Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
aaed5cfc
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
aaed5cfc
编写于
9月 20, 2016
作者:
L
liaogang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
revert real into float for swig API
上级
7ff8e762
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
56 addition
and
56 deletion
+56
-56
paddle/api/Matrix.cpp
paddle/api/Matrix.cpp
+17
-17
paddle/api/PaddleAPI.h
paddle/api/PaddleAPI.h
+22
-22
paddle/api/Util.cpp
paddle/api/Util.cpp
+2
-2
paddle/api/Vector.cpp
paddle/api/Vector.cpp
+15
-15
未找到文件。
paddle/api/Matrix.cpp
浏览文件 @
aaed5cfc
...
...
@@ -44,7 +44,7 @@ Matrix* Matrix::createZero(size_t height, size_t width, bool useGpu) {
return
m
;
}
Matrix
*
Matrix
::
createDense
(
const
std
::
vector
<
real
>&
data
,
size_t
height
,
Matrix
*
Matrix
::
createDense
(
const
std
::
vector
<
float
>&
data
,
size_t
height
,
size_t
width
,
bool
useGpu
)
{
auto
m
=
new
Matrix
();
m
->
m
->
mat
=
paddle
::
Matrix
::
create
(
height
,
width
,
useGpu
);
...
...
@@ -52,7 +52,7 @@ Matrix* Matrix::createDense(const std::vector<real>& data, size_t height,
return
m
;
}
Matrix
*
Matrix
::
createCpuDenseFromNumpy
(
real
*
data
,
int
dim1
,
int
dim2
,
Matrix
*
Matrix
::
createCpuDenseFromNumpy
(
float
*
data
,
int
dim1
,
int
dim2
,
bool
copy
)
{
auto
m
=
new
Matrix
();
if
(
copy
)
{
...
...
@@ -64,7 +64,7 @@ Matrix* Matrix::createCpuDenseFromNumpy(real* data, int dim1, int dim2,
return
m
;
}
Matrix
*
Matrix
::
createGpuDenseFromNumpy
(
real
*
data
,
int
dim1
,
int
dim2
)
{
Matrix
*
Matrix
::
createGpuDenseFromNumpy
(
float
*
data
,
int
dim1
,
int
dim2
)
{
auto
m
=
new
Matrix
();
m
->
m
->
mat
=
paddle
::
Matrix
::
create
(
dim1
,
dim2
,
false
,
true
);
m
->
m
->
mat
->
copyFrom
(
data
,
dim1
*
dim2
);
...
...
@@ -86,7 +86,7 @@ size_t Matrix::getHeight() const { return m->mat->getHeight(); }
size_t
Matrix
::
getWidth
()
const
{
return
m
->
mat
->
getWidth
();
}
real
Matrix
::
get
(
size_t
x
,
size_t
y
)
const
throw
(
RangeError
)
{
float
Matrix
::
get
(
size_t
x
,
size_t
y
)
const
throw
(
RangeError
)
{
if
(
x
>
this
->
getWidth
()
||
y
>
this
->
getHeight
())
{
RangeError
e
;
throw
e
;
...
...
@@ -94,7 +94,7 @@ real Matrix::get(size_t x, size_t y) const throw(RangeError) {
return
m
->
mat
->
getElement
(
x
,
y
);
}
void
Matrix
::
set
(
size_t
x
,
size_t
y
,
real
val
)
throw
(
RangeError
,
void
Matrix
::
set
(
size_t
x
,
size_t
y
,
float
val
)
throw
(
RangeError
,
UnsupportError
)
{
if
(
x
>
this
->
getWidth
()
||
y
>
this
->
getHeight
())
{
RangeError
e
;
...
...
@@ -193,10 +193,10 @@ FloatArray Matrix::getData() const {
auto
rawMat
=
m
->
mat
.
get
();
if
(
dynamic_cast
<
paddle
::
GpuMemoryHandle
*>
(
rawMat
->
getMemoryHandle
().
get
()))
{
// is gpu. then copy data
real
*
data
=
rawMat
->
getData
();
float
*
data
=
rawMat
->
getData
();
size_t
len
=
rawMat
->
getElementCnt
();
real
*
cpuData
=
new
real
[
len
];
hl_memcpy_device2host
(
cpuData
,
data
,
len
*
sizeof
(
real
));
float
*
cpuData
=
new
float
[
len
];
hl_memcpy_device2host
(
cpuData
,
data
,
len
*
sizeof
(
float
));
FloatArray
ret_val
(
cpuData
,
len
);
ret_val
.
needFree
=
true
;
return
ret_val
;
...
...
