Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ac460181
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ac460181
编写于
11月 16, 2017
作者:
P
peterzhang2029
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into add_bn_eq
上级
8a49f7f1
9cf60365
变更
25
隐藏空白更改
内联
并排
Showing
25 changed file
with
380 addition
and
106 deletion
+380
-106
paddle/framework/backward.cc
paddle/framework/backward.cc
+49
-19
paddle/framework/data_type.h
paddle/framework/data_type.h
+2
-0
paddle/framework/ddim.cc
paddle/framework/ddim.cc
+1
-2
paddle/framework/executor.cc
paddle/framework/executor.cc
+1
-0
paddle/framework/op_desc.cc
paddle/framework/op_desc.cc
+23
-1
paddle/framework/op_desc.h
paddle/framework/op_desc.h
+4
-0
paddle/framework/operator.cc
paddle/framework/operator.cc
+0
-13
paddle/framework/scope.cc
paddle/framework/scope.cc
+2
-1
paddle/framework/shape_inference.h
paddle/framework/shape_inference.h
+4
-3
paddle/operators/array_operator.h
paddle/operators/array_operator.h
+1
-0
paddle/operators/bilinear_tensor_product_op.h
paddle/operators/bilinear_tensor_product_op.h
+1
-1
paddle/operators/cos_sim_op.h
paddle/operators/cos_sim_op.h
+1
-1
paddle/operators/detail/safe_ref.h
paddle/operators/detail/safe_ref.h
+31
-0
paddle/operators/fill_constant_batch_size_like_op.cc
paddle/operators/fill_constant_batch_size_like_op.cc
+4
-1
paddle/operators/fill_constant_batch_size_like_op.cu.cc
paddle/operators/fill_constant_batch_size_like_op.cu.cc
+4
-1
paddle/operators/fill_zeros_like_op.cc
paddle/operators/fill_zeros_like_op.cc
+5
-2
paddle/operators/fill_zeros_like_op.cu.cc
paddle/operators/fill_zeros_like_op.cu.cc
+5
-2
paddle/operators/math/math_function.cc
paddle/operators/math/math_function.cc
+2
-0
paddle/operators/math/math_function.cu
paddle/operators/math/math_function.cu
+2
-0
paddle/operators/sum_op.cc
paddle/operators/sum_op.cc
+29
-8
paddle/operators/tensor_array_read_write_op.cc
paddle/operators/tensor_array_read_write_op.cc
+15
-9
paddle/operators/while_op.cc
paddle/operators/while_op.cc
+153
-31
python/paddle/v2/fluid/framework.py
python/paddle/v2/fluid/framework.py
+27
-8
python/paddle/v2/fluid/net_drawer.py
python/paddle/v2/fluid/net_drawer.py
+4
-0
python/paddle/v2/fluid/tests/test_while_op.py
python/paddle/v2/fluid/tests/test_while_op.py
+10
-3
未找到文件。
paddle/framework/backward.cc
浏览文件 @
ac460181
...
...
@@ -270,6 +270,19 @@ static bool AllGradInSet(const std::vector<std::string>& names,
return
false
;
}
}
if
(
VLOG_IS_ON
(
10
))
{
std
::
ostringstream
sout
;
sout
<<
"All input {"
;
for
(
auto
&
name
:
names
)
{
sout
<<
name
<<
","
;
}
sout
<<
"} is in {"
;
for
(
auto
&
name
:
set
)
{
sout
<<
name
<<
","
;
}
sout
<<
"}"
;
VLOG
(
10
)
<<
sout
.
str
();
}
return
true
;
}
...
...
@@ -290,14 +303,12 @@ static void CreateGradVarInBlock(
auto
ops
=
block_desc
->
AllOps
();
for
(
size_t
op_index
=
grad_op_start_index
;
op_index
<
ops
.
size
();
++
op_index
)
{
bool
need_infer_shape
=
false
;
std
::
unordered_set
<
std
::
string
>
new_vars
;
ForEachVarName
(
ops
[
op_index
]
->
Outputs
(),
[
&
](
const
std
::
string
&
grad_var_name
)
{
if
(
block_desc
->
HasVar
(
grad_var_name
))
{
return
false
;
}
need_infer_shape
=
true
;
auto
var
=
block_desc
->
Var
(
grad_var_name
);
new_vars
.
insert
(
var
->
Name
());
auto
it
=
param_name_map
.
find
(
grad_var_name
);
...
...
@@ -311,23 +322,21 @@ static void CreateGradVarInBlock(
grad_record
.
op_idx_
=
static_cast
<
int
>
(
op_index
);
return
false
;
/* not break */
});
if
(
need_infer_shape
)
{
ops
[
op_index
]
->
InferVarType
(
block_desc
);
for
(
auto
&
arg
:
ops
[
op_index
]
->
OutputArgumentNames
())
{
if
(
new_vars
.
find
(
arg
)
==
new_vars
.
end
())
{
continue
;
}
auto
pname
=
FwdName
(
arg
);
auto
*
param
=
block_desc
->
FindVarRecursive
(
pname
);
auto
*
grad
=
block_desc
->
FindVar
(
arg
);
if
(
param
==
nullptr
)
{
grad
->
SetDataType
(
DataType
::
FP32
);
}
else
{
grad
->
SetDataType
(
param
->
GetDataType
());
}
ops
[
op_index
]
->
InferVarType
(
block_desc
);
for
(
auto
&
arg
:
ops
[
op_index
]
->
OutputArgumentNames
())
{
if
(
new_vars
.
find
(
arg
)
==
new_vars
.
end
())
{
continue
;
}
auto
pname
=
FwdName
(
arg
);
auto
*
param
=
block_desc
->
FindVarRecursive
(
pname
);
auto
*
grad
=
block_desc
->
FindVar
(
arg
);
if
(
param
==
nullptr
)
{
grad
->
SetDataType
(
DataType
::
FP32
);
}
else
{
grad
->
SetDataType
(
param
->
GetDataType
());
}
ops
[
op_index
]
->
InferShape
(
*
block_desc
);
}
ops
[
op_index
]
->
InferShape
(
*
block_desc
);
}
}
...
...
@@ -387,6 +396,7 @@ std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
ProgramDescBind
&
program_desc
,
int
block_idx
,
std
::
unordered_set
<
std
::
string
>*
no_grad_vars
,
std
::
unordered_map
<
std
::
string
,
std
::
string
>*
grad_to_var
)
{
VLOG
(
5
)
<<
"MakeBlockBackward"
;
BlockDescBind
*
cur_block
=
program_desc
.
MutableBlock
(
block_idx
);
std
::
vector
<
OpDescBind
*>
op_descs
=
cur_block
->
AllOps
();
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
size_t
>>
dup_out_ops
;
...
...
