未验证 提交 aa40d80d 编写于 作者: X xiaoguoguo626807 提交者: GitHub

update lbfgs optimizers (#48938)

* lbfgs right version

* delete log

* code_style

* add test

* delete sparse grad

* add test for converage

* modify example in dygraph

* revert lbfgs

* add test for linesearch

* code_style

* add test

* modify test

* modify test

* modify set

* modify set

* modify test

* modiy code_block; test=docs_preview

* modiy code_block; test=docs_preview
上级 195736cf
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
from paddle.incubate.optimizer import LBFGS
from paddle.incubate.optimizer.line_search_dygraph import (
_cubic_interpolate,
_strong_wolfe,
)
np.random.seed(123)
# func()should be func(w, x)where w is parameter to be optimize ,x is input of optimizer func
# np_w is the init parameter of w
class Net(paddle.nn.Layer):
def __init__(self, np_w, func):
super(Net, self).__init__()
self.func = func
w = paddle.to_tensor(np_w)
self.w = paddle.create_parameter(
shape=w.shape,
dtype=w.dtype,
default_initializer=paddle.nn.initializer.Assign(w),
)
def forward(self, x):
return self.func(self.w, x)
def train_step(inputs, targets, net, opt):
def closure():
outputs = net(inputs)
loss = paddle.nn.functional.mse_loss(outputs, targets)
opt.clear_grad()
loss.backward()
return loss
loss = opt.step(closure)
return loss
class TestLbfgs(unittest.TestCase):
def test_function_fix(self):
paddle.disable_static()
np_w = np.random.rand(1).astype(np.float32)
input = np.random.rand(1).astype(np.float32)
weights = [np.random.rand(1).astype(np.float32) for i in range(5)]
targets = [weights[i] * input for i in range(5)]
def func(w, x):
return w * x
net = Net(np_w, func)
opt = LBFGS(
lr=1,
max_iter=10,
max_eval=None,
tolerance_grad=1e-07,
tolerance_change=1e-09,
history_size=5,
line_search_fn='strong_wolfe',
parameters=net.parameters(),
)
for weight, target in zip(weights, targets):
input = paddle.to_tensor(input)
target = paddle.to_tensor(target)
loss = 1
while loss > 1e-4:
loss = train_step(input, target, net, opt)
np.testing.assert_allclose(net.w, weight, rtol=1e-05)
def test_inf_minima(self):
# not converage
input = np.random.rand(1).astype(np.float32)
def outputs1(x):
# weight[0] = 1.01 weight[1] = 0.99
return x * x * x - 3 * x * x + 3 * 1.01 * 0.99 * x
def outputs2(x):
# weight[0] = 4 weight[1] = 2
return pow(x, 4) + 5 * pow(x, 2)
targets = [outputs1(input), outputs2(input)]
input = paddle.to_tensor(input)
def func1(extream_point, x):
return (
x * x * x
- 3 * x * x
+ 3 * extream_point[0] * extream_point[1] * x
)
def func2(extream_point, x):
return pow(x, extream_point[0]) + 5 * pow(x, extream_point[1])
extream_point = np.array([-2.34, 1.45]).astype('float32')
net1 = Net(extream_point, func1)
# converge of old_sk.pop()
opt1 = LBFGS(
lr=1,
max_iter=10,
max_eval=None,
tolerance_grad=1e-07,
tolerance_change=1e-09,
history_size=1,
line_search_fn='strong_wolfe',
parameters=net1.parameters(),
)
net2 = Net(extream_point, func2)
# converge of line_search = None
opt2 = LBFGS(
lr=1,
max_iter=50,
max_eval=None,
tolerance_grad=1e-07,
tolerance_change=1e-09,
history_size=10,
line_search_fn=None,
parameters=net2.parameters(),
)
n_iter = 0
while n_iter < 20:
loss = train_step(input, paddle.to_tensor(targets[0]), net1, opt1)
n_iter = opt1.state_dict()["state"]["func_evals"]
n_iter = 0
while n_iter < 10:
loss = train_step(input, paddle.to_tensor(targets[1]), net2, opt2)
n_iter = opt1.state_dict()["state"]["func_evals"]
def test_error(self):
# test parameter is not Paddle Tensor
def error_func1():
extream_point = np.array([-1, 2]).astype('float32')
extream_point = paddle.to_tensor(extream_point)
return LBFGS(
