Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
aafaad90
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
aafaad90
编写于
5月 10, 2023
作者:
Q
Qi Shao
提交者:
GitHub
5月 10, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Revert "Optimize the implementation of the argsort operator. (#47738)" (#53631)
This reverts commit
9e9b705a
.
上级
2eea311a
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
110 addition
and
314 deletion
+110
-314
paddle/phi/kernels/gpu/argsort_kernel.cu
paddle/phi/kernels/gpu/argsort_kernel.cu
+110
-314
未找到文件。
paddle/phi/kernels/gpu/argsort_kernel.cu
浏览文件 @
aafaad90
...
...
@@ -65,10 +65,8 @@ struct SegmentOffsetIter {
int
num_cols_
;
};
#define PADDLE_CUDA_NUM_THREADS 1024
template
<
typename
T
>
static
__global__
void
FillIndex
(
T
*
indices
,
T
num_rows
,
T
num_cols
)
{
static
__global__
void
FillIndex
(
T
*
indices
,
T
num_rows
,
T
num_cols
)
{
int
col_id
=
threadIdx
.
x
;
int
row_id
=
blockIdx
.
x
;
...
...
@@ -81,246 +79,23 @@ static __global__ void FillIndex(T *indices, T num_rows, T num_cols) {
// Sort by flag descending, True: descending. False: Ascending.
// Default is false.
static
__global__
void
FillIndexAndSegmentKernel
(
int2
*
data
,
int
numel
,
int
nsort
)
{
CUDA_KERNEL_LOOP
(
idx
,
numel
)
{
auto
segment
=
static_cast
<
int
>
(
idx
/
nsort
);
auto
sort
=
static_cast
<
int
>
(
idx
%
nsort
);
data
[
idx
]
=
int2
{
segment
,
sort
};
}
}
#define CUB_WRAPPER(func, ctx, ...) \
do { \
size_t temp_storage_bytes = 0; \
gpuError_t err; \
err = func(nullptr, temp_storage_bytes, __VA_ARGS__); \
PADDLE_ENFORCE_GPU_SUCCESS(err); \
DenseTensor temp_storage; \
int64_t temp_size = temp_storage_bytes; \
temp_storage.Resize({temp_size}); \
ctx.template Alloc<uint8_t>(&temp_storage); \
err = func(temp_storage.data<uint8_t>(), temp_storage_bytes, __VA_ARGS__); \
PADDLE_ENFORCE_GPU_SUCCESS(err); \
} while (false)
template
<
typename
KT
,
typename
VT
>
static
void
RadixSortPairs
(
const
phi
::
GPUContext
&
ctx
,
const
KT
*
keys_in
,
const
VT
*
values_in
,
KT
*
keys_out
,
VT
*
values_out
,
int64_t
n
,
bool
descending
=
false
,
int64_t
begin_bit
=
0
,
int64_t
end_bit
=
sizeof
(
KT
)
*
8
)
{
if
(
keys_out
==
nullptr
)
{
DenseTensor
key_out_owner
;
key_out_owner
.
Resize
({
n
});
ctx
.
template
Alloc
<
KT
>(
&
key_out_owner
);
keys_out
=
key_out_owner
.
data
<
KT
>
();
}
if
(
descending
)
{
CUB_WRAPPER
(
cub
::
DeviceRadixSort
::
SortPairsDescending
,
ctx
,
keys_in
,
keys_out
,
values_in
,
values_out
,
n
,
begin_bit
,
end_bit
,
ctx
.
stream
());
}
else
{
CUB_WRAPPER
(
cub
::
DeviceRadixSort
::
SortPairs
,
ctx
,
keys_in
,
keys_out
,
values_in
,
values_out
,
n
,
begin_bit
,
end_bit
,
ctx
.
stream
());
}
}
template
<
typename
KT
>
static
void
RadixSortKeys
(
const
phi
::
GPUContext
&
ctx
,
const
KT
*
keys_in
,
KT
*
keys_out
,
int64_t
n
,
bool
descending
,
int64_t
begin_bit
,
int64_t
end_bit
)
{
if
(
descending
)
{
CUB_WRAPPER
(
cub
::
DeviceRadixSort
::
SortKeysDescending
,
ctx
,
keys_in
,
keys_out
,
n
,
begin_bit
,
end_bit
,
ctx
.