@@ -208,7 +208,7 @@ FloatArray Matrix::getData() const {
void
Matrix
::
sparseCopyFrom
(
const
std
::
vector
<
int
>&
rows
,
const
std
::
vector
<
int
>&
cols
,
const
std
::
vector
<
real
>&
vals
)
throw
(
UnsupportError
)
{
const
std
::
vector
<
float
>&
vals
)
throw
(
UnsupportError
)
{
auto
cpuSparseMat
=
std
::
dynamic_pointer_cast
<
paddle
::
CpuSparseMatrix
>
(
m
->
mat
);
if
(
cpuSparseMat
!=
nullptr
)
{
...
...
@@ -217,7 +217,7 @@ void Matrix::sparseCopyFrom(
// <<" ValSize = "<<vals.size();
cpuSparseMat
->
copyFrom
(
const_cast
<
std
::
vector
<
int
>&>
(
rows
),
const_cast
<
std
::
vector
<
int
>&>
(
cols
),
const_cast
<
std
::
vector
<
real
>&>
(
vals
));
const_cast
<
std
::
vector
<
float
>&>
(
vals
));
}
else
{
UnsupportError
e
;
throw
e
;
...
...
@@ -226,7 +226,7 @@ void Matrix::sparseCopyFrom(
void
*
Matrix
::
getSharedPtr
()
const
{
return
&
m
->
mat
;
}
void
Matrix
::
toNumpyMatInplace
(
real
**
view_data
,
int
*
dim1
,
void
Matrix
::
toNumpyMatInplace
(
float
**
view_data
,
int
*
dim1
,
int
*
dim2
)
throw
(
UnsupportError
)
{
auto
cpuMat
=
std
::
dynamic_pointer_cast
<
paddle
::
CpuMatrix
>
(
m
->
mat
);
if
(
cpuMat
)
{
...
...
@@ -237,9 +237,9 @@ void Matrix::toNumpyMatInplace(real** view_data, int* dim1,
throw
UnsupportError
();
}
}
void
Matrix
::
copyToNumpyMat
(
real
**
view_m_data
,
int
*
dim1
,
void
Matrix
::
copyToNumpyMat
(
float
**
view_m_data
,
int
*
dim1
,
int
*
dim2
)
throw
(
UnsupportError
)
{
static_assert
(
sizeof
(
paddle
::
real
)
==
sizeof
(
real
),
static_assert
(
sizeof
(
float
)
==
sizeof
(
float
),
"Currently PaddleAPI only support for single "
"precision version of paddle."
);
if
(
this
->
isSparse
())
{
...
...
@@ -247,16 +247,16 @@ void Matrix::copyToNumpyMat(real** view_m_data, int* dim1,
}
else
{
*
dim1
=
m
->
mat
->
getHeight
();
*
dim2
=
m
->
mat
->
getWidth
();
*
view_m_data
=
new
real
[(
*
dim1
)
*
(
*
dim2
)];
*
view_m_data
=
new
float
[(
*
dim1
)
*
(
*
dim2
)];
if
(
auto
cpuMat
=
dynamic_cast
<
paddle
::
CpuMatrix
*>
(
m
->
mat
.
get
()))
{
auto
src
=
cpuMat
->
getData
();
auto
dest
=
*
view_m_data
;
std
::
memcpy
(
dest
,
src
,
sizeof
(
paddle
::
real
)
*
(
*
dim1
)
*
(
*
dim2
));
std
::
memcpy
(
dest
,
src
,
sizeof
(
float
)
*
(
*
dim1
)
*
(
*
dim2
));
}
else
if
(
auto
gpuMat
=
dynamic_cast
<
paddle
::
GpuMatrix
*>
(
m
->
mat
.
get
()))
{
auto
src
=
gpuMat
->
getData
();
auto
dest
=
*
view_m_data
;
hl_memcpy_device2host
(
dest
,
src
,
sizeof
(
paddle
::
real
)
*
(
*
dim1
)
*
(
*
dim2
));
sizeof
(
float
)
*
(
*
dim1
)
*
(
*
dim2
));
}
else
{
LOG
(
WARNING
)
<<
"Unexpected Situation"
;
throw
UnsupportError
();
...
...
@@ -264,7 +264,7 @@ void Matrix::copyToNumpyMat(real** view_m_data, int* dim1,
}
}
void
Matrix
::
copyFromNumpyMat
(
real
*
data
,
int
dim1
,
void
Matrix
::
copyFromNumpyMat
(
float
*
data
,
int
dim1
,
int
dim2
)
throw
(
UnsupportError
,
RangeError
)
{
if
(
isSparse
())
{
throw
UnsupportError
();
...
