Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ac20195c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ac20195c
编写于
8月 10, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into kmax_seq_test
上级
024243fe
7c8e5c3b
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
331 addition
and
73 deletion
+331
-73
paddle/framework/CMakeLists.txt
paddle/framework/CMakeLists.txt
+1
-0
paddle/framework/pybind.cc
paddle/framework/pybind.cc
+9
-2
paddle/operators/CMakeLists.txt
paddle/operators/CMakeLists.txt
+3
-3
paddle/operators/add_op_test.cc
paddle/operators/add_op_test.cc
+0
-28
paddle/operators/gather.h
paddle/operators/gather.h
+73
-0
paddle/operators/gather_test.cc
paddle/operators/gather_test.cc
+48
-0
paddle/operators/gaussian_random_op.cc
paddle/operators/gaussian_random_op.cc
+82
-0
paddle/operators/gaussian_random_op.cu
paddle/operators/gaussian_random_op.cu
+52
-0
paddle/operators/sgd_op_test.cc
paddle/operators/sgd_op_test.cc
+0
-22
python/paddle/v2/framework/tests/CMakeLists.txt
python/paddle/v2/framework/tests/CMakeLists.txt
+3
-0
python/paddle/v2/framework/tests/gradient_checker.py
python/paddle/v2/framework/tests/gradient_checker.py
+24
-18
python/paddle/v2/framework/tests/test_gaussian_random_op.py
python/paddle/v2/framework/tests/test_gaussian_random_op.py
+36
-0
未找到文件。
paddle/framework/CMakeLists.txt
浏览文件 @
ac20195c
...
...
@@ -50,5 +50,6 @@ cc_library(paddle_pybind SHARED
cross_entropy_op
recurrent_op
uniform_random_op
gaussian_random_op
fill_zeros_like_op
)
endif
(
WITH_PYTHON
)
paddle/framework/pybind.cc
浏览文件 @
ac20195c
...
...
@@ -22,6 +22,7 @@ limitations under the License. */
#include "paddle/operators/net_op.h"
#include "paddle/platform/enforce.h"
#include "paddle/platform/place.h"
#include "paddle/string/to_string.h"
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"
...
...
@@ -39,7 +40,9 @@ USE_OP(softmax);
USE_OP
(
rowwise_add
);
USE_OP
(
fill_zeros_like
);
USE_OP_WITHOUT_KERNEL
(
recurrent_op
);
USE_OP
(
gaussian_random
);
USE_OP
(
uniform_random
);
namespace
paddle
{
namespace
framework
{
...
...
@@ -205,9 +208,13 @@ All parameter, weight, gradient are variables in Paddle.
});
// clang-format on
py
::
class_
<
paddle
::
platform
::
GPUPlace
>
(
m
,
"GPUPlace"
).
def
(
py
::
init
<
int
>
());
py
::
class_
<
platform
::
GPUPlace
>
(
m
,
"GPUPlace"
)
.
def
(
py
::
init
<
int
>
())
.
def
(
"__str__"
,
string
::
to_string
<
const
platform
::
GPUPlace
&>
);
py
::
class_
<
paddle
::
platform
::
CPUPlace
>
(
m
,
"CPUPlace"
).
def
(
py
::
init
<>
());
py
::
class_
<
paddle
::
platform
::
CPUPlace
>
(
m
,
"CPUPlace"
)
.
def
(
py
::
init
<>
())
.
def
(
"__str__"
,
string
::
to_string
<
const
platform
::
CPUPlace
&>
);
py
::
class_
<
OperatorBase
,
std
::
shared_ptr
<
OperatorBase
>>
operator_base
(
m
,
"Operator"
);
...
...
paddle/operators/CMakeLists.txt
浏览文件 @
ac20195c
...
...
