Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
aaa25222
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
aaa25222
编写于
1月 09, 2023
作者:
H
Hulek
提交者:
GitHub
1月 09, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Rewrite batch norm act fuse pass tester (#49277)
* Rewritten * change mkldnn to onednn * fix cmake name
上级
e9df6fcd
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
36 addition
and
256 deletion
+36
-256
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+0
-4
paddle/fluid/framework/ir/mkldnn/batch_norm_act_fuse_pass_tester.cc
...id/framework/ir/mkldnn/batch_norm_act_fuse_pass_tester.cc
+0
-216
python/paddle/fluid/tests/unittests/ir/inference/CMakeLists.txt
.../paddle/fluid/tests/unittests/ir/inference/CMakeLists.txt
+1
-1
python/paddle/fluid/tests/unittests/ir/inference/test_onednn_batch_norm_act_fuse_pass.py
...ests/ir/inference/test_onednn_batch_norm_act_fuse_pass.py
+35
-35
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
aaa25222
...
...
@@ -404,10 +404,6 @@ if(WITH_MKLDNN)
test_params_quantization_mkldnn_pass SRCS
mkldnn/params_quantization_mkldnn_pass_tester.cc DEPS
params_quantization_mkldnn_pass
)
cc_test_old
(
test_batch_norm_act_fuse_pass SRCS
mkldnn/batch_norm_act_fuse_pass_tester.cc DEPS batch_norm_act_fuse_pass
pass_test_util
)
set
(
TEST_CONV_BN_PASS_DEPS
conv_bn_fuse_pass
graph_to_program_pass
...
...
paddle/fluid/framework/ir/mkldnn/batch_norm_act_fuse_pass_tester.cc
已删除
100644 → 0
浏览文件 @
e9df6fcd
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/mkldnn/batch_norm_act_fuse_pass.h"
#include "paddle/fluid/framework/ir/pass_test_util.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/framework/program_desc.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
{
void
SetBatchNormAttrs
(
OpDesc
*
bn_op
,
bool
is_test
=
true
,
bool
trainable_stats
=
true
)
{
bn_op
->
SetAttr
(
"is_test"
,
is_test
);
bn_op
->
SetAttr
(
"trainable_statistics"
,
trainable_stats
);
bn_op
->
SetAttr
(
"fuse_with_relu"
,
false
);
bn_op
->
SetAttr
(
"epsilon"
,
0.001
f
);
}
}
// namespace
// ------------------------------ Test cases -----------------------------------
// The below test cases are distinguished by whether following attributes have
// true or false value:
// - is_test
// - trainable_statistics
// The test case name would have only attributes with true value in its name.
TEST
(
FuseBatchNormActOneDNNPass
,
ThrowIsTestTrainableStats
)
{
auto
prog
=
test
::
BuildProgramDesc
(
{
"x"
,
"m"
,
"v"
,
"bn_y"
,
"act_y"
,
"m_out"
,
"var_out"
,
"sm"
,
"sv"
},
{
"scale"
,
"bias"
});
auto
*
bn_op
=
test
::
CreateOp
(
&
prog
,
"batch_norm"
,
{{
"X"
,
"x"
},
{
"Scale"
,
"scale"
},
{
"Bias"
,
"bias"
},
{
"Mean"
,
"m"
},
{
"Variance"
,
"v"
}},
{{
"Y"
,
"bn_y"
},
{
"MeanOut"
,
"m_out"
},
{
"VarianceOut"
,
"var_out"
},
{
"SavedMean"
,
"sm"
},
{
"SavedVariance"
,
"sv"
}});
SetBatchNormAttrs
(
bn_op
,
true
,
true
);
test
::
CreateOp
(
&
prog
,
"relu"
,
{{
"X"
,
"bn_y"
}},
{{
"Out"
,
"act_y"
}},
false
);
Graph
graph
(
prog
);
// No fusion in this attribute configuration
constexpr
int
removed_nodes_count
=
0
;
EXPECT_THROW
(
test
::
RunPassAndAssert
(
&
graph
,
"batch_norm_act_fuse_pass"
,
"x"
,
"act_y"
,
removed_nodes_count
),
paddle
::
platform
::
EnforceNotMet
);
}
TEST
(
FuseBatchNormActOneDNNPass
,
FuseIsTest
)
{
auto
prog
=
test
::
BuildProgramDesc
({
"x"
,
"m"
,
"v"
,
"bn_y"
,
"act_y"
},
{
"scale"
,
"bias"
});
auto
*
bn_op
=
test
::
CreateOp
(
&
prog
,
"batch_norm"
,
{{
"X"
,
"x"
},
{
"Scale"
,
"scale"
},
{
"Bias"
,
"bias"
},
{
"Mean"
,
"m"
},
{
"Variance"
,
"v"
}},
{{
"Y"
,
"bn_y"
}});
SetBatchNormAttrs
(
bn_op
,
true
,
false
);
test
::
CreateOp
(
&
prog
,
"relu"
,
{{
"X"
,
"bn_y"
}},
{{
"Out"
,
"act_y"
}},
false
);
Graph
graph
(
prog
);
constexpr
int
removed_nodes_count
=
2
;
EXPECT_TRUE
(
test
::
RunPassAndAssert
(
&
graph
,
"batch_norm_act_fuse_pass"
,
"x"
,
"act_y"
,
removed_nodes_count
));
EXPECT_TRUE
(
test
::
AssertOpsCount
(
graph
,
{{
"batch_norm"
,
1
},
{
"relu"
,
0
}}));
for
(
const
auto
*
node
:
graph
.