...
paddle/api/PaddleAPI.h
浏览文件 @
aaed5cfc
...
...
@@ -56,10 +56,10 @@ class UnsupportError {};
/// This type will map to python's list of float.
struct
FloatArray
{
const
real
*
buf
;
const
float
*
buf
;
const
size_t
length
;
bool
needFree
;
// true if the buf is dynamic alloced.
FloatArray
(
const
real
*
b
,
const
size_t
l
);
FloatArray
(
const
float
*
b
,
const
size_t
l
);
};
/// This type will map to python's list of int
...
...
@@ -72,11 +72,11 @@ struct IntArray {
/// This type will map to python's list of (int, float)
struct
IntWithFloatArray
{
const
real
*
valBuf
;
const
float
*
valBuf
;
const
int
*
idxBuf
;
const
size_t
length
;
bool
needFree
;
IntWithFloatArray
(
const
real
*
v
,
const
int
*
i
,
size_t
l
,
bool
f
=
false
);
IntWithFloatArray
(
const
float
*
v
,
const
int
*
i
,
size_t
l
,
bool
f
=
false
);
};
enum
SparseValueType
{
SPARSE_NON_VALUE
=
0
,
SPARSE_VALUE
=
1
};
...
...
@@ -122,7 +122,7 @@ public:
* @param data list of float should be passed in python.
* @note the value will be copy into a new matrix.
*/
static
Matrix
*
createDense
(
const
std
::
vector
<
real
>&
data
,
size_t
height
,
static
Matrix
*
createDense
(
const
std
::
vector
<
float
>&
data
,
size_t
height
,
size_t
width
,
bool
useGpu
=
false
);
/**
...
...
@@ -134,11 +134,11 @@ public:
* @param copy true if copy into a new matrix, false will create
* matrix inplace.
*/
static
Matrix
*
createCpuDenseFromNumpy
(
real
*
data
,
int
dim1
,
int
dim2
,
static
Matrix
*
createCpuDenseFromNumpy
(
float
*
data
,
int
dim1
,
int
dim2
,
bool
copy
=
false
);
/// Create Gpu Dense Matrix from numpy matrix, dtype=float32
static
Matrix
*
createGpuDenseFromNumpy
(
real
*
data
,
int
dim1
,
int
dim2
);
static
Matrix
*
createGpuDenseFromNumpy
(
float
*
data
,
int
dim1
,
int
dim2
);
/**
* Cast to numpy matrix.
...
...
@@ -154,15 +154,15 @@ public:
* numpy_mat = m.toNumpyMat()
* @endcode
*/
void
toNumpyMatInplace
(
real
**
view_data
,
int
*
dim1
,
void
toNumpyMatInplace
(
float
**
view_data
,
int
*
dim1
,
int
*
dim2
)
throw
(
UnsupportError
);
/// Copy To numpy mat.
void
copyToNumpyMat
(
real
**
view_m_data
,
int
*
dim1
,
void
copyToNumpyMat
(
float
**
view_m_data
,
int
*
dim1
,
int
*
dim2
)
throw
(
UnsupportError
);
/// Copy From Numpy Mat
void
copyFromNumpyMat
(
real
*
data
,
int
dim1
,
int
dim2
)
throw
(
UnsupportError
,
void
copyFromNumpyMat
(
float
*
data
,
int
dim1
,
int
dim2
)
throw
(
UnsupportError
,
RangeError
);
/// return true if this matrix is sparse.
...
...
@@ -181,9 +181,9 @@ public:
size_t
getWidth
()
const
;
real
get
(
size_t
x
,
size_t
y
)
const
throw
(
RangeError
);
float
get
(
size_t
x
,
size_t
y
)
const
throw
(
RangeError
);
void
set
(
size_t
x
,
size_t
y
,
real
val
)
throw
(
RangeError
,
UnsupportError
);
void
set
(
size_t
x
,
size_t
y
,
float
val
)
throw
(
RangeError
,
UnsupportError
);
/// return type is list of float
FloatArray
getData
()
const
;
...
...
@@ -195,8 +195,8 @@ public:
*/
void
sparseCopyFrom
(
const
std
::
vector
<
int
>&
rows
,
const
std
::
vector
<
int
>&
cols
,
const
std
::
vector
<
real
>&
values
=
std
::
vector
<
real
>
())
throw
(
UnsupportError
);
const
std
::
vector
<
float
>&
values
=
std
::
vector
<
float
>
())
throw
(
UnsupportError
);
bool
isGpu
()
const
;
...
...
@@ -228,33 +228,33 @@ public:
*
* It will create a new vector, and copy data into it.