@@ -41,25 +41,25 @@ function(op_library TARGET)
endif
()
endfunction
()
cc_test
(
gather_test SRCS gather_test.cc DEPS tensor
)
cc_library
(
net_op SRCS net_op.cc DEPS op_registry
)
cc_test
(
net_op_test SRCS net_op_test.cc DEPS net_op
)
op_library
(
add_op SRCS add_op.cc add_op.cu
)
cc_test
(
add_op_test SRCS add_op_test.cc DEPS add_op
)
op_library
(
mean_op SRCS mean_op.cc mean_op.cu
)
cc_test
(
mean_op_test SRCS mean_op_test.cc DEPS mean_op
)
op_library
(
mul_op SRCS mul_op.cc mul_op.cu
)
op_library
(
rowwise_add_op SRCS rowwise_add_op.cu rowwise_add_op.cc
)
op_library
(
sigmoid_op SRCS sigmoid_op.cc sigmoid_op.cu
)
op_library
(
softmax_op SRCS softmax_op.cc softmax_op.cu
)
op_library
(
gaussian_random_op SRCS gaussian_random_op.cc gaussian_random_op.cu
)
op_library
(
cross_entropy_op SRCS cross_entropy_op.cc cross_entropy_op.cu
)
op_library
(
fill_zeros_like_op SRCS fill_zeros_like_op.cc fill_zeros_like_op.cu
)
op_library
(
sgd_op SRCS sgd_op.cc sgd_op.cu
)
cc_test
(
sgd_op_test SRCS sgd_op_test.cc DEPS sgd_op
)
op_library
(
fc_op
SRCS fc_op.cc
...
...
paddle/operators/add_op_test.cc
已删除
100644 → 0
浏览文件 @
024243fe
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#define private public
#include "paddle/framework/op_registry.h"
USE_OP
(
add_two
);
TEST
(
AddOp
,
GetOpProto
)
{
auto
&
protos
=
paddle
::
framework
::
OpRegistry
::
protos
();
auto
it
=
protos
.
find
(
"add_two"
);
ASSERT_NE
(
it
,
protos
.
end
());
auto
&
op_creators
=
paddle
::
framework
::
OpRegistry
::
op_creators
();
auto
it1
=
op_creators
.
find
(
"add_two_grad"
);
ASSERT_NE
(
it1
,
op_creators
.
end
());
}
paddle/operators/gather.h
0 → 100644
浏览文件 @
ac20195c
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory.h>
#include <cstring>
#include "paddle/framework/ddim.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/place.h"
namespace
paddle
{
namespace
operators
{
// Implementation of CPU copy
template
<
typename
T
>
void
CPUGather
(
const
T
*
params
,
const
int
*
indices
,
const
int
slice_size
,
const
int
index_size
,
T
*
output
)
{
const
size_t
slice_bytes
=
slice_size
*
sizeof
(
T
);
for
(
size_t
i
=
0
;
i
<
index_size
;
++
i
)
{
int
index_
=
indices
[
i
];
memcpy
(
output
+
i
*
slice_size
,
params
+
index_
*
slice_size
,
slice_bytes
);
}
}
// Implementation of GPU copy:
template
<
typename
T
>
void
GPUGather
(
const
T
*
src
,
const
int
*
index
,
const
int
slice_size
,
const
int
index_size
,
T
*
output
);
/**
* Return a new tensor from source tensor, gathered according to index
* input[src]: type-T source Tensor
* input[index]: type-int index Tensor (1-D)
* return: output tensor
*/
template
<
typename
T
>
void
Gather
(
const
platform
::
Place
&
place
,
const
paddle
::
framework
::
Tensor
*
src
,
const
paddle
::
framework
::
Tensor
*
index
,
paddle
::
framework
::
Tensor
*
output
)
{
// check index of shape 1-D
PADDLE_ENFORCE
(
index
->
dims
().
size
()
==
1
);
int
index_size
=
index
->
dims
()[
0
];
auto
src_dims
=
src
->
dims
();
paddle
::
framework
::
DDim
output_dims
(
src_dims
);
output_dims
[
0
]
=
index_size
;
// slice size
int
slice_size
=
1
;
for
(
size_t
i
=
1
;
i
<
src_dims
.
size
();
++
i
)
slice_size
*=
src_dims
[
i
];
// Gathering
if
(
platform
::
is_cpu_place
(
place
))
{
CPUGather
<
T
>
(
src
->
data
<
T
>
(),
index
->
data
<
int
>
(),
slice_size
,
index_size
,
output
->
data
<
T
>
());
}
}
}
// namespace operators
}
// namespace paddle
paddle/operators/
mean_op
_test.cc
→
paddle/operators/
gather
_test.cc
浏览文件 @
ac20195c
...