stream
());
}
else
{
CUB_WRAPPER
(
cub
::
DeviceRadixSort
::
SortKeys
,
ctx
,
keys_in
,
keys_out
,
n
,
begin_bit
,
end_bit
,
ctx
.
stream
());
}
}
template
<
typename
T
>
static
__global__
void
SortPostprocessKernel
(
const
T
*
in
,
const
int2
*
i_s_ptr
,
T
*
out
,
int64_t
*
index
,
int
nsegments
,
int
nsort
)
{
CUDA_KERNEL_LOOP
(
i
,
nsegments
*
nsort
)
{
int
segment
=
i
/
nsort
;
// segment_id
int
j
=
i
%
nsort
;
int
offset
=
segment
*
nsort
;
const
T
*
in_
=
in
+
offset
;
T
*
out_
=
out
+
offset
;
int64_t
*
index_
=
index
+
offset
;
const
int2
*
i_s_ptr_
=
i_s_ptr
+
offset
;
int
idx
=
i_s_ptr_
[
j
].
y
;
index_
[
j
]
=
idx
;
out_
[
j
]
=
in_
[
idx
];
}
}
template
<
typename
T
>
inline
void
SegmentedSortPairsByFullSort
(
const
phi
::
GPUContext
&
ctx
,
const
T
*
const
self_ptr
,
T
*
const
values_ptr
,
int64_t
*
const
indices_ptr
,
const
int64_t
nsegments
,
const
int64_t
nsort
,
const
int64_t
n
,
const
bool
descending
)
{
int64_t
segment_bits
=
std
::
max
<
int64_t
>
(
1L
,
static_cast
<
int64_t
>
(
std
::
ceil
(
std
::
log2
(
nsegments
))));
const
auto
numel
=
nsort
*
nsegments
;
DenseTensor
indices_and_segment
;
int64_t
indices_and_segment_size
=
numel
;
indices_and_segment
.
Resize
({
indices_and_segment_size
*
2
});
ctx
.
template
Alloc
<
int64_t
>(
&
indices_and_segment
);
auto
i_s_ptr_base
=
indices_and_segment
.
data
<
int64_t
>
();
auto
i_s_ptr
=
reinterpret_cast
<
int2
*>
(
i_s_ptr_base
);
dim3
block
=
PADDLE_CUDA_NUM_THREADS
;
auto
block_num
=
(
numel
-
1
)
/
PADDLE_CUDA_NUM_THREADS
+
1
;
dim3
grid
=
static_cast
<
int
>
(
block_num
);
auto
cu_stream
=
ctx
.
stream
();
FillIndexAndSegmentKernel
<<<
grid
,
block
,
0
,
cu_stream
>>>
(
i_s_ptr
,
numel
,
nsort
);
DenseTensor
indices_and_segment2
;
int64_t
indices_and_segment2_size
=
numel
;
indices_and_segment2
.
Resize
({
indices_and_segment2_size
*
2
});
ctx
.
template
Alloc
<
int64_t
>(
&
indices_and_segment2
);
auto
i_s_ptr2_base
=
indices_and_segment2
.
data
<
int64_t
>
();
auto
i_s_ptr2
=
reinterpret_cast
<
int2
*>
(
i_s_ptr2_base
);
RadixSortPairs
<
T
,
int2
>
(
ctx
,
self_ptr
,
i_s_ptr
,
nullptr
,
i_s_ptr2
,
n
,
descending
);
RadixSortKeys
<
int64_t
>
(
ctx
,
reinterpret_cast
<
int64_t
*>
(
i_s_ptr2
),
reinterpret_cast
<
int64_t
*>
(
i_s_ptr
),
n
,
false
,
0
,
segment_bits
);
SortPostprocessKernel
<<<
grid
,
block
,
0
,
cu_stream
>>>
(
self_ptr
,
i_s_ptr
,
values_ptr
,
indices_ptr
,
nsegments
,
nsort
);
}
// The method is called when # of the rows of the input is less than or equal to
// 4
template
<
typename
T
,
typename
IndexType
>
void
ArgFullSortForTinyRows
(
const
phi
::
GPUContext
&
ctx
,
const
DenseTensor
*
input
,
DenseTensor
*
output
,
DenseTensor
*
indices
,
const
IndexType
num_rows
,
const
IndexType
num_cols
,
const
bool
descending
)
{
auto
gpu_stream
=
ctx
.