Nodes
())
{
if
(
node
->
IsOp
()
&&
node
->
Op
()
->
Type
()
==
"batch_norm"
)
{
const
auto
*
op
=
node
->
Op
();
ASSERT_TRUE
(
op
->
HasAttr
(
"use_mkldnn"
));
EXPECT_TRUE
(
PADDLE_GET_CONST
(
bool
,
op
->
GetAttr
(
"use_mkldnn"
)));
ASSERT_TRUE
(
op
->
HasAttr
(
"fuse_with_relu"
));
EXPECT_TRUE
(
PADDLE_GET_CONST
(
bool
,
op
->
GetAttr
(
"fuse_with_relu"
)));
ASSERT_TRUE
(
op
->
HasAttr
(
"trainable_statistics"
));
EXPECT_FALSE
(
PADDLE_GET_CONST
(
bool
,
op
->
GetAttr
(
"trainable_statistics"
)));
}
}
}
TEST
(
FuseBatchNormActOneDNNPass
,
ThrowTrainableStats
)
{
auto
prog
=
test
::
BuildProgramDesc
(
{
"x"
,
"m"
,
"v"
,
"bn_y"
,
"act_y"
,
"m_out"
,
"var_out"
,
"sm"
,
"sv"
},
{
"scale"
,
"bias"
});
auto
*
bn_op
=
test
::
CreateOp
(
&
prog
,
"batch_norm"
,
{{
"X"
,
"x"
},
{
"Scale"
,
"scale"
},
{
"Bias"
,
"bias"
},
{
"Mean"
,
"m"
},
{
"Variance"
,
"v"
}},
{{
"Y"
,
"bn_y"
},
{
"MeanOut"
,
"m_out"
},
{
"VarianceOut"
,
"var_out"
},
{
"SavedMean"
,
"sm"
},
{
"SavedVariance"
,
"sv"
}});
SetBatchNormAttrs
(
bn_op
,
false
,
true
);
test
::
CreateOp
(
&
prog
,
"relu"
,
{{
"X"
,
"bn_y"
}},
{{
"Out"
,
"act_y"
}},
false
);
Graph
graph
(
prog
);
// No fusion in this attribute configuration
constexpr
int
removed_nodes_count
=
0
;
EXPECT_THROW
(
test
::
RunPassAndAssert
(
&
graph
,
"batch_norm_act_fuse_pass"
,
"x"
,
"act_y"
,
removed_nodes_count
),
paddle
::
platform
::
EnforceNotMet
);
}
TEST
(
FuseBatchNormActOneDNNPass
,
AllAttrsFalse
)
{
auto
prog
=
test
::
BuildProgramDesc
(
{
"x"
,
"m"
,
"v"
,
"bn_y"
,
"act_y"
,
"m_out"
,
"var_out"
,
"sm"
,
"sv"
},
{
"scale"
,
"bias"
});
auto
*
bn_op
=
test
::
CreateOp
(
&
prog
,
"batch_norm"
,
{{
"X"
,
"x"
},
{
"Scale"
,
"scale"
},
{
"Bias"
,
"bias"
},
{
"Mean"
,
"m"
},
{
"Variance"
,
"v"
}},
{{
"Y"
,
"bn_y"
},
{
"MeanOut"
,
"m_out"
},
{
"VarianceOut"
,
"var_out"
},
{
"SavedMean"
,
"sm"
},
{
"SavedVariance"
,
"sv"
}});
SetBatchNormAttrs
(
bn_op
,
false
,
false
);
test
::
CreateOp
(
&
prog
,
"relu"
,
{{
"X"
,
"bn_y"
}},
{{
"Out"
,
"act_y"
}},
false
);
Graph
graph
(
prog
);
// No fusion in this attribute configuration
constexpr
int
removed_nodes_count
=
0
;
EXPECT_THROW
(
test
::
RunPassAndAssert
(
&
graph
,
"batch_norm_act_fuse_pass"
,
"x"
,
"act_y"
,
removed_nodes_count
),
paddle
::
platform
::
EnforceNotMet
);
}
TEST
(
FuseBatchNormActOneDNNPass
,
ThrowUseMkldnn
)
{
auto
prog
=
test
::
BuildProgramDesc
(
{
"x"
,
"m"
,
"v"
,
"bn_y"
,
"act_y"
,
"m_out"
,
"var_out"
,
"sm"
,
"sv"
},
{
"scale"
,
"bias"
});
auto
*
bn_op
=
test
::
CreateOp
(
&
prog
,
"batch_norm"