...
@@ -12,14 +12,37 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/gather.h"
#include "paddle/framework/ddim.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/place.h"
#include <gtest/gtest.h>
#include <iostream>
#include <string>
TEST
(
Gather
,
GatherData
)
{
using
namespace
paddle
::
framework
;
using
namespace
paddle
::
platform
;
using
namespace
paddle
::
operators
;
Tensor
*
src
=
new
Tensor
();
Tensor
*
index
=
new
Tensor
();
Tensor
*
output
=
new
Tensor
();
int
*
p_src
=
nullptr
;
int
*
p_index
=
nullptr
;
p_src
=
src
->
mutable_data
<
int
>
(
make_ddim
({
3
,
4
}),
CPUPlace
());
p_index
=
index
->
mutable_data
<
int
>
(
make_ddim
({
2
}),
CPUPlace
());
for
(
size_t
i
=
0
;
i
<
12
;
++
i
)
p_src
[
i
]
=
i
;
p_index
[
0
]
=
1
;
p_index
[
1
]
=
0
;
#include <paddle/framework/op_registry.h>
int
*
p_output
=
output
->
mutable_data
<
int
>
(
make_ddim
({
2
,
4
}),
CPUPlace
());
USE_OP
(
mean
);
Gather
<
int
>
(
CPUPlace
(),
src
,
index
,
output
);
TEST
(
MeanOp
,
GetOpProto
)
{
auto
&
protos
=
paddle
::
framework
::
OpRegistry
::
protos
();
auto
it
=
protos
.
find
(
"mean"
);
ASSERT_NE
(
it
,
protos
.
end
());
for
(
size_t
i
=
0
;
i
<
4
;
++
i
)
EXPECT_EQ
(
p_output
[
i
],
i
+
4
);
for
(
size_t
i
=
4
;
i
<
8
;
++
i
)
EXPECT_EQ
(
p_output
[
i
],
i
-
4
);
}
paddle/operators/gaussian_random_op.cc
0 → 100644
浏览文件 @
ac20195c
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <random>
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
GaussianRandomKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
float
mean
=
context
.
op_
.
GetAttr
<
float
>
(
"mean"
);
float
std
=
context
.
op_
.
GetAttr
<
float
>
(
"std"
);
auto
*
tensor
=
context
.
Output
<
framework
::
Tensor
>
(
0
);
T
*
data
=
tensor
->
mutable_data
<
T
>
(
context
.
GetPlace
());
// TODO(dzh): attribute does not support unsigned int.
// And we need a global random seed configuration.
int
seed
=
context
.
op_
.
GetAttr
<
int
>
(
"seed"
);
if
(
seed
==
0
)
{
seed
=
std
::
random_device
()();
}
std
::
mt19937
g
(
seed
);
std
::
normal_distribution
<
T
>
distribution
(
mean
,
std
);
ssize_t
size
=
framework
::
product
(
tensor
->
dims
());
for
(
int
i
=
0
;
i
<
size
;
++
i
)
{
data
[
i
]
=
distribution
(
g
);
}
}
};
class
GaussianRandomOp
:
public
framework
::
OperatorWithKernel
{
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
context
)
const
override
{
auto
*
tensor
=
context
.
Output
<
framework
::
Tensor
>
(
0
);
auto
dims
=
GetAttr
<
std
::
vector
<
int
>>
(
"dims"
);
PADDLE_ENFORCE
(
dims
.
size
()
>
0UL
,
"dims can be one int or array. dims must be set."