@@ -394,9 +404,10 @@ std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
std
::
vector
<
std
::
unique_ptr
<
OpDescBind
>>
backward_descs
;
for
(
auto
it
=
op_descs
.
rbegin
();
it
!=
op_descs
.
rend
();
++
it
)
{
VLOG
(
5
)
<<
"Making backward "
<<
(
*
it
)
->
Type
()
<<
" op"
;
std
::
vector
<
std
::
unique_ptr
<
OpDescBind
>>
op_grads
;
if
((
*
it
)
->
Type
()
==
"recurrent"
)
{
if
((
*
it
)
->
Type
()
==
"recurrent"
||
(
*
it
)
->
Type
()
==
"while"
)
{
int
step_block_idx
=
(
*
it
)
->
GetBlockAttr
(
"step_block"
);
BlockDescBind
*
backward_block
=
CreateStepBlock
(
program_desc
,
no_grad_vars
,
grad_to_var
,
step_block_idx
);
...
...
@@ -410,6 +421,15 @@ std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
op_grads
=
MakeOpGrad
(
*
it
,
no_grad_vars
,
grad_to_var
);
}
if
(
VLOG_IS_ON
(
10
))
{
std
::
ostringstream
sout
;
sout
<<
"Made "
;
for
(
auto
&
op_grad
:
op_grads
)
{
sout
<<
op_grad
->
Type
()
<<
" "
;
}
VLOG
(
10
)
<<
sout
.
str
();
}
for
(
const
auto
&
desc
:
op_grads
)
{
for
(
const
std
::
string
&
out_name
:
desc
->
OutputArgumentNames
())
{
if
(
out_name
.
find
(
"@GRAD"
)
==
std
::
string
::
npos
)
{
...
...
@@ -425,6 +445,8 @@ std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
op_grads
.
begin
(),
op_grads
.
end
(),
std
::
back_inserter
(
backward_descs
),
[](
std
::
unique_ptr
<
OpDescBind
>&
ptr
)
{
return
std
::
move
(
ptr
);
});
}
VLOG
(
5
)
<<
"Appending Sums"
;
// Check whether some variables are written more than once
std
::
list
<
std
::
pair
<
size_t
,
std
::
unique_ptr
<
OpDescBind
>>>
pending_sum_ops
;
for
(
const
auto
&
dup
:
dup_out_ops
)
{
...
...
@@ -432,16 +454,22 @@ std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
const
std
::
vector
<
size_t
>
dup_op
=
dup
.
second
;
if
(
out_name
!=
kEmptyVarName
&&
dup_op
.
size
()
>
1
)
{
std
::
vector
<
std
::
string
>
sum_op_inputs
;
std
::
string
next_g_name
=
out_name
;
for
(
size_t
i
=
0
;
i
<
dup_op
.
size
();
++
i
)
{
VLOG
(
10
)
<<
backward_descs
[
dup_op
[
i
]]
->
Type
()
<<
" has "
<<
out_name
<<
" duplicated"
;
std
::
string
new_name
=
out_name
+
"@RENAME@"
+
std
::
to_string
(
i
);
backward_descs
[
dup_op
[
i
]]
->
Rename
(
out_name
,
new_name
);
backward_descs
[
dup_op
[
i
]]
->
RenameOutput
(
out_name
,
new_name
);
backward_descs
[
dup_op
[
i
]]
->
RenameInput
(
out_name
,
next_g_name
);
sum_op_inputs
.
emplace_back
(
new_name
);
next_g_name
=
sum_op_inputs
.
back
();
}
std
::
unique_ptr
<
OpDescBind
>
sum_op
(
new
OpDescBind
(
"sum"
,
{{
"X"
,
sum_op_inputs
}},
{{
"Out"
,
{
out_name
}}},
{}));
pending_sum_ops
.
push_back
({
dup_op
.
back
(),
std
::
move
(
sum_op
)});
}
}
pending_sum_ops
.
sort
(
[](
const
std
::
pair
<
size_t
,
std
::
unique_ptr
<
OpDescBind
>>&
a
,
const
std
::
pair
<
size_t
,
std
::
unique_ptr
<
OpDescBind
>>&
b
)
{
...
...
@@ -452,6 +480,8 @@ std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
std
::
move
(
p
.
second
));
}
VLOG
(
5
)
<<
"MakeBlockBackward Finished"
;
return
backward_descs
;
}
...
...
paddle/framework/data_type.h
浏览文件 @
ac460181
...
...
@@ -29,6 +29,8 @@ inline DataType ToDataType(std::type_index type) {
return
DataType
::
INT32
;
}
else
if
(
typeid
(
int64_t
).
hash_code
()
==
type
.
hash_code
())
{
return
DataType
::
INT64
;
}
else
if
(
typeid
(
bool
).
hash_code
()
==
type
.
hash_code
())
{
return
DataType
::
BOOL
;
}
else
{
PADDLE_THROW
(
"Not supported"
);
}
...
...
paddle/framework/ddim.cc
浏览文件 @
ac460181
...
...
@@ -60,8 +60,7 @@ void make_ddim(DDim& ddim, const int64_t* dims, int n) {
ddim
=
make_dim
<
9
>
(
dims
);
break
;
default:
throw
std
::
invalid_argument
(
"Dynamic dimensions must have between [1, 9] dimensions."
);
PADDLE_THROW
(
"Dynamic dimensions must have between [1, 9] dimensions."
);
}
}
...
...
paddle/framework/executor.cc
浏览文件 @
ac460181
...
...
@@ -120,6 +120,7 @@ void Executor::Run(const ProgramDescBind& pdesc, Scope* scope, int block_id,
for
(
auto
&
op_desc
:
block
.
AllOps
())
{
auto
op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
*
op_desc
);
VLOG
(
10
)
<<
op
->
DebugString
();
op
->
Run
(
*
local_scope
,
*
device
);
}
if
(
create_local_scope
)
{
...
...
paddle/framework/op_desc.cc
浏览文件 @
ac460181
...
...
@@ -235,6 +235,23 @@ void OpDescBind::Rename(const std::string &old_name,
need_update_
=
true
;
}
void
OpDescBind
::
RenameOutput
(
const
std
::
string
&
old_name
,
const
std
::
string
&
new_name
)
{
for
(
auto
&
output
:
outputs_
)
{
std
::
replace
(
output
.
second
.
begin
(),
output
.
second
.
end
(),
old_name
,
new_name
);
}
need_update_
=
true
;
}
void
OpDescBind
::
RenameInput
(
const
std
::
string
&
old_name
,
const
std
::
string
&
new_name
)
{
for
(
auto
&
input
:
inputs_
)
{
std
::
replace
(
input
.
second
.
begin
(),
input
.
second
.
end
(),
old_name
,
new_name
);
}
need_update_
=
true
;
}
struct
SetAttrDescVisitor
:
public
boost
::
static_visitor
<
void
>
{
explicit
SetAttrDescVisitor
(
OpDesc
::
Attr
*
attr
)
:
attr_
(
attr
)
{}
mutable
OpDesc
::
Attr
*
attr_
;
...