*/
static
Vector
*
create
(
const
std
::
vector
<
real
>&
data
,
bool
useGpu
=
false
);
static
Vector
*
create
(
const
std
::
vector
<
float
>&
data
,
bool
useGpu
=
false
);
/**
* Create Cpu Vector from numpy array, which dtype=float32
*
* If copy is false, it will create vector inplace.
*/
static
Vector
*
createCpuVectorFromNumpy
(
real
*
data
,
int
dim
,
static
Vector
*
createCpuVectorFromNumpy
(
float
*
data
,
int
dim
,
bool
copy
=
false
);
/// Create Gpu Vector from numpy array, which dtype=float32
static
Vector
*
createGpuVectorFromNumpy
(
real
*
data
,
int
dim
);
static
Vector
*
createGpuVectorFromNumpy
(
float
*
data
,
int
dim
);
/// Cast to numpy array inplace.
void
toNumpyArrayInplace
(
real
**
view_data
,
int
*
dim1
)
throw
(
UnsupportError
);
void
toNumpyArrayInplace
(
float
**
view_data
,
int
*
dim1
)
throw
(
UnsupportError
);
/// Copy to numpy array.
void
copyToNumpyArray
(
real
**
view_m_data
,
int
*
dim1
);
void
copyToNumpyArray
(
float
**
view_m_data
,
int
*
dim1
);
/// Copy from numpy array.
void
copyFromNumpyArray
(
real
*
data
,
int
dim
);
void
copyFromNumpyArray
(
float
*
data
,
int
dim
);
/// __getitem__ in python
real
get
(
const
size_t
idx
)
const
throw
(
RangeError
,
UnsupportError
);
float
get
(
const
size_t
idx
)
const
throw
(
RangeError
,
UnsupportError
);
/// __setitem__ in python
void
set
(
const
size_t
idx
,
real
val
)
throw
(
RangeError
,
UnsupportError
);
void
set
(
const
size_t
idx
,
float
val
)
throw
(
RangeError
,
UnsupportError
);
/// Return is GPU vector or not.
bool
isGpu
()
const
;
...
...
paddle/api/Util.cpp
浏览文件 @
aaed5cfc
...
...
@@ -31,13 +31,13 @@ void initPaddle(int argc, char** argv) {
feenableexcept
(
FE_INVALID
|
FE_DIVBYZERO
|
FE_OVERFLOW
);
}
FloatArray
::
FloatArray
(
const
real
*
b
,
const
size_t
l
)
FloatArray
::
FloatArray
(
const
float
*
b
,
const
size_t
l
)
:
buf
(
b
),
length
(
l
),
needFree
(
false
)
{}
IntArray
::
IntArray
(
const
int
*
b
,
const
size_t
l
,
bool
f
)
:
buf
(
b
),
length
(
l
),
needFree
(
f
)
{}
IntWithFloatArray
::
IntWithFloatArray
(
const
real
*
v
,
const
int
*
i
,
size_t
l
,
IntWithFloatArray
::
IntWithFloatArray
(
const
float
*
v
,
const
int
*
i
,
size_t
l
,
bool
f
)
:
valBuf
(
v
),
idxBuf
(
i
),
length
(
l
),
needFree
(
f
)
{}
...
...
paddle/api/Vector.cpp
浏览文件 @
aaed5cfc
...
...
@@ -140,7 +140,7 @@ struct VectorPrivate {
paddle
::
VectorPtr
vec
;
void
safeAccessData
(
const
size_t
idx
,
const
std
::
function
<
void
(
real
&
)
>&
func
)
const
const
std
::
function
<
void
(
float
&
)
>&
func
)
const
throw
(
RangeError
,
UnsupportError
)
{
auto
cpuVec
=
std
::
dynamic_pointer_cast
<
const
paddle
::
CpuVector
>
(
vec
);
if
(
cpuVec
!=
nullptr
)
{
...
...
@@ -170,7 +170,7 @@ Vector* Vector::createZero(size_t sz, bool useGpu) {
return
retVec
;
}
Vector
*
Vector
::
create
(
const
std
::
vector
<
real
>&
data
,
bool
useGpu
)
{
Vector
*
Vector
::
create
(
const
std
::
vector
<
float
>&
data
,
bool
useGpu
)
{
auto
retVec
=
new
Vector
();
retVec
->
m
->
vec
=
paddle
::
Vector
::
create
(
data
.
size
(),
useGpu
);
retVec
->
m
->
vec
->
copyFrom
(
data
.
data
(),
data
.
size
());
...
...