lr=1,
max_iter=10,
max_eval=None,
tolerance_grad=1e-07,
tolerance_change=1e-09,
history_size=3,
line_search_fn='strong_wolfe',
parameters=extream_point,
)
self.assertRaises(TypeError, error_func1)
def test_error2(self):
# not converage
input = np.random.rand(1).astype(np.float32)
def outputs2(x):
# weight[0] = 4 weight[1] = 2
return pow(x, 4) + 5 * pow(x, 2)
targets = [outputs2(input)]
input = paddle.to_tensor(input)
def func2(extream_point, x):
return pow(x, extream_point[0]) + 5 * pow(x, extream_point[1])
extream_point = np.array([-2.34, 1.45]).astype('float32')
net2 = Net(extream_point, func2)
# converge of line_search = None
opt2 = LBFGS(
lr=1,
max_iter=50,
max_eval=None,
tolerance_grad=1e-07,
tolerance_change=1e-09,
history_size=10,
line_search_fn='None',
parameters=net2.parameters(),
)
def error_func():
n_iter = 0
while n_iter < 10:
loss = train_step(
input, paddle.to_tensor(targets[0]), net2, opt2
)
n_iter = opt2.state_dict()["state"]["func_evals"]
self.assertRaises(RuntimeError, error_func)
def test_line_search(self):
def func1(x, alpha, d):
return paddle.to_tensor(x + alpha * d), paddle.to_tensor(0.0)
def func2(x, alpha, d):
return paddle.to_tensor(x + alpha * d), paddle.to_tensor(1.0)
def func3(x, alpha, d):
return paddle.to_tensor(x + alpha * d), paddle.to_tensor(-1.0)
_strong_wolfe(
func1,
paddle.to_tensor(1.0),
paddle.to_tensor(0.001),
paddle.to_tensor(0.0),
paddle.to_tensor(1.0),
paddle.to_tensor(0.0),
paddle.to_tensor(0.0),
max_ls=0,
)
_strong_wolfe(
func2,
paddle.to_tensor(1.0),
paddle.to_tensor(-0.001),
paddle.to_tensor(1.0),
paddle.to_tensor(1.0),
paddle.to_tensor(1.0),
paddle.to_tensor(1.0),
max_ls=1,
)
_strong_wolfe(
func3,
paddle.to_tensor(1.0),
paddle.to_tensor(-0.001),
paddle.to_tensor(1.0),
paddle.to_tensor(1.0),
paddle.to_tensor(1.0),
paddle.to_tensor(1.0),
max_ls=1,
)
_cubic_interpolate(
paddle.to_tensor(2.0),
paddle.to_tensor(1.0),
paddle.to_tensor(0.0),
paddle.to_tensor(1.0),
paddle.to_tensor(2.0),
paddle.to_tensor(0.0),
[0.1, 0.5],
)
_cubic_interpolate(
paddle.to_tensor(2.0),
paddle.to_tensor(0.0),
paddle.to_tensor(-3.0),
paddle.to_tensor(1.0),
paddle.to_tensor(1.0),
paddle.to_tensor(-0.1),
[0.1, 0.5],
)
if __name__ == '__main__':
unittest.main()
......@@ -15,6 +15,7 @@
from .lookahead import LookAhead # noqa: F401
from .modelaverage import ModelAverage # noqa: F401
from .distributed_fused_lamb import DistributedFusedLamb # noqa: F401
from .lbfgs import LBFGS # noqa: F401
from . import functional # noqa: F401
__all__ = []
__all__ = ['LBFGS']
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
from functools import reduce
import paddle
from paddle.optimizer import Optimizer
from .line_search_dygraph import _strong_wolfe
class LBFGS(Optimizer):
r"""
The L-BFGS is a quasi-Newton method for solving an unconstrained optimization problem over a differentiable function.
Closely related is the Newton method for minimization. Consider the iterate update formula:
.. math::
x_{k+1} = x_{k} + H_k \nabla{f_k}
If :math:`H_k` is the inverse Hessian of :math:`f` at :math:`x_k`, then it's the Newton method.
If :math:`H_k` is symmetric and positive definite, used as an approximation of the inverse Hessian, then
it's a quasi-Newton. In practice, the approximated Hessians are obtained
by only using the gradients, over either whole or part of the search
history, the former is BFGS, the latter is L-BFGS.
Reference:
Jorge Nocedal, Stephen J. Wright, Numerical Optimization, Second Edition, 2006. pp179: Algorithm 7.5 (L-BFGS).
Args:
lr (float, optional): learning rate .The default value is 1.
max_iter (int, optional): maximal number of iterations per optimization step.
