Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
aaee07a3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
aaee07a3
编写于
12月 13, 2022
作者:
C
ccrrong
提交者:
GitHub
12月 13, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove linear_chain_crf and crf_decoding from fluid (#48996)
* remove linear_chain_crf and crf_decoding
上级
265a54aa
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
2 addition
and
530 deletion
+2
-530
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+0
-207
python/paddle/fluid/tests/book/test_label_semantic_roles.py
python/paddle/fluid/tests/book/test_label_semantic_roles.py
+2
-9
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+0
-4
python/paddle/fluid/tests/unittests/test_directory_migration.py
.../paddle/fluid/tests/unittests/test_directory_migration.py
+0
-1
python/paddle/fluid/tests/unittests/test_parallel_executor_crf.py
...addle/fluid/tests/unittests/test_parallel_executor_crf.py
+0
-305
python/paddle/static/nn/__init__.py
python/paddle/static/nn/__init__.py
+0
-2
tools/parallel_UT_rule.py
tools/parallel_UT_rule.py
+0
-1
tools/static_mode_white_list.py
tools/static_mode_white_list.py
+0
-1
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
aaee07a3
...
...
@@ -65,8 +65,6 @@ from collections.abc import Iterable
__all__
=
[
'fc'
,
'embedding'
,
'linear_chain_crf'
,
'crf_decoding'
,
'conv2d'
,
'dropout'
,
'split'
,
...
...
@@ -752,211 +750,6 @@ def _pull_box_sparse(
return
outs
@
templatedoc
()
def
linear_chain_crf
(
input
,
label
,
param_attr
=
None
,
length
=
None
):
"""
:api_attr: Static Graph
Linear Chain CRF.
${comment}
Args:
input(${emission_type}): ${emission_comment}
label(${label_type}): ${label_comment}
Length(${length_type}): ${length_comment}
param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Returns:
output(${emission_exps_type}): ${emission_exps_comment}
\n
output(${transition_exps_type}): ${transition_exps_comment}
\n
output(${log_likelihood_type}): ${log_likelihood_comment}
\n
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
import paddle
paddle.enable_static()
#define net structure, using LodTensor
train_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
input_data = fluid.data(name='input_data', shape=[-1,10], dtype='float32')
label = fluid.data(name='label', shape=[-1,1], dtype='int')
emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
crf_cost = fluid.layers.linear_chain_crf(
input=emission,
label=label,
param_attr=fluid.ParamAttr(
name='crfw',
learning_rate=0.01))
use_cuda = False
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_program)
#define data, using LoDTensor
a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
feed1 = {'input_data':a,'label':b}
loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
print(loss)
#define net structure, using padding
train_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
input_data2 = fluid.data(name='input_data2', shape=[-1,10,10], dtype='float32')
label2 = fluid.data(name='label2', shape=[-1,10,1], dtype='int')
label_length = fluid.data(name='length', shape=[-1,1], dtype='int')
emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
crf_cost2 = fluid.layers.linear_chain_crf(
input=emission2,
label=label2,
length=label_length,
param_attr=fluid.ParamAttr(
name='crfw',
learning_rate=0.01))
use_cuda = False
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_program)
#define data, using padding
cc=np.random.rand(4,10,10).astype('float32')
dd=np.random.rand(4,10,1).astype('int64')
ll=np.array([[3],[3],[4],[2]])
feed2 = {'input_data2':cc,'label2':dd,'length':ll}
loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
print(loss2)
#[array([[ 7.8902354],
# [ 7.3602567],
# [ 10.004011],
# [ 5.86721 ]], dtype=float32)]
#you can use find_var to get transition parameter.
transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
print(transition)
"""
check_variable_and_dtype
(
input
,
'input'
,
[
'float32'
,
'float64'
],
'linear_chain_crf'
)
check_variable_and_dtype
(
label
,
'label'
,
[
'int64'
],
'linear_chain_crf'
)
helper
=
LayerHelper
(
'linear_chain_crf'
,
**
locals
())
size
=
input
.
shape
[
2
]
if
length
else
input
.
shape
[
1
]
transition
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
[
size
+
2
,
size
],
dtype
=
helper
.
input_dtype
(),
)
alpha
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
()
)
emission_exps
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
()
)
transition_exps
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
()
)
log_likelihood
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
()
)
this_inputs
=
{
"Emission"
:
[
input
],
"Transition"
:
transition
,
"Label"
:
[
label
],
}
if
length
:
this_inputs
[
'Length'
]
=
[
length
]
helper
.