...
@@ -448,7 +465,12 @@ const std::vector<std::string> &CompileTimeInferShapeContext::Outputs(
DDim
CompileTimeInferShapeContext
::
GetDim
(
const
std
::
string
&
name
)
const
{
auto
var
=
block_
.
FindVarRecursive
(
name
);
PADDLE_ENFORCE
(
var
!=
nullptr
,
"Cannot find variable %s"
,
name
);
return
framework
::
make_ddim
(
var
->
Shape
());
try
{
return
framework
::
make_ddim
(
var
->
Shape
());
}
catch
(...)
{
VLOG
(
5
)
<<
"GetDim of variable "
<<
name
<<
" error"
;
std
::
rethrow_exception
(
std
::
current_exception
());
}
}
void
CompileTimeInferShapeContext
::
SetDim
(
const
std
::
string
&
name
,
...
...
paddle/framework/op_desc.h
浏览文件 @
ac460181
...
...
@@ -73,6 +73,10 @@ class OpDescBind {
void
Rename
(
const
std
::
string
&
old_name
,
const
std
::
string
&
new_name
);
void
RenameOutput
(
const
std
::
string
&
old_name
,
const
std
::
string
&
new_name
);
void
RenameInput
(
const
std
::
string
&
old_name
,
const
std
::
string
&
new_name
);
// Only be used in C++
const
AttributeMap
&
GetAttrMap
()
const
;
...
...
paddle/framework/operator.cc
浏览文件 @
ac460181
...
...
@@ -403,19 +403,6 @@ class RuntimeInferShapeContext : public InferShapeContext {
void
OperatorWithKernel
::
Run
(
const
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
{
if
(
VLOG_IS_ON
(
1
))
{
auto
inputs
=
this
->
InputVars
();
auto
outputs
=
this
->
OutputVars
(
true
);
std
::
ostringstream
sout
;
sout
<<
"Run operator "
<<
this
->
Type
()
<<
" From ["
;
std
::
ostream_iterator
<
std
::
string
>
out_it
(
sout
,
","
);
std
::
copy
(
inputs
.
begin
(),
inputs
.
end
(),
out_it
);
sout
<<
"] to ["
;
std
::
copy
(
outputs
.
begin
(),
outputs
.
end
(),
out_it
);
sout
<<
"]"
;
VLOG
(
1
)
<<
sout
.
str
();
}
RuntimeInferShapeContext
infer_shape_ctx
(
*
this
,
scope
);
this
->
InferShape
(
&
infer_shape_ctx
);
...
...
paddle/framework/scope.cc
浏览文件 @
ac460181
...
...
@@ -38,11 +38,12 @@ Scope& Scope::NewScope() const {
Variable
*
Scope
::
Var
(
const
std
::
string
&
name
)
{
auto
iter
=
vars_
.
find
(
name
);
if
(
iter
!=
vars_
.
end
())
{
VLOG
(
3
)
<<
"Get existing variable "
<<
name
;
return
iter
->
second
;
}
Variable
*
v
=
new
Variable
();
vars_
[
name
]
=
v
;
VLOG
(
3
)
<<
"Create variable "
<<
name
<<
" on scope"
;
VLOG
(
3
)
<<
"Create variable "
<<
name
;
v
->
name_
=
&
(
vars_
.
find
(
name
)
->
first
);
return
v
;
}
...
...
paddle/framework/shape_inference.h
浏览文件 @
ac460181
...
...
@@ -53,6 +53,10 @@ class InferShapeContext {
virtual
bool
IsRuntime
()
const
=
0
;
// Note: In while op, we need this to be public
void
SetDims
(
const
std
::
vector
<
std
::
string
>
&
names
,
const
std
::
vector
<
framework
::
DDim
>
&
dims
);
protected:
virtual
framework
::
DDim
GetDim
(
const
std
::
string
&
name
)
const
=
0
;
virtual
void
SetDim
(
const
std
::
string
&
name
,
const
framework
::
DDim
&
dim
)
=
0
;
...
...
@@ -60,9 +64,6 @@ class InferShapeContext {
std
::
vector
<
framework
::
DDim
>
GetDims
(
const
std
::
vector
<
std
::
string
>
&
names
)
const
;
void
SetDims
(
const
std
::
vector
<
std
::
string
>
&
names
,
const
std
::
vector
<
framework
::
DDim
>
&
dims
);
std
::
vector
<
VarDesc
::
VarType
>
GetVarTypes
(
const
std
::
vector
<
std
::
string
>
&
names
)
const
;
...
...
paddle/operators/array_operator.h
浏览文件 @
ac460181
...
...
@@ -42,6 +42,7 @@ class ArrayOp : public framework::OperatorBase {
}
else
{
offset
=
static_cast
<
size_t
>
(
*
i_tensor
.
data
<
int64_t
>
());
}
VLOG
(
10
)
<<
" Offset = "
<<
offset
;
return
offset
;
}
};
...
...
paddle/operators/bilinear_tensor_product_op.h
浏览文件 @
ac460181
...
...
@@ -174,7 +174,7 @@ class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
// Caculate the gradient of Input(Bias).
if
(
d_bias
)
{
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
d_bias_mat
=
EigenMatrix
<
T
>::
From
(
*
d_bias
);
auto
d_bias_mat
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_bias
);
d_bias_mat
.
device
(
place
)
=
d_out_mat
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
0
));
}
}
...
...
paddle/operators/cos_sim_op.h
浏览文件 @
ac460181
...
...
@@ -132,7 +132,7 @@ class CosSimGradKernel : public framework::OpKernel<T> {
// compute dy
if
(
out_grad_y
)
{
out_grad_y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dy
=
Eigen
Matrix
<
T
>::
Reshape
(
*
out_grad_y
,
1
);
auto
dy
=
Eigen
Vector
<
T
>::
Flatten
(
*
out_grad_y
);
auto
grad
=
x
/
norm_prod_bcast
-
z_bcast
*
y_bcast
/
y_snorm_bcast
;
dy
.
device
(
place
)
=
(
dz_bcast
*
grad
).
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
}
...
...
paddle/operators/detail/safe_ref.h
0 → 100644
浏览文件 @
ac460181
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
namespace
paddle
{
namespace
operators
{
namespace
detail
{
/**
* Get Reference From Pointer with check. The error message is printf format,
* and passed by `args`
*/
template
<
typename
T
,
typename
...
ARGS
>
inline
T
&
Ref
(
T
*
ptr
,
ARGS
&&
...
args
)
{
PADDLE_ENFORCE
(
ptr
!=
nullptr
,
args
...);
return
*
ptr
;
}
}
// namespace detail
}
// namespace operators
}
// namespace paddle
paddle/operators/fill_constant_batch_size_like_op.cc
浏览文件 @
ac460181
...