stream
();
size_t
temp_storage_bytes
=
-
1
;
IndexType
numel
=
num_rows
*
num_cols
;
if
(
numel
==
0
)
{
return
;
}
IndexType
numel_or_intmax
=
std
::
min
(
numel
,
static_cast
<
int64_t
>
(
std
::
numeric_limits
<
int
>::
max
()));
IndexType
nsort
=
num_cols
;
IndexType
nbatch
=
(
numel_or_intmax
/
nsort
)
*
nsort
;
T
*
sorted_out_ptr
;
IndexType
*
sorted_indices_ptr
;
const
T
*
input_data
=
input
->
data
<
T
>
();
T
*
out
=
ctx
.
template
Alloc
<
T
>(
output
);
IndexType
*
ind
=
ctx
.
template
Alloc
<
IndexType
>(
indices
);
sorted_out_ptr
=
out
;
sorted_indices_ptr
=
ind
;
int64_t
remaining
=
numel
;
while
(
remaining
>
0
)
{
int64_t
n
=
std
::
min
(
remaining
,
nbatch
);
IndexType
nsegments
=
n
/
nsort
;
SegmentedSortPairsByFullSort
(
ctx
,
input_data
,
sorted_out_ptr
,
sorted_indices_ptr
,
nsegments
,
nsort
,
n
,
descending
);
remaining
-=
n
;
input_data
+=
n
;
sorted_out_ptr
+=
n
;
sorted_indices_ptr
+=
n
;
}
}
template
<
typename
T
,
typename
IndexType
>
void
ArgFullSort
(
const
phi
::
GPUContext
&
ctx
,
const
DenseTensor
*
input
,
DenseTensor
*
output
,
DenseTensor
*
indices
,
const
IndexType
num_rows
,
const
IndexType
num_cols
,
template
<
typename
T
,
typename
IndType
>
void
ArgFullSort
(
const
phi
::
GPUContext
&
ctx
,
const
DenseTensor
*
input
,
DenseTensor
*
output
,
DenseTensor
*
indices
,
const
IndType
num_rows
,
const
IndType
num_cols
,
const
bool
descending
)
{
auto
cu_stream
=
ctx
.
stream
();
DenseTensor
input_indices
;
const
std
::
vector
<
Ind
ex
Type
>
dims
=
{
num_rows
,
num_cols
};
const
std
::
vector
<
IndType
>
dims
=
{
num_rows
,
num_cols
};
auto
dim
=
phi
::
make_ddim
(
dims
);
input_indices
.
Resize
(
dim
);
ctx
.
template
Alloc
<
Ind
ex
Type
>(
&
input_indices
);
ctx
.
template
Alloc
<
IndType
>(
&
input_indices
);
size_t
temp_storage_bytes
=
-
1
;
auto
ComputeBlockSize
=
[](
Ind
ex
Type
col
)
{
auto
ComputeBlockSize
=
[](
IndType
col
)
{
if
(
col
>
512
)
return
1024
;
else
if
(
col
>
256
&&
col
<=
512
)
...
...
@@ -339,71 +114,112 @@ void ArgFullSort(const phi::GPUContext &ctx,
int
grid_size
=
num_rows
<
maxGridDimX
?
num_rows
:
maxGridDimX
;
// Init a index array
FillIndex
<<<
grid_size
,
block_size
,
0
,
cu_stream
>>>
(
input_indices
.
data
<
Ind
ex
Type
>
(),
num_rows
,
num_cols
);
input_indices
.
data
<
IndType
>
(),
num_rows
,
num_cols
);
T
*
sorted_out_ptr
;
Ind
exType
*
sorted_indices_ptr
;
const
T
*
inp
=
input
->
data
<
T
>
();
T
*
out
=
ctx
.
template
Alloc
<
T
>(
output
);
Ind
exType
*
ind
=
ctx
.