append_op
(
type
=
'linear_chain_crf'
,
inputs
=
this_inputs
,
outputs
=
{
"Alpha"
:
[
alpha
],
"EmissionExps"
:
[
emission_exps
],
"TransitionExps"
:
transition_exps
,
"LogLikelihood"
:
log_likelihood
,
},
)
return
log_likelihood
@
templatedoc
()
def
crf_decoding
(
input
,
param_attr
,
label
=
None
,
length
=
None
):
"""
:api_attr: Static Graph
${comment}
Args:
input(Tensor): ${emission_comment}
param_attr (ParamAttr|None): To specify the weight parameter attribute.
Default: None, which means the default weight parameter property is
used. See usage for details in :ref:`api_paddle_fluid_param_attr_ParamAttr` .
label(${label_type}, optional): ${label_comment}
length(${length_type}, optional): ${length_comment}
Returns:
Tensor: ${viterbi_path_comment}
Examples:
.. code-block:: python
import paddle
paddle.enable_static()
# LoDTensor-based example
num_labels = 10
feature = paddle.static.data(name='word_emb', shape=[-1, 784], dtype='float32', lod_level=1)
label = paddle.static.data(name='label', shape=[-1, 1], dtype='int64', lod_level=1)
emission = paddle.static.nn.fc(feature, size=num_labels)
crf_cost = paddle.fluid.layers.linear_chain_crf(input=emission, label=label,
param_attr=paddle.ParamAttr(name="crfw"))
crf_decode = paddle.static.nn.crf_decoding(input=emission,
param_attr=paddle.ParamAttr(name="crfw"))
# Common tensor example
num_labels, max_len = 10, 20
feature = paddle.static.data(name='word_emb_pad', shape=[-1, max_len, 784], dtype='float32')
label = paddle.static.data(name='label_pad', shape=[-1, max_len, 1], dtype='int64')
length = paddle.static.data(name='length', shape=[-1, 1], dtype='int64')
emission = paddle.static.nn.fc(feature, size=num_labels,
num_flatten_dims=2)
crf_cost = paddle.fluid.layers.linear_chain_crf(input=emission, label=label, length=length,
param_attr=paddle.ParamAttr(name="crfw_pad"))
crf_decode = paddle.static.nn.crf_decoding(input=emission, length=length,
param_attr=paddle.ParamAttr(name="crfw_pad"))
"""
check_variable_and_dtype
(
input
,
'input'
,
[
'float32'
,
'float64'
],
'crf_decoding'
)
helper
=
LayerHelper
(
'crf_decoding'
,
**
locals
())
transition
=
helper
.
get_parameter
(
param_attr
.
name
)
viterbi_path
=
helper
.
create_variable_for_type_inference
(
dtype
=
core
.
VarDesc
.
VarType
.
INT64
)
inputs
=
{
"Emission"
:
[
input
],
"Transition"
:
transition
,
"Label"
:
label
}
if
length
:
inputs
[
'Length'
]
=
length
helper
.
append_op
(
type
=
'crf_decoding'
,
inputs
=
inputs
,
outputs
=
{
"ViterbiPath"
:
[
viterbi_path
]},
)
return
viterbi_path
@
deprecated
(
since
=
"2.0.0"
,
update_to
=
"paddle.nn.functional.dropout"
)
def
dropout
(
x
,
...
...
python/paddle/fluid/tests/book/test_label_semantic_roles.py
浏览文件 @
aaee07a3
...
...
@@ -162,12 +162,8 @@ def train(use_cuda, save_dirname=None, is_local=True):
target
=
fluid
.
layers
.
data
(
name
=
'target'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
crf_cost
=
fluid
.
layers
.
linear_chain_crf
(
input
=
feature_out
,
label
=
target
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'crfw'
,
learning_rate
=
mix_hidden_lr
),
)
avg_cost
=
paddle
.
mean
(
crf_cost
)
cost
=
fluid
.
layers
.
softmax_with_cross_entropy
(
feature_out
,
target
)
avg_cost
=
paddle
.
mean
(
cost
)
# TODO(qiao)
# check other optimizers and check why out will be NAN
...
...