...
@@ -101,4 +101,7 @@ REGISTER_OPERATOR(fill_constant_batch_size_like,
REGISTER_OP_CPU_KERNEL
(
fill_constant_batch_size_like
,
ops
::
FillConstantBatchSizeLikeOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
FillConstantBatchSizeLikeOpKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
ops
::
FillConstantBatchSizeLikeOpKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
,
ops
::
FillConstantBatchSizeLikeOpKernel
<
paddle
::
platform
::
CPUPlace
,
int
>
,
ops
::
FillConstantBatchSizeLikeOpKernel
<
paddle
::
platform
::
CPUPlace
,
int64_t
>
);
paddle/operators/fill_constant_batch_size_like_op.cu.cc
浏览文件 @
ac460181
...
...
@@ -19,4 +19,7 @@ namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL
(
fill_constant_batch_size_like
,
ops
::
FillConstantBatchSizeLikeOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
FillConstantBatchSizeLikeOpKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
ops
::
FillConstantBatchSizeLikeOpKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
,
ops
::
FillConstantBatchSizeLikeOpKernel
<
paddle
::
platform
::
GPUPlace
,
int
>
,
ops
::
FillConstantBatchSizeLikeOpKernel
<
paddle
::
platform
::
GPUPlace
,
int64_t
>
);
paddle/operators/fill_zeros_like_op.cc
浏览文件 @
ac460181
...
...
@@ -54,5 +54,8 @@ namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT
(
fill_zeros_like
,
ops
::
FillZerosLikeOp
,
ops
::
FillZerosLikeOpMaker
);
REGISTER_OP_CPU_KERNEL
(
fill_zeros_like
,
ops
::
FillZerosLikeKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
fill_zeros_like
,
ops
::
FillZerosLikeKernel
<
paddle
::
platform
::
CPUPlace
,
int
>
,
ops
::
FillZerosLikeKernel
<
paddle
::
platform
::
CPUPlace
,
int64_t
>
,
ops
::
FillZerosLikeKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
FillZerosLikeKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
,
ops
::
FillZerosLikeKernel
<
paddle
::
platform
::
CPUPlace
,
bool
>
);
paddle/operators/fill_zeros_like_op.cu.cc
浏览文件 @
ac460181
...
...
@@ -17,5 +17,8 @@
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
fill_zeros_like
,
ops
::
FillZerosLikeKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
fill_zeros_like
,
ops
::
FillZerosLikeKernel
<
paddle
::
platform
::
GPUPlace
,
int
>
,
ops
::
FillZerosLikeKernel
<
paddle
::
platform
::
GPUPlace
,
int64_t
>
,
ops
::
FillZerosLikeKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
FillZerosLikeKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
,
ops
::
FillZerosLikeKernel
<
paddle
::
platform
::
GPUPlace
,
bool
>
);
paddle/operators/math/math_function.cc
浏览文件 @
ac460181
...
...
@@ -250,6 +250,8 @@ void axpy<platform::CPUPlace, double>(const platform::DeviceContext& context,
template
struct
SetConstant
<
platform
::
CPUPlace
,
float
>;
template
struct
SetConstant
<
platform
::
CPUPlace
,
double
>;
template
struct
SetConstant
<
platform
::
CPUPlace
,
int
>;
template
struct
SetConstant
<
platform
::
CPUPlace
,
int64_t
>;
template
struct
SetConstant
<
platform
::
CPUPlace
,
bool
>;
#define DEFINE_CPU_TRANS(RANK) \
template struct Transpose<platform::CPUPlace, float, RANK>; \
...
...
paddle/operators/math/math_function.cu
浏览文件 @
ac460181
...
...
@@ -256,6 +256,8 @@ void axpy<platform::GPUPlace, double>(const platform::DeviceContext& context,
template
struct
SetConstant
<
platform
::
GPUPlace
,
float
>;
template
struct
SetConstant
<
platform
::
GPUPlace
,
double
>;
template
struct
SetConstant
<
platform
::
GPUPlace
,
int
>;
template
struct
SetConstant
<
platform
::
GPUPlace
,
int64_t
>;
template
struct
SetConstant
<
platform
::
GPUPlace
,
bool
>;
#define DEFINE_GPU_TRANS(RANK) \
template struct Transpose<platform::GPUPlace, float, RANK>; \
...
...
paddle/operators/sum_op.cc
浏览文件 @
ac460181
...
...
@@ -12,6 +12,7 @@ limitations under the License. */
#include "paddle/operators/sum_op.h"
#include <vector>
#include "paddle/framework/var_type_inference.h"
#include "paddle/operators/detail/safe_ref.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -59,13 +60,16 @@ class SumOp : public framework::OperatorWithKernel {
x_vars
[
0
]
->
Get
<
framework
::
SelectedRows
>
().
value
().
type
()),
ctx
.
device_context
());
}
else
if
(
x_vars
[
0
]
->
IsType
<
framework
::
LoDTensorArray
>
())
{
auto
&
array
=
x_vars
[
0
]
->
Get
<
framework
::
LoDTensorArray
>
();
for
(
auto
&
each
:
array
)
{
if
(
each
.
numel
()
!=
0
)
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
each
.
type
()),
ctx
.
device_context
());
for
(
auto
&
x_var
:
x_vars
)
{
auto
&
array
=
x_var
->
Get
<
framework
::
LoDTensorArray
>
();
for
(
auto
&
each
:
array
)
{
if
(
each
.
numel
()
!=
0
)
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
each
.
type
()),
ctx
.
device_context
());
}
}
}
PADDLE_THROW
(
"Cannot find the input data type by all input data"
);
}
PADDLE_THROW
(
"Unexpected branch. Input type is %s"
,
x_vars
[
0
]
->
Type
().
name
());
...
...
@@ -96,6 +100,11 @@ class SumOpVarTypeInference : public framework::VarTypeInference {
auto
&
inputs
=
op_desc
.
Input
(
"X"
);
auto
var_type
=
framework
::
VarDesc
::
SELECTED_ROWS
;
for
(
auto
&
name
:
op_desc
.
Input
(
"X"
))
{
VLOG
(
10
)
<<
name
<<
" "
<<
block
->
FindRecursiveOrCreateVar
(
name
)
->
GetType
();
}
bool
any_input_is_lod_tensor
=
std
::
any_of
(
inputs
.
begin
(),
inputs
.
end
(),
[
block
](
const
std
::
string
&
name
)
{
return
block
->
FindRecursiveOrCreateVar
(
name
)
->
GetType
()
==
...
...