template
Alloc
<
Index
Type
>(
indices
);
T
*
sorted_out_ptr
;
Ind
Type
*
sorted_indices_ptr
;
const
T
*
inp
=
input
->
data
<
T
>
();
T
*
out
=
ctx
.
template
Alloc
<
T
>(
output
);
Ind
Type
*
ind
=
ctx
.
template
Alloc
<
Ind
Type
>(
indices
);
sorted_out_ptr
=
out
;
sorted_indices_ptr
=
ind
;
// create iter for counting input
cub
::
CountingInputIterator
<
Ind
ex
Type
>
counting_iter
(
0
);
cub
::
CountingInputIterator
<
IndType
>
counting_iter
(
0
);
// segment_offset is used for move to next row
cub
::
TransformInputIterator
<
Ind
ex
Type
,
cub
::
TransformInputIterator
<
IndType
,
SegmentOffsetIter
,
cub
::
CountingInputIterator
<
Ind
ex
Type
>>
cub
::
CountingInputIterator
<
IndType
>>
segment_offsets_t
(
counting_iter
,
SegmentOffsetIter
(
num_cols
));
gpuError_t
err
;
if
(
descending
)
{
CUB_WRAPPER
(
cub
::
DeviceSegmentedRadixSort
::
SortPairsDescending
,
ctx
,
inp
,
sorted_out_ptr
,
input_indices
.
data
<
IndexType
>
(),
sorted_indices_ptr
,
num_cols
*
num_rows
,
num_rows
,
segment_offsets_t
,
segment_offsets_t
+
1
,
0
,
sizeof
(
T
)
*
8
,
ctx
.
stream
());
err
=
cub
::
DeviceSegmentedRadixSort
::
SortPairsDescending
(
nullptr
,
temp_storage_bytes
,
inp
,
sorted_out_ptr
,
input_indices
.
data
<
IndType
>
(),
sorted_indices_ptr
,
num_cols
*
num_rows
,
num_rows
,
segment_offsets_t
,
segment_offsets_t
+
1
,
0
,
sizeof
(
T
)
*
8
,
cu_stream
);
}
else
{
CUB_WRAPPER
(
cub
::
DeviceSegmentedRadixSort
::
SortPairs
,
ctx
,
inp
,
sorted_out_ptr
,
input_indices
.
data
<
IndexType
>
(),
sorted_indices_ptr
,
num_cols
*
num_rows
,
num_rows
,
segment_offsets_t
,
segment_offsets_t
+
1
,
0
,
sizeof
(
T
)
*
8
,
ctx
.
stream
());
err
=
cub
::
DeviceSegmentedRadixSort
::
SortPairs
(
nullptr
,
temp_storage_bytes
,
inp
,
sorted_out_ptr
,
input_indices
.
data
<
IndType
>
(),
sorted_indices_ptr
,
num_cols
*
num_rows
,
num_rows
,
segment_offsets_t
,
segment_offsets_t
+
1
,
0
,
sizeof
(
T
)
*
8
,
cu_stream
);
}
PADDLE_ENFORCE_GPU_SUCCESS
(
err
);
DenseTensor
temp_storage
;
int64_t
temp_size
=
temp_storage_bytes
;
temp_storage
.
Resize
({
temp_size
});
ctx
.
template
Alloc
<
uint8_t
>(
&
temp_storage
);
if
(
descending
)
{
err
=
cub
::
DeviceSegmentedRadixSort
::
SortPairsDescending
(
temp_storage
.
data
<
uint8_t
>
(),
temp_storage_bytes
,
inp
,
sorted_out_ptr
,
input_indices
.
data
<
IndType
>
(),
sorted_indices_ptr
,
num_cols
*
num_rows
,
num_rows
,
segment_offsets_t
,
segment_offsets_t
+
1
,
0
,
sizeof
(
T
)
*
8
,
cu_stream
);
}
else
{
err
=
cub
::
DeviceSegmentedRadixSort
::
SortPairs
(
temp_storage
.
data
<
uint8_t
>
(),
temp_storage_bytes
,
inp
,
sorted_out_ptr
,
input_indices
.