@@ -183,9 +179,6 @@ def train(use_cuda, save_dirname=None, is_local=True):
# TODO(qiao)
# add dependency track and move this config before optimizer
crf_decode
=
fluid
.
layers
.
crf_decoding
(
input
=
feature_out
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'crfw'
)
)
train_data
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
conll05
.
test
(),
buf_size
=
8192
),
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
aaee07a3
...
...
@@ -422,7 +422,6 @@ endfunction()
list
(
REMOVE_ITEM TEST_OPS test_feed_data_check_shape_type
)
list
(
REMOVE_ITEM TEST_OPS test_fetch_lod_tensor_array
)
list
(
REMOVE_ITEM TEST_OPS test_warpctc_op
)
list
(
REMOVE_ITEM TEST_OPS test_parallel_executor_crf
)
list
(
REMOVE_ITEM TEST_OPS test_parallel_executor_profiler
)
list
(
REMOVE_ITEM TEST_OPS test_data_norm_op
)
list
(
REMOVE_ITEM TEST_OPS test_parallel_executor_fetch_feed
)
...
...
@@ -748,7 +747,6 @@ if(WITH_DISTRIBUTE)
endif
()
endif
()
py_test_modules
(
test_parallel_executor_crf MODULES test_parallel_executor_crf
)
# profiler will random hang in linux cuda 10.1 or 10.2
# see https://github.com/PaddlePaddle/Paddle/issues/29082 for details.
# We guess there are some bugs in linux cuda 10.1 or 10.2,
...
...
@@ -916,7 +914,6 @@ set_tests_properties(
test_buffer_shared_memory_reuse_pass
PROPERTIES LABELS
"RUN_TYPE=DIST"
)
set_tests_properties
(
test_parallel_executor_crf
test_sync_batch_norm_op
test_inplace_abn_op
test_parallel_executor_seresnext_base_gpu
...
...
@@ -1053,7 +1050,6 @@ set_tests_properties(test_index_select_op PROPERTIES TIMEOUT 120)
set_tests_properties
(
test_index_add_op PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_parallel_ssa_graph_inference_feed_partial_data
PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_parallel_executor_crf PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_tensordot PROPERTIES TIMEOUT 200
)
set_tests_properties
(
test_imperative_save_load PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_partial_eager_deletion_transformer PROPERTIES TIMEOUT
...
...
python/paddle/fluid/tests/unittests/test_directory_migration.py
浏览文件 @
aaee07a3
...
...
@@ -91,7 +91,6 @@ class TestDirectory(unittest.TestCase):
'paddle.static.nn.conv3d'
,
'paddle.static.nn.conv3d_transpose'
,
'paddle.static.nn.create_parameter'
,
'paddle.static.nn.crf_decoding'
,
'paddle.static.nn.data_norm'
,
'paddle.static.nn.deform_conv2d'
,
'paddle.static.nn.group_norm'
,
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_crf.py
已删除
100644 → 0
浏览文件 @
265a54aa
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
unittest
import
paddle
import
paddle.dataset.conll05
as
conll05
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid
import
compiler
word_dict
,
verb_dict
,
label_dict
=
conll05
.
get_dict
()
word_dict_len
=
len
(
word_dict
)
label_dict_len
=
len
(
label_dict
)
pred_dict_len
=
len
(
verb_dict
)
mark_dict_len
=
2
word_dim
=
32
mark_dim
=
5
hidden_dim
=
512
depth
=
8
mix_hidden_lr
=
1e-3
embedding_name
=
'emb'
def
db_lstm
(
word
,
predicate
,
ctx_n2
,
ctx_n1
,
ctx_0
,
ctx_p1
,
ctx_p2
,
mark
,
is_sparse
,
**
ignored
):
# 8 features
predicate_embedding
=
fluid
.
layers
.
embedding
(
input
=
predicate
,
is_sparse
=
is_sparse
,
size
=
[
pred_dict_len
,
word_dim
],
dtype
=
'float32'
,
param_attr
=
'vemb'
,
)
mark_embedding
=
fluid
.
layers
.
embedding
(
input
=
mark
,
is_sparse
=
is_sparse
,
size
=
[
mark_dict_len
,
mark_dim
],
dtype
=
'float32'
,
)
word_input
=
[
word
,
ctx_n2
,
ctx_n1
,
ctx_0
,
ctx_p1
,
ctx_p2
]
emb_layers
=
[
fluid
.
layers
.
embedding
(
size
=
[
word_dict_len
,
word_dim
],
is_sparse
=
is_sparse
,
input
=
x
,
param_attr
=
fluid
.