@@ -103,7 +112,7 @@ class SumOpVarTypeInference : public framework::VarTypeInference {
});
auto
is_tensor_array
=
[
block
](
const
std
::
string
&
name
)
{
return
block
->
FindRecursiveOrCreateVar
(
name
)
->
GetType
()
==
return
detail
::
Ref
(
block
->
FindRecursiveOrCreateVar
(
name
)).
GetType
()
==
framework
::
VarDesc
::
LOD_TENSOR_ARRAY
;
};
...
...
@@ -113,14 +122,26 @@ class SumOpVarTypeInference : public framework::VarTypeInference {
std
::
all_of
(
inputs
.
begin
(),
inputs
.
end
(),
is_tensor_array
);
if
(
any_input_is_tensor_array
)
{
PADDLE_ENFORCE
(
all_inputs_are_tensor_array
);
if
(
!
all_inputs_are_tensor_array
)
{
std
::
ostringstream
os
;
for
(
auto
&
each
:
inputs
)
{
os
<<
" "
<<
each
<<
" type is "
<<
detail
::
Ref
(
block
->
FindRecursiveOrCreateVar
(
each
)).
GetType
()
<<
"
\n
"
;
}
PADDLE_ENFORCE
(
all_inputs_are_tensor_array
,
"Not all inputs are tensor array:
\n
%s"
,
os
.
str
());
}
var_type
=
framework
::
VarDesc
::
LOD_TENSOR_ARRAY
;
}
else
if
(
any_input_is_lod_tensor
)
{
var_type
=
framework
::
VarDesc
::
LOD_TENSOR
;
}
auto
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
block
->
FindRecursiveOrCreateVar
(
out_var_name
)
->
SetType
(
var_type
);
auto
&
out_var
=
detail
::
Ref
(
block
->
FindRecursiveOrCreateVar
(
out_var_name
));
out_var
.
SetType
(
var_type
);
auto
&
in_var
=
detail
::
Ref
(
block
->
FindVarRecursive
(
inputs
.
front
()));
out_var
.
SetDataType
(
in_var
.
GetDataType
());
}
};
...
...
paddle/operators/tensor_array_read_write_op.cc
浏览文件 @
ac460181
...
...
@@ -12,7 +12,7 @@
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/array_operator.h"
#include "paddle/operators/detail/safe_ref.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -33,6 +33,8 @@ class WriteToArrayOp : public ArrayOp {
auto
*
out
=
scope
.
FindVar
(
Output
(
"Out"
))
->
GetMutable
<
framework
::
LoDTensorArray
>
();
if
(
offset
>=
out
->
size
())
{
VLOG
(
10
)
<<
"Resize "
<<
Output
(
"Out"
)
<<
" from "
<<
out
->
size
()
<<
" to "
<<
offset
+
1
;
out
->
resize
(
offset
+
1
);
}
auto
*
out_tensor
=
&
out
->
at
(
offset
);
...
...
@@ -85,11 +87,15 @@ class WriteToArrayInferVarType : public framework::VarTypeInference {
public:
void
operator
()(
const
framework
::
OpDescBind
&
op_desc
,
framework
::
BlockDescBind
*
block
)
const
override
{
for
(
auto
&
out_var
:
op_desc
.
OutputArgumentNames
())
{
VLOG
(
10
)
<<
"Set Variable "
<<
out_var
<<
" as LOD_TENSOR_ARRAY"
;
block
->
FindRecursiveOrCreateVar
(
out_var
)
->
SetType
(
framework
::
VarDesc
::
LOD_TENSOR_ARRAY
);
}
auto
x_name
=
op_desc
.
Input
(
"X"
)[
0
];
auto
out_name
=
op_desc
.
Output
(
"Out"
)[
0
];
VLOG
(
10
)
<<
"Set Variable "
<<
out_name
<<
" as LOD_TENSOR_ARRAY"
;
auto
&
out
=
detail
::
Ref
(
block
->
FindRecursiveOrCreateVar
(
out_name
),
"Cannot found %s"
,
out_name
);
out
.
SetType
(
framework
::
VarDesc
::
LOD_TENSOR_ARRAY
);
auto
&
x
=
detail
::
Ref
(
block
->
FindVarRecursive
(
x_name
),
"Cannot found %s"
,
x_name
);
out
.
SetDataType
(
x
.
GetDataType
());
}
};
...
...
@@ -107,11 +113,11 @@ class ReadFromArrayOp : public ArrayOp {
auto
&
x_array
=
x
->
Get
<
framework
::
LoDTensorArray
>
();
auto
*
out
=
scope
.
FindVar
(
Output
(
"Out"
));
PADDLE_ENFORCE
(
out
!=
nullptr
,
"Out must be set"
);
auto
*
out_te
sn
or
=
out
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
out_te
ns
or
=
out
->
GetMutable
<
framework
::
LoDTensor
>
();
size_t
offset
=
GetOffset
(
scope
,
dev_ctx
);
PADDLE_ENFORCE_LT
(
offset
,
x_array
.
size
());
out_te
sn
or
->
CopyFrom
(
x_array
[
offset
],
dev_ctx
.
GetPlace
(),
dev_ctx
);
out_te
sn
or
->
set_lod
(
x_array
[
offset
].
lod
());
out_te
ns
or
->
CopyFrom
(
x_array
[
offset
],
dev_ctx
.
GetPlace
(),
dev_ctx
);
out_te
ns
or
->
set_lod
(
x_array
[
offset
].
lod
());
}
};
...
...
paddle/operators/while_op.cc
浏览文件 @
ac460181
...
...
@@ -14,8 +14,10 @@
#include <vector>
#include "paddle/framework/executor.h"
#include "paddle/framework/lod_tensor_array.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/operators/detail/safe_ref.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -26,8 +28,9 @@ using LoDTensor = framework::LoDTensor;
constexpr
char
kStepBlock
[]
=
"step_block"
;
constexpr
char
kCondition
[]
=
"Condition"
;
constexpr
char
kStepScopes
[]
=
"StepScopes"
;
constexpr
char
kParamGrads
[]
=
"X@Grad"
;
constexpr
char
kParameters
[]
=
"X"
;
constexpr
char
kParamGrads
[]
=
"X@GRAD"
;
constexpr
char
kOutputs
[]
=
"Out"
;
class
WhileOp
:
public
framework
::
OperatorBase
{
public:
...
...
@@ -71,9 +74,9 @@ class WhileOpMaker : public framework::OpProtoAndCheckerMaker {
kCondition
,
"(Bool) An scalar. When it's False, the While Op will be terminated."
)
.
AsDuplicable
();
AddOutput
(
"Out"
,
AddOutput
(
kOutputs
,
"A set of variables, which will be assigned with values "
"generated by perators inside the block of While Op."
)
"generated by
the o
perators inside the block of While Op."
)
.
AsDuplicable
();
AddOutput
(
kStepScopes
,
"(StepScopeVar) A vector of local scope, which size equals the "
...
...
