operator
(
layer_norm_op
=
Operator
(
"layer_norm"
,
"layer_norm"
,
...
@@ -200,13 +205,10 @@ class TestLayerNormdOp(OpTest):
...
@@ -200,13 +205,10 @@ class TestLayerNormdOp(OpTest):
layer_norm_op
.
run
(
scope
,
place
)
layer_norm_op
.
run
(
scope
,
place
)
# check forward result
# check forward result
if
isinstance
(
place
,
core
.
CUDAPlace
):
atol
=
5e-2
if
isinstance
(
place
,
core
.
CUDAPlace
)
else
1e-4
atol
=
5e-2
for
o_tensor
in
output_tensor
:
else
:
self
.
__assert_close
(
output_tensor
[
o_tensor
],
naive_fw
[
o_tensor
],
atol
=
1e-4
o_tensor
,
atol
)
self
.
__assert_close
(
y_tensor
,
y_out
,
"Y"
,
atol
)
self
.
__assert_close
(
mean_tensor
,
saved_mean
,
"Mean"
,
atol
)
self
.
__assert_close
(
variance_tensor
,
var_ref
,
"Variance"
,
atol
)
# run backward
# run backward
layer_norm_op_grad
=
get_backward_op
(
scope
,
layer_norm_op
,
set
())
layer_norm_op_grad
=
get_backward_op
(
scope
,
layer_norm_op
,
set
())
...
@@ -216,30 +218,28 @@ class TestLayerNormdOp(OpTest):
...
@@ -216,30 +218,28 @@ class TestLayerNormdOp(OpTest):
feed_dict
=
{
"Y"
:
y_grad
})
feed_dict
=
{
"Y"
:
y_grad
})
layer_norm_op_grad
.
run
(
scope
,
place
)
layer_norm_op_grad
.
run
(
scope
,
place
)
x_grad_tensor
=
create_or_get_tensor
(
scope
,
# get output
grad_var_name
(
"X"
),
None
,
grad_tensor
=
{}
place
)
for
o_name
in
naive_grad
:
scale_grad_tensor
=
create_or_get_tensor
(
scope
,
grad_tensor
[
o_name
]
=
x_
=
create_or_get_tensor
(
grad_var_name
(
"Scale"
),
scope
,
grad_var_name
(
o_name
),
None
,
place
)
None
,
place
)
bias_grad_tensor
=
create_or_get_tensor
(
scope
,
grad_var_name
(
"Bias"
),
None
,
place
)
# check gradient output
# check gradient output
self
.
__assert_grad_close
(
x_grad_tensor
,
x_grad_ref
,
"x_grad"
,
place
)
for
o_grad
in
naive_grad
:
self
.
__assert_grad_close
(
scale_grad_tensor
,
scale_grad_ref
,
self
.
__assert_grad_close
(
grad_tensor
[
o_grad
],
"scale_grad"
,
place
)
naive_grad
[
o_grad
],
o_grad
+
"@GRAD"
,
self
.
__assert_grad_close
(
bias_grad_tensor
,
bias_grad_ref
,
place
)
"bias_grad"
,
place
)
places
=
[
core
.
CPUPlace
()]
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compile_gpu
()
and
core
.
op_support_gpu
(
"layer_norm"
):
if
core
.
is_compile_gpu
()
and
core
.
op_support_gpu
(
"layer_norm"
):
places
.
append
(
core
.
CUDAPlace
(
0
))
places
.
append
(
core
.
CUDAPlace
(
0
))
for
place
in
places
:
for
place
in
places
:
test_with_place
(
place
,
[
2
,
3
,
4
,
5
],
begin_norm_axis
=
1
)
test_with_place
(
place
,
shape
,
begin_norm_axis
)
test_with_place
(
place
,
[
2
,
3
,
4
,
5
],
begin_norm_axis
=
3
)
def
test_check_forward_backward
(
self
):
self
.
check_forward_backward
(
shape
=
[
2
,
3
,
4
,
5
],
begin_norm_axis
=
1
)
self
.
check_forward_backward
(
shape
=
[
2
,
3
,
4
,
5
],
begin_norm_axis
=
3
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录