The default value is 20.
max_eval (int, optional): maximal number of function evaluations per optimization
step. The default value is max_iter * 1.25.
tolerance_grad (float, optional): termination tolerance on first order optimality
The default value is 1e-5.
tolerance_change (float, optional): termination tolerance on function
value/parameter changes. The default value is 1e-9.
history_size (int, optional): update history size. The default value is 100.
line_search_fn (string, optional): either 'strong_wolfe' or None. The default value is strong_wolfe.
parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``. \
This parameter is required in dygraph mode. The default value is None.
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
It canbe a float value as coeff of L2 regularization or \
:ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
the regularization setting here in optimizer will be ignored for this parameter. \
Otherwise, the regularization setting here in optimizer will take effect. \
Default None, meaning there is no regularization.
grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of \
some derived class of ``GradientClipBase`` . There are three cliping strategies \
( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , \
:ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
name (str, optional): Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`.
The default value is None.
Return:
loss (Tensor): the final loss of closure.
Examples:
.. code-block:: python
import paddle
import numpy as np
from paddle.incubate.optimizer import LBFGS
paddle.disable_static()
np.random.seed(0)
np_w = np.random.rand(1).astype(np.float32)
np_x = np.random.rand(1).astype(np.float32)
inputs = [np.random.rand(1).astype(np.float32) for i in range(10)]
# y = 2x
targets = [2 * x for x in inputs]
class Net(paddle.nn.Layer):
def __init__(self):
super(Net, self).__init__()
w = paddle.to_tensor(np_w)
self.w = paddle.create_parameter(shape=w.shape, dtype=w.dtype, default_initializer=paddle.nn.initializer.Assign(w))
def forward(self, x):
return self.w * x
net = Net()
opt = LBFGS(lr=1, max_iter=1, max_eval=None, tolerance_grad=1e-07, tolerance_change=1e-09, history_size=100, line_search_fn='strong_wolfe', parameters=net.parameters())
def train_step(inputs, targets):
def closure():
outputs = net(inputs)
loss = paddle.nn.functional.mse_loss(outputs, targets)
print('loss: ', loss.item())
opt.clear_grad()
loss.backward()
return loss
opt.step(closure)
for input, target in zip(inputs, targets):
input = paddle.to_tensor(input)
target = paddle.to_tensor(target)
train_step(input, target)
"""
def __init__(
self,
lr=1.0,
max_iter=20,
max_eval=None,
tolerance_grad=1e-7,
tolerance_change=1e-9,
history_size=100,
line_search_fn=None,
parameters=None,
weight_decay=None,
grad_clip=None,
name=None,
):
if max_eval is None:
max_eval = max_iter * 5 // 4
self.lr = lr
self.max_iter = max_iter
self.max_eval = max_eval
self.tolerance_grad = tolerance_grad
self.tolerance_change = tolerance_change
self.history_size = history_size
self.line_search_fn = line_search_fn
if isinstance(parameters, paddle.Tensor):
raise TypeError(
"parameters argument given to the optimizer should be "
"an iterable of Tensors or dicts, but got " + type(parameters)
)
self.state = defaultdict(dict)
super().__init__(
learning_rate=1.0,
parameters=parameters,
weight_decay=weight_decay,
grad_clip=grad_clip,
name=name,
)
if not isinstance(self._parameter_list[0], dict):
self._params = self._parameter_list
else:
for idx, param_group in enumerate(self._param_groups):
self._params = param_group['params']
self._numel_cache = None