@@ -104,17 +107,64 @@ class WhileGradOp : public framework::OperatorBase {
auto
*
step_scopes
=
scope
.
FindVar
(
Input
(
kStepScopes
))
->
GetMutable
<
StepScopeVar
>
();
auto
outside_og_names
=
Inputs
(
framework
::
GradVarName
(
kOutputs
));
auto
inside_og_names
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"original_output_grad"
);
PADDLE_ENFORCE_EQ
(
outside_og_names
.
size
(),
inside_og_names
.
size
());
for
(
auto
cur_scope_iter
=
step_scopes
->
rbegin
();
cur_scope_iter
!=
step_scopes
->
rend
();
++
cur_scope_iter
)
{
VLOG
(
3
)
<<
"Start backward at time_step "
<<
cur_scope_iter
-
step_scopes
->
rbegin
();
framework
::
Scope
&
cur_scope
=
**
cur_scope_iter
;
// Link OG from outside to inside
for
(
size_t
i
=
0
;
i
<
outside_og_names
.
size
();
++
i
)
{
auto
outside_og_name
=
outside_og_names
[
i
];
auto
inside_og_name
=
inside_og_names
[
i
];
VLOG
(
10
)
<<
"Linking outside "
<<
outside_og_name
<<
" --> inside "
<<
inside_og_name
;
auto
&
og_outside
=
detail
::
Ref
(
scope
.
FindVar
(
outside_og_name
));
auto
&
og_inside
=
detail
::
Ref
(
cur_scope
.
Var
(
inside_og_name
));
if
(
og_outside
.
Type
().
hash_code
()
==
typeid
(
framework
::
LoDTensor
).
hash_code
())
{
auto
&
outside_tensor
=
og_outside
.
Get
<
framework
::
LoDTensor
>
();
auto
&
inside_tensor
=
detail
::
Ref
(
og_inside
.
GetMutable
<
framework
::
LoDTensor
>
());
inside_tensor
.
set_lod
(
outside_tensor
.
lod
());
inside_tensor
.
ShareDataWith
(
outside_tensor
);
}
else
if
(
og_outside
.
Type
().
hash_code
()
==
typeid
(
framework
::
LoDTensorArray
).
hash_code
())
{
auto
&
outside_array
=
og_outside
.
Get
<
framework
::
LoDTensorArray
>
();
auto
&
inside_array
=
detail
::
Ref
(
og_inside
.
GetMutable
<
framework
::
LoDTensorArray
>
());
VLOG
(
10
)
<<
outside_og_name
<<
" size = "
<<
outside_array
.
size
();
inside_array
.
resize
(
outside_array
.
size
());
for
(
size_t
j
=
0
;
j
<
inside_array
.
size
();
++
j
)
{
VLOG
(
10
)
<<
j
<<
" "
<<
outside_array
[
j
].
numel
();
if
(
outside_array
[
j
].
numel
()
!=
0
)
{
inside_array
[
j
].
set_lod
(
outside_array
[
j
].
lod
());
inside_array
[
j
].
ShareDataWith
(
outside_array
[
j
]);
}
else
{
PADDLE_ENFORCE_EQ
(
inside_array
[
j
].
numel
(),
0
);
}
}
}
}
executor
.
Run
(
*
program
,
*
cur_scope_iter
,
block
->
ID
(),
false
);
auto
&
pg_names
=
Outputs
(
kParamGrads
);
auto
&
p_names
=
Inputs
(
kParameters
);
PADDLE_ENFORCE_EQ
(
pg_names
.
size
(),
p_names
.
size
());
for
(
size_t
prog_id
=
0
;
prog_id
<
pg_names
.
size
();
++
prog_id
)
{
auto
inside_grad_name
=
framework
::
GradVarName
(
p_names
[
prog_id
]);
for
(
size_t
param_id
=
0
;
param_id
<
pg_names
.
size
();
++
param_id
)
{
if
(
pg_names
[
param_id
]
==
framework
::
kEmptyVarName
)
{
continue
;
// iterator doesn't have gradient
}
auto
inside_grad_name
=
framework
::
GradVarName
(
p_names
[
param_id
]);
// // TODO(tonyyang-s
avil
: Not sure we need the following
// // TODO(tonyyang-s
vail)
: Not sure we need the following
// // If does not compute gradient of that variable inside rnn,
// just
// // continue
...
...
@@ -126,7 +176,7 @@ class WhileGradOp : public framework::OperatorBase {
// zero gradient variable in step 0
if
(
cur_scope_iter
==
step_scopes
->
rbegin
())
{
auto
*
var
=
(
*
cur_scope_iter
)
->
FindVar
(
inside_grad_name
);
PADDLE_ENFORCE_NOT_NULL
(
var
);
PADDLE_ENFORCE_NOT_NULL
(
var
,
"Can not find var %s"
,
inside_grad_name
);
if
(
var
->
IsType
<
LoDTensor
>
())
{
auto
&
inside_tensor
=
var
->
Get
<
framework
::
LoDTensor
>
();
framework
::
AttributeMap
attrs
;
...
...
@@ -135,27 +185,18 @@ class WhileGradOp : public framework::OperatorBase {
attrs
[
"value"
]
=
0.0
f
;
auto
zero_op
=
framework
::
OpRegistry
::
CreateOp
(
"fill_constant"
,
{},
{{
"Out"
,
{
pg_names
[
p
rog
_id
]}}},
attrs
);
"fill_constant"
,
{},
{{
"Out"
,
{
pg_names
[
p
aram
_id
]}}},
attrs
);
zero_op
->
Run
(
scope
,
dev_ctx
);
}
}
// sum gradient
auto
*
outside_var
=
scope
.
FindVar
(
pg_names
[
prog_id
]);
PADDLE_ENFORCE_NOT_NULL
(
outside_var
);
auto
&
outside_tensor
=
*
outside_var
->
GetMutable
<
framework
::
LoDTensor
>
();
std
::
string
result_var_name
;
auto
*
local_result_var
=
(
*
cur_scope_iter
)
->
Var
(
&
result_var_name
);
auto
&
local_result_tensor
=
*
local_result_var
->
GetMutable
<
framework
::
LoDTensor
>
();
local_result_tensor
.
ShareDataWith
(
outside_tensor
);
auto
new_inside_name
=
cur_scope
.
Rename
(
inside_grad_name
);
auto
sum_op
=
framework
::
OpRegistry
::
CreateOp
(
"sum"
,
{{
"X"
,
{
result_var_name
,
inside_grad_name
}}},
{{
"Out"
,
{
result_var_name
}}},
{});
sum_op
->
Run
(
**
cur_scope_iter
,
dev_ctx
);
"sum"
,
{{
"X"
,
{
pg_names
[
param_id
],
new_inside_name
}}},
{{
"Out"
,
{
pg_names
[
param_id
]}}},
{});
sum_op
->
Run
(
cur_scope
,
dev_ctx
);
cur_scope
.