,
{{
"X"
,
"x"
},
{
"Scale"
,
"scale"
},
{
"Bias"
,
"bias"
},
{
"Mean"
,
"m"
},
{
"Variance"
,
"v"
}},
{{
"Y"
,
"bn_y"
},
{
"MeanOut"
,
"m_out"
},
{
"VarianceOut"
,
"var_out"
},
{
"SavedMean"
,
"sm"
},
{
"SavedVariance"
,
"sv"
}},
false
);
SetBatchNormAttrs
(
bn_op
,
false
,
false
);
test
::
CreateOp
(
&
prog
,
"relu"
,
{{
"X"
,
"bn_y"
}},
{{
"Out"
,
"act_y"
}},
false
);
Graph
graph
(
prog
);
// No fusion in this attribute configuration
constexpr
int
removed_nodes_count
=
0
;
EXPECT_THROW
(
test
::
RunPassAndAssert
(
&
graph
,
"batch_norm_act_fuse_pass"
,
"x"
,
"act_y"
,
removed_nodes_count
),
paddle
::
platform
::
EnforceNotMet
);
}
TEST
(
FuseBatchNormActOneDNNPass
,
pass_op_version_check
)
{
ASSERT_TRUE
(
paddle
::
framework
::
compatible
::
PassVersionCheckerRegistrar
::
GetInstance
()
.
IsPassCompatible
(
"batch_norm_act_fuse_pass"
));
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
USE_PASS
(
batch_norm_act_fuse_pass
);
python/paddle/fluid/tests/unittests/ir/inference/CMakeLists.txt
浏览文件 @
aaa25222
...
...
@@ -240,7 +240,7 @@ if(WITH_GPU AND TENSORRT_FOUND)
PROPERTIES TIMEOUT 300
)
set_tests_properties
(
test_mkldnn_conv_hard_swish_fuse_pass
PROPERTIES TIMEOUT 300
)
set_tests_properties
(
test_
mkl
dnn_batch_norm_act_fuse_pass PROPERTIES TIMEOUT
set_tests_properties
(
test_
one
dnn_batch_norm_act_fuse_pass PROPERTIES TIMEOUT
100
)
set_tests_properties
(
test_mkldnn_matmul_v2_transpose_reshape_fuse_pass
PROPERTIES TIMEOUT 100
)
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_
mkl
dnn_batch_norm_act_fuse_pass.py
→
python/paddle/fluid/tests/unittests/ir/inference/test_
one
dnn_batch_norm_act_fuse_pass.py
浏览文件 @
aaa25222
...
...
@@ -21,12 +21,12 @@ from auto_scan_test import PassAutoScanTest
from
program_config
import
OpConfig
,
ProgramConfig
,
TensorConfig
class
TestScale
MatmulMkldnn
FusePass
(
PassAutoScanTest
):
class
TestScale
OneDNN
FusePass
(
PassAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_config
(
self
,
draw
):
data_layout
=
draw
(
st
.
sampled_from
([
"NCHW"
,
"NHWC"
]))
data_layout
=
draw
(
st
.
sampled_from
([
'NCHW'
,
'NHWC'
]))
epsilon
=
draw
(
st
.
floats
(
min_value
=
0.0
,
max_value
=
0.001
))
fuse_with_relu
=
draw
(
st
.
booleans
())
is_test
=
draw
(
st
.
sampled_from
([
True
]))
...
...
@@ -43,7 +43,7 @@ class TestScaleMatmulMkldnnFusePass(PassAutoScanTest):
def
generate_input
():
shape
=
[
input_dim1
,
input_dim2
]
if
data_layout
==
"NCHW"
:
if
data_layout
==
'NCHW'
:
shape
.
insert
(
0
,
channel
)
shape
.
insert
(
0
,
batch_size
)
else
:
...