data
<
IndType
>
(),
sorted_indices_ptr
,
num_cols
*
num_rows
,
num_rows
,
segment_offsets_t
,
segment_offsets_t
+
1
,
0
,
sizeof
(
T
)
*
8
,
cu_stream
);
}
PADDLE_ENFORCE_GPU_SUCCESS
(
err
);
}
template
<
typename
T
,
typename
Context
>
void
ArgsortKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
void
ArgsortKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
int
axis
,
bool
descending
,
DenseTensor
*
output
,
DenseTensor
*
indices
)
{
DenseTensor
*
output
,
DenseTensor
*
indices
)
{
auto
in_dims
=
input
.
dims
();
auto
rank
=
in_dims
.
size
();
axis
=
(
axis
<
0
)
?
(
in_dims
.
size
()
+
axis
)
:
axis
;
const
T
*
in_data
=
input
.
data
<
T
>
();
const
T
*
in_data
=
input
.
data
<
T
>
();
auto
size
=
input
.
numel
();
T
*
out_data
=
dev_ctx
.
template
Alloc
<
T
>(
output
);
int64_t
*
ids_data
=
dev_ctx
.
template
Alloc
<
int64_t
>(
indices
);
T
*
out_data
=
dev_ctx
.
template
Alloc
<
T
>(
output
);
int64_t
*
ids_data
=
dev_ctx
.
template
Alloc
<
int64_t
>(
indices
);
if
(
rank
==
0
)
{
phi
::
Copy
<
Context
>
(
dev_ctx
,
input
,
dev_ctx
.
GetPlace
(),
false
,
output
);
...
...
@@ -431,23 +247,13 @@ void ArgsortKernel(const Context &dev_ctx,
const
int64_t
input_height
=
phi
::
product
(
phi
::
slice_ddim
(
in_dims
,
0
,
in_dims
.
size
()
-
1
));
const
int64_t
input_width
=
in_dims
[
in_dims
.
size
()
-
1
];
if
(
input_height
<=
4
)
{
ArgFullSortForTinyRows
<
T
,
int64_t
>
(
dev_ctx
,
&
input
,
output
,
indices
,
input_height
,
input_width
,
descending
);
}
else
{
ArgFullSort
<
T
,
int64_t
>
(
dev_ctx
,
&
input
,
output
,
indices
,
input_height
,
input_width
,
descending
);
}
ArgFullSort
<
T
,
int64_t
>
(
dev_ctx
,
&
input
,
output
,
indices
,
input_height
,
input_width
,
descending
);
}
else
{
// if not full sort, do transpose first
std
::
vector
<
int
>
trans
;
...
...
@@ -466,7 +272,7 @@ void ArgsortKernel(const Context &dev_ctx,
DenseTensor
trans_inp
;
trans_inp
.
Resize
(
trans_dims
);
T
*
trans_inp_data
=
dev_ctx
.
template
Alloc
<
T
>(
&
trans_inp
);
T
*
trans_inp_data
=
dev_ctx
.
template
Alloc
<
T
>(
&
trans_inp
);
// Do transpose
TransposeKernel
<
T
,
Context
>
(
dev_ctx
,
input
,
trans
,
&
trans_inp
);
...
...
@@ -484,23 +290,13 @@ void ArgsortKernel(const Context &dev_ctx,
dev_ctx
.
template
Alloc
<
int64_t
>(
&
tmp_indices
);
dev_ctx
.
template
Alloc
<
int64_t
>(
indices
);
if
(
input_height
<=
4
)
{
ArgFullSortForTinyRows
<
T
,
int64_t
>
(
dev_ctx
,
&
trans_inp
,
&
tmp_out
,
&
tmp_indices
,
input_height
,
input_width
,
descending
);
}
else
{
ArgFullSort
<
T
,
int64_t
>
(
dev_ctx
,
&
trans_inp
,
&
tmp_out
,
&
tmp_indices
,
input_height
,
input_width
,
descending
);
}
ArgFullSort
<
T
,
int64_t
>
(
dev_ctx
,
&
trans_inp
,
&
tmp_out
,
&
tmp_indices
,
input_height
,
input_width
,
descending
);
TransposeKernel
<
int64_t
,
Context
>
(
dev_ctx
,
tmp_indices
,
trans
,
indices
);
// transpose back
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录