ParamAttr
(
name
=
embedding_name
,
trainable
=
False
),
)
for
x
in
word_input
]
# TODO(zcd): if the parameter is not trainable, the
# parameter's gradient should not generated.
for
emb_layer
in
emb_layers
:
emb_layer
.
stop_gradient
=
True
emb_layers
.
append
(
predicate_embedding
)
emb_layers
.
append
(
mark_embedding
)
hidden_0_layers
=
[
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hidden_dim
,
act
=
'tanh'
)
for
emb
in
emb_layers
]
hidden_0
=
fluid
.
layers
.
sums
(
input
=
hidden_0_layers
)
lstm_0
=
fluid
.
layers
.
dynamic_lstm
(
input
=
hidden_0
,
size
=
hidden_dim
,
candidate_activation
=
'relu'
,
gate_activation
=
'sigmoid'
,
cell_activation
=
'sigmoid'
,
)
# stack L-LSTM and R-LSTM with direct edges
input_tmp
=
[
hidden_0
,
lstm_0
]
for
i
in
range
(
1
,
depth
):
mix_hidden
=
fluid
.
layers
.
sums
(
input
=
[
fluid
.
layers
.
fc
(
input
=
input_tmp
[
0
],
size
=
hidden_dim
,
act
=
'tanh'
),
fluid
.
layers
.
fc
(
input
=
input_tmp
[
1
],
size
=
hidden_dim
,
act
=
'tanh'
),
]
)
lstm
=
fluid
.
layers
.
dynamic_lstm
(
input
=
mix_hidden
,
size
=
hidden_dim
,
candidate_activation
=
'relu'
,
gate_activation
=
'sigmoid'
,
cell_activation
=
'sigmoid'
,
is_reverse
=
((
i
%
2
)
==
1
),
)
input_tmp
=
[
mix_hidden
,
lstm
]
feature_out
=
fluid
.
layers
.
sums
(
input
=
[
fluid
.
layers
.
fc
(
input
=
input_tmp
[
0
],
size
=
label_dict_len
,
act
=
'tanh'
),
fluid
.
layers
.
fc
(
input
=
input_tmp
[
1
],
size
=
label_dict_len
,
act
=
'tanh'
),
]
)
return
feature_out
class
TestCRFModel
(
unittest
.
TestCase
):
def
check_network_convergence
(
self
,
is_sparse
,
build_strategy
=
None
,
use_cuda
=
True
):
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
scope
=
fluid
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
with
fluid
.
program_guard
(
main
,
startup
):
word
=
fluid
.
layers
.
data
(
name
=
'word_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
predicate
=
fluid
.
layers
.
data
(
name
=
'verb_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
ctx_n2
=
fluid
.
layers
.
data
(
name
=
'ctx_n2_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
ctx_n1
=
fluid
.
layers
.
data
(
name
=
'ctx_n1_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
ctx_0
=
fluid
.
layers
.
data
(
name
=
'ctx_0_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
ctx_p1
=
fluid
.
layers
.
data
(
name
=
'ctx_p1_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
ctx_p2
=
fluid
.
layers
.
data
(
name
=
'ctx_p2_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
mark
=
fluid
.
layers
.
data
(
name
=
'mark_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
feature_out
=
db_lstm
(
**
locals
())
target
=
fluid
.
layers
.
data
(
name
=
'target'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
crf_cost
=
fluid
.
layers
.
linear_chain_crf
(
input
=
feature_out
,
label
=
target
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'crfw'
,
learning_rate
=
1e-1
),
)
avg_cost
=
paddle
.
mean
(
crf_cost
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
fluid
.
layers
.
exponential_decay
(
learning_rate
=
0.01
,
decay_steps
=
100000
,
decay_rate
=
0.5
,
staircase
=
True
,
)
)
sgd_optimizer
.
minimize
(
avg_cost
)
train_data
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
conll05
.
test
(),
buf_size
=
8192
),
batch_size
=
8
,
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup
)
train_cp
=
compiler
.
CompiledProgram
(
main
).
with_data_parallel
(
loss_name
=
avg_cost
.
name
,
build_strategy
=
build_strategy
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
word
,
ctx_n2
,
ctx_n1
,
ctx_0
,
ctx_p1
,
ctx_p2
,
predicate
,
mark
,
target
,
],
place
=
fluid
.