Rename
(
new_inside_name
,
inside_grad_name
);
}
}
}
...
...
@@ -169,29 +210,110 @@ class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker {
virtual
std
::
unique_ptr
<
framework
::
OpDescBind
>
Apply
()
const
{
auto
*
grad
=
new
framework
::
OpDescBind
();
grad
->
SetType
(
"while_grad"
);
for
(
auto
&
input_param
:
this
->
InputNames
())
{
grad
->
SetInput
(
input_param
,
this
->
Input
(
input_param
));
grad
->
SetOutput
(
framework
::
GradVarName
(
input_param
),
this
->
InputGrad
(
input_param
));
grad
->
SetInput
(
kParameters
,
Input
(
kParameters
));
grad
->
SetOutput
(
framework
::
GradVarName
(
kParameters
),
InputGrad
(
kParameters
,
/*do not drop empty gradient*/
false
));
grad
->
SetInput
(
kOutputs
,
Output
(
kOutputs
));
// OG should be re-calculated by step blocks, since many outputs of while op
// do not need to calculate gradients.
std
::
unordered_set
<
std
::
string
>
block_ins
;
{
for
(
auto
&
p
:
Input
(
kParameters
))
{
block_ins
.
insert
(
p
);
}
for
(
auto
&
o
:
Output
(
kOutputs
))
{
block_ins
.
insert
(
o
);
}
}
std
::
unordered_set
<
std
::
string
>
extra_inputs
;
for
(
size_t
i
=
0
;
i
<
grad_block_
[
0
]
->
OpSize
();
++
i
)
{
for
(
auto
&
input_name
:
grad_block_
[
0
]
->
Op
(
i
)
->
InputArgumentNames
())
{
if
(
block_ins
.
find
(
input_name
)
!=
block_ins
.
end
())
{
continue
;
}
extra_inputs
.
insert
(
input_name
);
}
for
(
auto
&
output_param
:
this
->
OutputNames
())
{
grad
->
SetInput
(
output_param
,
this
->
Output
(
output_param
));
if
(
output_param
!=
kStepScopes
)
{
grad
->
SetInput
(
framework
::
GradVarName
(
output_param
),
this
->
OutputGrad
(
output_param
));
for
(
auto
&
output_name
:
grad_block_
[
0
]
->
Op
(
i
)
->
OutputArgumentNames
())
{
block_ins
.
insert
(
output_name
);
}
}
std
::
vector
<
std
::
string
>
extra_inputs_list
;
extra_inputs_list
.
resize
(
extra_inputs
.
size
());
std
::
copy
(
extra_inputs
.
begin
(),
extra_inputs
.
end
(),
extra_inputs_list
.
begin
());
grad
->
SetInput
(
framework
::
GradVarName
(
kOutputs
),
extra_inputs_list
);
grad
->
SetInput
(
kStepScopes
,
Output
(
kStepScopes
));
grad
->
SetAttrMap
(
this
->
Attrs
());
grad
->
SetBlockAttr
(
kStepBlock
,
*
grad_block_
[
0
]);
// record the original output gradient names, since the gradient name of
// while operator could be renamed.
grad
->
SetAttr
(
"original_output_grad"
,
extra_inputs_list
);
return
std
::
unique_ptr
<
framework
::
OpDescBind
>
(
grad
);
}
};
class
WhileGradOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDescBind
&
op_desc
,
framework
::
BlockDescBind
*
block
)
const
override
{
auto
p_names
=
op_desc
.
Input
(
kParameters
);
auto
pg_names
=
op_desc
.
Output
(
framework
::
GradVarName
(
kParameters
));
for
(
size_t
i
=
0
;
i
<
p_names
.
size
();
++
i
)
{
auto
&
p_var
=
detail
::
Ref
(
block
->
FindVarRecursive
(
p_names
[
i
]));
auto
*
g_var
=
block
->
FindVarRecursive
(
pg_names
[
i
]);
if
(
g_var
!=
nullptr
)
{
// Gradient could be @EMPTY@
VLOG
(
5
)
<<
"Setting "
<<
pg_names
[
i
]
<<
" following "
<<
p_names
[
i
]
<<
" type: "
<<
p_var
.
GetType
();
g_var
->
SetType
(
p_var
.
GetType
());
g_var
->
SetDataType
(
p_var
.
GetDataType
());
}
}
}
};
class
WhileGradOpShapeInference
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
ctx
->
HasInputs
(
kParameters
);
ctx
->
HasOutputs
(
framework
::
GradVarName
(
kParameters
));
ctx
->
HasInputs
(
kOutputs
);
ctx
->
HasInputs
(
framework
::
GradVarName
(
kOutputs
));
auto
p_names
=
ctx
->
Inputs
(
kParameters
);
auto
pg_names
=
ctx
->
Outputs
(
kParamGrads
);
auto
dims
=
ctx
->
GetInputsDim
(
kParameters
);
auto
var_types
=
ctx
->
GetInputsVarType
(
kParameters
);
std
::
vector
<
std
::
string
>
names_to_set
;
std
::
vector
<
framework
::
DDim
>
dims_to_set
;
for
(
size_t
i
=
0
;
i
<
p_names
.
size
();
++
i
)
{
if
(
pg_names
[
i
]
==
framework
::
kEmptyVarName
)
{
continue
;
}
if
(
var_types
[
i
]
==
framework
::
VarDesc
::
LOD_TENSOR
)
{
names_to_set
.
push_back
(
pg_names
[
i
]);
dims_to_set
.
push_back
(
dims
[
i
]);
}
else
if
(
var_types
[
i
]
==
framework
::
VarDesc
::
LOD_TENSOR_ARRAY
)
{
// not sure how to set the dim of LOD_TENSOR_ARRAY
names_to_set
.
push_back
(
pg_names
[
i
]);
dims_to_set
.
push_back
(
dims
[
i
]);
}
}
ctx
->
SetDims
(
names_to_set
,
dims_to_set
);
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OPERATOR
(
while
,
paddle
::
operators
::
WhileOp
,
paddle
::
operators
::
WhileOpMaker
,
paddle
::
operators
::
WhileGradOpDescMaker
);
REGISTER_OPERATOR
(
while_grad
,
paddle
::
operators
::
WhileGradOp
,
paddle
::
operators
::
WhileGradOpShapeInference
,
paddle
::
operators
::
WhileGradOpVarTypeInference
);
python/paddle/v2/fluid/framework.py
浏览文件 @
ac460181
...
...
@@ -12,9 +12,9 @@ def unique_name(prefix):
return
"_"
.
join
([
prefix
,
str
(
uid
)])
def
_debug_string_
(
proto
):
def
_debug_string_
(
proto
,
throw_on_error
=
True
):
error_fields
=
list
()
if
not
proto
.