);
tensor
->
Resize
(
framework
::
make_ddim
(
dims
));
}
};
class
GaussianRandomOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
GaussianRandomOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddOutput
(
"Out"
,
"output matrix of random op"
);
AddComment
(
R"DOC(
GaussianRandom operator.
Use to initialize tensor with gaussian random generator.
)DOC"
);
AddAttr
<
std
::
vector
<
int
>>
(
"dims"
,
"The dimension of random tensor."
);
AddAttr
<
float
>
(
"mean"
,
"mean value of random."
).
SetDefault
(
.0
f
);
AddAttr
<
float
>
(
"std"
,
"minimum value of random value."
).
SetDefault
(
1.0
f
);
AddAttr
<
int
>
(
"seed"
,
"Random seed of generator."
"0 means use system wide seed"
)
.
SetDefault
(
0
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
gaussian_random
,
ops
::
GaussianRandomOp
,
ops
::
GaussianRandomOpMaker
);
REGISTER_OP_CPU_KERNEL
(
gaussian_random
,
ops
::
GaussianRandomKernel
<
float
>
);
paddle/operators/gaussian_random_op.cu
0 → 100644
浏览文件 @
ac20195c
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <random>
#include "paddle/platform/dynload/curand.h"
#include "paddle/platform/gpu_info.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
GaussianRandomKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
float
mean
=
context
.
op_
.
GetAttr
<
float
>
(
"mean"
);
float
std
=
context
.
op_
.
GetAttr
<
float
>
(
"std"
);
auto
*
tensor
=
context
.
Output
<
framework
::
Tensor
>
(
0
);
T
*
data
=
tensor
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
seed
=
context
.
op_
.
GetAttr
<
int
>
(
"seed"
);
if
(
seed
==
0
)
{
seed
=
std
::
random_device
()();
}
curandGenerator_t
g
;
PADDLE_ENFORCE
(
platform
::
dynload
::
curandCreateGenerator
(
&
g
,
CURAND_RNG_PSEUDO_DEFAULT
));
PADDLE_ENFORCE
(
platform
::
dynload
::
curandSetPseudoRandomGeneratorSeed
(
g
,
seed
));
curandGenerateNormal
(
g
,
data
,
framework
::
product
(
tensor
->
dims
()),
mean
,
std
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
gaussian_random
,
ops
::
GaussianRandomKernel
<
float
>
);
\ No newline at end of file
paddle/operators/sgd_op_test.cc
已删除
100644 → 0
浏览文件 @
024243fe
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <paddle/framework/op_registry.h>
USE_OP
(
sgd
);
TEST
(
SGDOp
,
GetOpProto
)
{
auto
&
protos
=
paddle
::
framework
::
OpRegistry
::
protos
();
auto
it
=
protos
.
find
(
"sgd"
);
ASSERT_NE
(
it
,
protos
.
end
());
}
python/paddle/v2/framework/tests/CMakeLists.txt
浏览文件 @
ac20195c
...
...
@@ -21,5 +21,8 @@ py_test(gradient_checker SRCS gradient_checker.py)
py_test
(
test_rowwise_add_op SRCS test_rowwise_add_op.py
)
py_test
(
test_default_scope_funcs SRCS test_default_scope_funcs.py
)
py_test
(
test_operator SRCS test_operator.py
)
py_test
(
test_gaussian_random_op SRCS test_gaussian_random_op.py
)
py_test
(
test_uniform_random_op SRCS test_uniform_random_op.py
)
python/paddle/v2/framework/tests/gradient_checker.py
浏览文件 @
ac20195c
...
...
@@ -92,15 +92,27 @@ def get_numeric_gradient(op,
class
GradientChecker
(
unittest
.