CPUPlace
(),
)
data
=
train_data
()
for
i
in
range
(
4
):
cur_batch
=
next
(
data
)
print
(
exe
.
run
(
train_cp
,
feed
=
feeder
.
feed
(
cur_batch
),
fetch_list
=
[
avg_cost
.
name
],
)[
0
]
)
def
_new_build_strategy
(
self
,
use_reduce
=
False
):
build_strategy
=
fluid
.
BuildStrategy
()
if
use_reduce
:
build_strategy
.
reduce_strategy
=
(
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
)
else
:
build_strategy
.
reduce_strategy
=
(
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
)
return
build_strategy
def
test_update_sparse_parameter_all_reduce
(
self
):
if
core
.
is_compiled_with_cuda
():
self
.
check_network_convergence
(
is_sparse
=
True
,
build_strategy
=
self
.
_new_build_strategy
(),
use_cuda
=
True
,
)
self
.
check_network_convergence
(
is_sparse
=
True
,
build_strategy
=
self
.
_new_build_strategy
(),
use_cuda
=
False
,
)
def
test_update_dense_parameter_all_reduce
(
self
):
if
core
.
is_compiled_with_cuda
():
self
.
check_network_convergence
(
is_sparse
=
False
,
build_strategy
=
self
.
_new_build_strategy
(),
use_cuda
=
True
,
)
self
.
check_network_convergence
(
is_sparse
=
False
,
build_strategy
=
self
.
_new_build_strategy
(),
use_cuda
=
False
,
)
def
test_update_sparse_parameter_reduce
(
self
):
if
core
.
is_compiled_with_cuda
():
self
.
check_network_convergence
(
is_sparse
=
True
,
build_strategy
=
self
.
_new_build_strategy
(
use_reduce
=
True
),
use_cuda
=
True
,
)
self
.
check_network_convergence
(
is_sparse
=
True
,
build_strategy
=
self
.
_new_build_strategy
(
use_reduce
=
True
),
use_cuda
=
False
,
)
def
test_update_dense_parameter_reduce
(
self
):
if
core
.
is_compiled_with_cuda
():
self
.
check_network_convergence
(
is_sparse
=
False
,
build_strategy
=
self
.
_new_build_strategy
(
use_reduce
=
True
),
use_cuda
=
True
,
)
self
.
check_network_convergence
(
is_sparse
=
False
,
build_strategy
=
self
.
_new_build_strategy
(
use_reduce
=
True
),
use_cuda
=
False
,
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/static/nn/__init__.py
浏览文件 @
aaee07a3
...
...
@@ -31,7 +31,6 @@ from .common import bilinear_tensor_product # noqa: F401
from
.common
import
py_func
# noqa: F401
from
...tensor.creation
import
create_parameter
# noqa: F401
from
...fluid.layers
import
conv2d
# noqa: F401
from
...fluid.layers
import
crf_decoding
# noqa: F401
from
...fluid.layers
import
layer_norm
# noqa: F401
from
...fluid.layers
import
multi_box_head
# noqa: F401
from
.loss
import
nce
# noqa: F401
...
...
@@ -72,7 +71,6 @@ __all__ = [ # noqa
'conv2d_transpose'
,
'conv3d'
,
'conv3d_transpose'
,
'crf_decoding'
,
'data_norm'
,
'deform_conv2d'
,
'group_norm'
,
...
...
tools/parallel_UT_rule.py
浏览文件 @
aaee07a3
...
...
@@ -1572,7 +1572,6 @@ FOURTH_HIGH_PARALLEL_JOB_NEW = [
FIFTH_PARALLEL_JOB_NEW
=
[
'test_buffer_shared_memory_reuse_pass'
,
'test_buffer_shared_memory_reuse_pass_and_fuse_optimization_op_pass'
,
'test_parallel_executor_crf'
,
'test_multiprocess_reader_exception'
,
'buddy_allocator_test'
,
'test_multiprocess_dataloader_dataset'
,
...
...
tools/static_mode_white_list.py
浏览文件 @
aaee07a3
...
...
@@ -543,7 +543,6 @@ STATIC_MODE_TESTING_LIST = [
'test_transpiler_ops'
,
'test_communicator_sync'
,
'test_collective_optimizer'
,
'test_parallel_executor_crf'
,
'test_parallel_executor_profiler'
,
'test_parallel_executor_transformer'
,
'test_parallel_executor_transformer_auto_growth'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录