@@ -188,7 +188,7 @@ Vector* Vector::createByPaddleVectorPtr(void* ptr) {
}
}
Vector
*
Vector
::
createCpuVectorFromNumpy
(
real
*
data
,
int
dim
,
bool
copy
)
{
Vector
*
Vector
::
createCpuVectorFromNumpy
(
float
*
data
,
int
dim
,
bool
copy
)
{
CHECK_GT
(
dim
,
0
);
auto
retVec
=
new
Vector
();
if
(
copy
)
{
...
...
@@ -200,7 +200,7 @@ Vector* Vector::createCpuVectorFromNumpy(real* data, int dim, bool copy) {
return
retVec
;
}
Vector
*
Vector
::
createGpuVectorFromNumpy
(
real
*
data
,
int
dim
)
{
Vector
*
Vector
::
createGpuVectorFromNumpy
(
float
*
data
,
int
dim
)
{
CHECK_GT
(
dim
,
0
);
auto
retVec
=
new
Vector
();
retVec
->
m
->
vec
=
paddle
::
Vector
::
create
((
size_t
)
dim
,
true
);
...
...
@@ -208,7 +208,7 @@ Vector* Vector::createGpuVectorFromNumpy(real* data, int dim) {
return
retVec
;
}
void
Vector
::
toNumpyArrayInplace
(
real
**
view_data
,
void
Vector
::
toNumpyArrayInplace
(
float
**
view_data
,
int
*
dim1
)
throw
(
UnsupportError
)
{
auto
v
=
std
::
dynamic_pointer_cast
<
paddle
::
CpuVector
>
(
m
->
vec
);
if
(
v
!=
nullptr
)
{
...
...
@@ -219,20 +219,20 @@ void Vector::toNumpyArrayInplace(real** view_data,
}
}
void
Vector
::
copyToNumpyArray
(
real
**
view_m_data
,
int
*
dim1
)
{
void
Vector
::
copyToNumpyArray
(
float
**
view_m_data
,
int
*
dim1
)
{
*
dim1
=
m
->
vec
->
getSize
();
*
view_m_data
=
new
real
[
*
dim1
];
*
view_m_data
=
new
float
[
*
dim1
];
if
(
auto
cpuVec
=
dynamic_cast
<
paddle
::
CpuVector
*>
(
m
->
vec
.
get
()))
{
std
::
memcpy
(
*
view_m_data
,
cpuVec
->
getData
(),
sizeof
(
real
)
*
(
*
dim1
));
std
::
memcpy
(
*
view_m_data
,
cpuVec
->
getData
(),
sizeof
(
float
)
*
(
*
dim1
));
}
else
if
(
auto
gpuVec
=
dynamic_cast
<
paddle
::
CpuVector
*>
(
m
->
vec
.
get
()))
{
hl_memcpy_device2host
(
*
view_m_data
,
gpuVec
->
getData
(),
sizeof
(
real
)
*
(
*
dim1
));
sizeof
(
float
)
*
(
*
dim1
));
}
else
{
LOG
(
INFO
)
<<
"Unexpected situation"
;
}
}
void
Vector
::
copyFromNumpyArray
(
real
*
data
,
int
dim
)
{
void
Vector
::
copyFromNumpyArray
(
float
*
data
,
int
dim
)
{
m
->
vec
->
resize
(
dim
);
m
->
vec
->
copyFrom
(
data
,
dim
);
}
...
...
@@ -241,15 +241,15 @@ bool Vector::isGpu() const {
return
std
::
dynamic_pointer_cast
<
paddle
::
GpuVector
>
(
m
->
vec
)
!=
nullptr
;
}
real
Vector
::
get
(
const
size_t
idx
)
const
throw
(
RangeError
,
UnsupportError
)
{
real
r
;
m
->
safeAccessData
(
idx
,
[
&
](
real
&
o
)
{
r
=
o
;
});
float
Vector
::
get
(
const
size_t
idx
)
const
throw
(
RangeError
,
UnsupportError
)
{
float
r
;
m
->
safeAccessData
(
idx
,
[
&
](
float
&
o
)
{
r
=
o
;
});
return
r
;
}
void
Vector
::
set
(
const
size_t
idx
,
real
val
)
throw
(
RangeError
,
void
Vector
::
set
(
const
size_t
idx
,
float
val
)
throw
(
RangeError
,
UnsupportError
)
{
m
->
safeAccessData
(
idx
,
[
&
](
real
&
o
)
{
o
=
val
;
});
m
->
safeAccessData
(
idx
,
[
&
](
float
&
o
)
{
o
=
val
;
});
}
size_t
Vector
::
getSize
()
const
{
return
m
->
vec
->
getSize
();
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录