TestCase
):
def
__is_close
(
self
,
numeric_grads
,
scope
,
max_relative_error
):
def
assert_is_close
(
self
,
numeric_grads
,
scope
,
max_relative_error
,
msg_prefix
):
for
name
in
numeric_grads
:
op_grad
=
numpy
.
array
(
scope
.
find_var
(
grad_var_name
(
name
)).
get_tensor
())
is_close
=
numpy
.
allclose
(
numeric_grads
[
name
],
op_grad
,
rtol
=
max_relative_error
,
atol
=
100
)
if
not
is_close
:
return
False
return
True
b
=
numpy
.
array
(
scope
.
find_var
(
grad_var_name
(
name
)).
get_tensor
())
a
=
numeric_grads
[
name
]
abs_a
=
numpy
.
abs
(
a
)
# if abs_a is nearly zero, then use abs error for a, not relative
# error.
abs_a
[
abs_a
<
1e-3
]
=
1
diff_mat
=
numpy
.
abs
(
a
-
b
)
/
abs_a
max_diff
=
numpy
.
max
(
diff_mat
)
def
err_msg
():
offset
=
numpy
.
argmax
(
diff_mat
>
max_relative_error
)
return
"%s Variable %s max gradient diff %f over limit %f, the first "
\
"error element is %d"
%
(
msg_prefix
,
name
,
max_diff
,
max_relative_error
,
offset
)
self
.
assertLessEqual
(
max_diff
,
max_relative_error
,
err_msg
())
def
check_grad
(
self
,
forward_op
,
...
...
@@ -145,7 +157,8 @@ class GradientChecker(unittest.TestCase):
# get numeric gradient
for
check_name
in
inputs_to_check
:
numeric_grad
[
check_name
]
=
\
get_numeric_gradient
(
forward_op
,
input_vars
,
output_name
,
check_name
)
get_numeric_gradient
(
forward_op
,
input_vars
,
output_name
,
check_name
)
# get operator gradient according to different device
for
place
in
places
:
...
...
@@ -187,15 +200,8 @@ class GradientChecker(unittest.TestCase):
backward_op
.
infer_shape
(
scope
)
backward_op
.
run
(
scope
,
ctx
)
if
isinstance
(
place
,
core
.
CPUPlace
):
msg
=
"CPU kernel gradient is not close to numeric gradient"
else
:
if
isinstance
(
place
,
core
.
GPUPlace
):
msg
=
"GPU kernel gradient is not close to numeric gradient"
else
:
raise
ValueError
(
"unknown place "
+
type
(
place
))
self
.
assertTrue
(
self
.
__is_close
(
numeric_grad
,
scope
,
max_relative_error
),
msg
)
self
.
assert_is_close
(
numeric_grad
,
scope
,
max_relative_error
,
"Gradient Check On %s"
%
str
(
place
))
if
__name__
==
'__main__'
:
...
...
python/paddle/v2/framework/tests/test_gaussian_random_op.py
0 → 100644
浏览文件 @
ac20195c
import
unittest
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.op
import
Operator
import
numpy
class
GaussianRandomTest
(
unittest
.
TestCase
):
def
test_cpu
(
self
):
self
.
gaussian_random_test
(
place
=
core
.
CPUPlace
())
def
test_gpu
(
self
):
if
core
.
is_compile_gpu
():
self
.
gaussian_random_test
(
place
=
core
.
GPUPlace
(
0
))
def
gaussian_random_test
(
self
,
place
):
scope
=
core
.
Scope
()
scope
.
new_var
(
"Out"
).
get_tensor
()
op
=
Operator
(
"gaussian_random"
,
Out
=
"Out"
,
dims
=
[
1000
,
784
],
mean
=
.
0
,
std
=
1.
,
seed
=
10
)
op
.
infer_shape
(
scope
)
context
=
core
.
DeviceContext
.
create
(
place
)
op
.
run
(
scope
,
context
)
tensor
=
numpy
.
array
(
scope
.
find_var
(
"Out"
).
get_tensor
())
self
.
assertAlmostEqual
(
numpy
.
mean
(
tensor
),
.
0
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
numpy
.
std
(
tensor
),
1.
,
delta
=
0.1
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录