IsInitialized
(
error_fields
):
if
not
proto
.
IsInitialized
(
error_fields
)
and
throw_on_error
:
raise
ValueError
(
"{0} are not initialized
\n
The message is {1}"
.
format
(
error_fields
,
proto
))
return
proto
.
__str__
()
...
...
@@ -101,9 +101,12 @@ class Variable(object):
self
.
stop_gradient
=
stop_gradient
def
__str__
(
self
):
return
self
.
to_string
(
True
)
def
to_string
(
self
,
throw_on_error
):
protostr
=
self
.
desc
.
serialize_to_string
()
proto
=
framework_pb2
.
VarDesc
.
FromString
(
str
(
protostr
))
return
_debug_string_
(
proto
)
return
_debug_string_
(
proto
,
throw_on_error
)
__repr__
=
__str__
...
...
@@ -291,10 +294,13 @@ class Operator(object):
self
.
desc
.
infer_var_type
(
self
.
block
.
desc
)
self
.
desc
.
infer_shape
(
self
.
block
.
desc
)
def
__str__
(
self
):
def
to_string
(
self
,
throw_on_error
):
protostr
=
self
.
desc
.
serialize_to_string
()
proto
=
framework_pb2
.
OpDesc
.
FromString
(
str
(
protostr
))
return
_debug_string_
(
proto
)
return
_debug_string_
(
proto
,
throw_on_error
)
def
__str__
(
self
):
return
self
.
to_string
(
True
)
__repr__
=
__str__
...
...
@@ -349,9 +355,12 @@ class Block(object):
self
.
program
=
program
def
__str__
(
self
):
return
self
.
to_string
(
True
)
def
to_string
(
self
,
throw_on_error
):
protostr
=
self
.
desc
.
serialize_to_string
()
proto
=
framework_pb2
.
BlockDesc
.
FromString
(
str
(
protostr
))
return
_debug_string_
(
proto
)
return
_debug_string_
(
proto
,
throw_on_error
)
__repr__
=
__str__
...
...
@@ -454,9 +463,12 @@ class Program(object):
self
.
current_block_idx
=
0
def
__str__
(
self
):
return
self
.
to_string
(
True
)
def
to_string
(
self
,
throw_on_error
):
protostr
=
self
.
desc
.
serialize_to_string
()
proto
=
framework_pb2
.
ProgramDesc
.
FromString
(
str
(
protostr
))
return
_debug_string_
(
proto
)
return
_debug_string_
(
proto
,
throw_on_error
)
def
clone
(
self
):
p
=
Program
()
...
...
@@ -512,7 +524,14 @@ class Program(object):
assert
isinstance
(
target
,
Variable
)
if
no_grad_set
is
None
:
no_grad_set
=
set
()
param_to_grad_info
=
self
.
desc
.
append_backward
(
target
.
desc
,
no_grad_set
)
try
:
param_to_grad_info
=
self
.
desc
.
append_backward
(
target
.
desc
,
no_grad_set
)
except
Exception
as
e
:
raise
core
.
EnforceNotMet
(
str
(
e
)
+
"
\n
Current protobuf is
\n
{0}"
.
format
(
self
.
to_string
(
False
)))
self
.
sync_with_cpp
()
return
param_to_grad_info
...
...
python/paddle/v2/fluid/net_drawer.py
浏览文件 @
ac460181
...
...
@@ -66,10 +66,13 @@ def parse_graph(program, graph, var_dict, **kwargs):
if
not
var_dict
.
has_key
(
var
):
var_dict
[
var
]
=
"Feed"
temp_id
=
0
proto
=
framework_pb2
.
ProgramDesc
.
FromString
(
program
.
desc
.
serialize_to_string
())
for
block
in
proto
.
blocks
:
for
op
in
block
.
ops
:
op
.
type
=
op
.
type
+
"_"
+
str
(
temp_id
)
temp_id
+=
1
graph
.
node
(
**
draw_node
(
op
))
for
o
in
op
.
outputs
:
for
arg
in
o
.
arguments
:
...
...
@@ -78,6 +81,7 @@ def parse_graph(program, graph, var_dict, **kwargs):
for
arg
in
e
.
arguments
:
if
var_dict
.
has_key
(
arg
):
graph
.
edge
(
**
draw_edge
(
var_dict
,
op
,
e
,
arg
))
break
# only plot the first block
def
draw_graph
(
startup_program
,
main_program
,
**
kwargs
):
...
...
python/paddle/v2/fluid/tests/test_while_op.py
浏览文件 @
ac460181
...
...
@@ -2,6 +2,7 @@ import unittest
import
paddle.v2.fluid.layers
as
layers
from
paddle.v2.fluid.executor
import
Executor
import
paddle.v2.fluid.core
as
core
from
paddle.v2.fluid.backward
import
append_backward_ops
import
numpy
...
...
@@ -16,7 +17,7 @@ class TestWhileOp(unittest.TestCase):
i
=
layers
.
zeros
(
shape
=
[
1
],
dtype
=
'int64'
)
i
.
stop_gradient
=
True
init
=
layers
.
zeros
(
shape
=
[
10
],
dtype
=
'float32'
)
mem_array
=
layers
.
array_write
(
init
,
i
=
i
)
mem_array
=
layers
.
array_write
(
x
=
init
,
i
=
i
)
data_array
=
layers
.
array_write
(
x
=
d0
,
i
=
i
)
i
=
layers
.
increment
(
i
)
...
...
@@ -29,17 +30,23 @@ class TestWhileOp(unittest.TestCase):
i
.
stop_gradient
=
True
array_len
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int64'
,
value
=
3
)
array_len
.
stop_gradient
=
True
cond
=
layers
.
less_than
(
x
=
i
,
y
=
array_len
)
while_op
=
layers
.
While
(
cond
=
cond
)
with
while_op
.
block
():
d
=
layers
.
array_read
(
array
=
data_array
,
i
=
i
)
prev
=
layers
.
array_read
(
array
=
mem_array
,
i
=
i
)
i
=
layers
.
increment
(
x
=
i
,
in_place
=
True
)
result
=
layers
.
sums
(
input
=
[
d
,
prev
])
i
=
layers
.
increment
(
x
=
i
,
in_place
=
True
)
layers
.
array_write
(
result
,
i
=
i
,
array
=
mem_array
)
layers
.
less_than
(
x
=
i
,
y
=
array_len
,
cond
=
cond
)
sum_result
=
layers
.
array_read
(
mem_array
,
i
=
array_len
)
sum_result
=
layers
.
array_read
(
array
=
mem_array
,
i
=
i
)
loss
=
layers
.
mean
(
x
=
sum_result
)
append_backward_ops
(
loss
)
cpu
=
core
.
CPUPlace
()
exe
=
Executor
(
cpu
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录