...
@@ -55,38 +55,38 @@ class TestScaleMatmulMkldnnFusePass(PassAutoScanTest):
return
np
.
random
.
random
(
channel
).
astype
(
np
.
float32
)
batch_norm_op
=
OpConfig
(
type
=
"batch_norm"
,
type
=
'batch_norm'
,
inputs
=
{
"X"
:
[
"input_data"
],
"Bias"
:
[
"Bias"
],
"Mean"
:
[
"Mean"
],
"Scale"
:
[
"Scale"
],
"Variance"
:
[
"Variance"
],
'X'
:
[
'input_data'
],
'Bias'
:
[
'Bias'
],
'Mean'
:
[
'Mean'
],
'Scale'
:
[
'Scale'
],
'Variance'
:
[
'Variance'
],
},
outputs
=
{
"Y"
:
[
"norm_output"
],
"MeanOut"
:
[
"Mean"
],
"VarianceOut"
:
[
"Variance"
],
"SavedMean"
:
[
"SavedMean"
],
"SavedVariance"
:
[
"SavedVariance"
],
'Y'
:
[
'norm_output'
],
'MeanOut'
:
[
'Mean'
],
'VarianceOut'
:
[
'Variance'
],
'SavedMean'
:
[
'SavedMean'
],
'SavedVariance'
:
[
'SavedVariance'
],
},
attrs
=
{
"data_layout"
:
data_layout
,
"epsilon"
:
epsilon
,
"fuse_with_relu"
:
fuse_with_relu
,
"is_test"
:
is_test
,
"momentum"
:
momentum
,
"trainable_statistics"
:
trainable_statistics
,
"use_global_stats"
:
use_global_stats
,
"use_mkldnn"
:
use_mkldnn1
,
'data_layout'
:
data_layout
,
'epsilon'
:
epsilon
,
'fuse_with_relu'
:
fuse_with_relu
,
'is_test'
:
is_test
,
'momentum'
:
momentum
,
'trainable_statistics'
:
trainable_statistics
,
'use_global_stats'
:
use_global_stats
,
'use_mkldnn'
:
use_mkldnn1
,
},
)
relu_op
=
OpConfig
(
type
=
"relu"
,
inputs
=
{
"X"
:
[
"norm_output"
]},
outputs
=
{
"Out"
:
[
"relu_output"
]},
attrs
=
{
"use_cudnn"
:
use_cudnn
,
"use_mkldnn"
:
use_mkldnn2
},
type
=
'relu'
,
inputs
=
{
'X'
:
[
'norm_output'
]},
outputs
=
{
'Out'
:
[
'relu_output'
]},
attrs
=
{
'use_cudnn'
:
use_cudnn
,
'use_mkldnn'
:
use_mkldnn2
},
)
model_net
=
[
batch_norm_op
,
relu_op
]
...
...
@@ -94,26 +94,26 @@ class TestScaleMatmulMkldnnFusePass(PassAutoScanTest):
program_config
=
ProgramConfig
(
ops
=
model_net
,
weights
=
{
"Bias"
:
TensorConfig
(
data_gen
=
partial
(
generate_weight
)),
"Mean"
:
TensorConfig
(
data_gen
=
partial
(
generate_weight
)),
"Scale"
:
TensorConfig
(
data_gen
=
partial
(
generate_weight
)),
"Variance"
:
TensorConfig
(
data_gen
=
partial
(
generate_weight
)),
'Bias'
:
TensorConfig
(
data_gen
=
partial
(
generate_weight
)),
'Mean'
:
TensorConfig
(
data_gen
=
partial
(
generate_weight
)),
'Scale'
:
TensorConfig
(
data_gen
=
partial
(
generate_weight
)),
'Variance'
:
TensorConfig
(
data_gen
=
partial
(
generate_weight
)),
},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
))
'input_data'
:
TensorConfig
(
data_gen
=
partial
(
generate_input
))
},
outputs
=
[
"relu_output"
],
outputs
=
[
'relu_output'
],
)
return
program_config
def
sample_predictor_configs
(
self
,
program_config
):
config
=
self
.
create_inference_config
(
use_mkldnn
=
True
)
yield
config
,
[
"batch_norm"
],
(
1e-5
,
1e-5
)
yield
config
,
[
'batch_norm'
],
(
1e-5
,
1e-5
)
def
test
(
self
):
self
.
run_and_statis
(
quant
=
False
,
passes
=
[
"batch_norm_act_fuse_pass"
])
self
.
run_and_statis
(
quant
=
False
,
passes
=
[
'batch_norm_act_fuse_pass'
])
if
__name__
==
"__main__"
:
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录