def state_dict(self):
r"""Returns the state of the optimizer as a :class:`dict`.
Return:
state, a dict holding current optimization state. Its content
differs between optimizer classes.
"""
packed_state = {}
for k, v in self.state.items():
packed_state.update({k: v})
return {'state': packed_state}
def _numel(self):
# compute the number of all parameters
if self._numel_cache is None:
self._numel_cache = reduce(
lambda total, p: total + p.numel(), self._params, 0
)
return self._numel_cache
# flatten grad of all parameters
def _gather_flat_grad(self):
views = []
for p in self._params:
if p.grad is None:
view = paddle.zeros_like(p).reshape([-1])
else:
view = p.grad.reshape([-1])
views.append(view)
return paddle.concat(views, axis=0)
# compute xk = xk + alpha * direction
def _add_grad(self, alpha, direction):
offset = 0
for p in self._params:
numel = p.numel().item()
p = paddle.assign(
p.add(
direction[offset : offset + numel].reshape(p.shape) * alpha
),
p,
)
offset += numel
assert offset == self._numel()
def _clone_param(self):
return [p.clone() for p in self._params]
def _set_param(self, params_data):
for p, pdata in zip(self._params, params_data):
paddle.assign(pdata, p)
def _directional_evaluate(self, closure, x, alpha, d):
self._add_grad(alpha, d)
loss = float(closure())
flat_grad = self._gather_flat_grad()
self._set_param(x)
return loss, flat_grad
def step(self, closure):
"""Performs a single optimization step.
Args:
closure (callable): A closure that reevaluates the model
and returns the loss.
"""
with paddle.no_grad():
# Make sure the closure is always called with grad enabled
closure = paddle.set_grad_enabled(True)(closure)
lr = self.lr
max_iter = self.max_iter
max_eval = self.max_eval
tolerance_grad = self.tolerance_grad
tolerance_change = self.tolerance_change
line_search_fn = self.line_search_fn
history_size = self.history_size
state = self.state
state.setdefault('func_evals', 0)
state.setdefault('n_iter', 0)
# evaluate initial f(x) and df/dx
orig_loss = closure()
loss = float(orig_loss)
current_evals = 1
state['func_evals'] += 1
flat_grad = self._gather_flat_grad()
opt_cond = flat_grad.abs().max() <= tolerance_grad
# optimal condition
if opt_cond:
return orig_loss
# tensors cached in state (for tracing)
d = state.get('d')
alpha = state.get('alpha')
old_yk = state.get('old_yk')
old_sk = state.get('old_sk')
ro = state.get('ro')
H_diag = state.get('H_diag')
prev_flat_grad = state.get('prev_flat_grad')
prev_loss = state.get('prev_loss')
n_iter = 0
# optimize for a max of max_iter iterations
while n_iter < max_iter:
# keep track of nb of iterations
n_iter += 1
state['n_iter'] += 1
############################################################
# compute gradient descent direction
############################################################
if state['n_iter'] == 1:
d = flat_grad.neg()
old_yk = []
old_sk = []
ro = []
H_diag = paddle.to_tensor(1.0, dtype=orig_loss.dtype)
else:
# do lbfgs update (update memory)
y = flat_grad.subtract(prev_flat_grad)
s = d.multiply(paddle.to_tensor(alpha, dtype=d.dtype))
ys = y.dot(s)
if ys > 1e-10:
# updating memory
if len(old_yk) == history_size:
# shift history by one (limited-memory)
old_yk.pop(0)
old_sk.pop(0)
ro.pop(0)
# store new direction/step
old_yk.append(y)
old_sk.append(s)
ro.append(1.0 / ys)
# update scale of initial Hessian approximation
H_diag = ys / y.dot(y) # (y*y)
# compute the approximate (L-BFGS) inverse Hessian
# multiplied by the gradient
num_old = len(old_yk)
if 'al' not in state:
state['al'] = [None] * history_size
al = state['al']
# iteration in L-BFGS loop collapsed to use just one buffer
q = flat_grad.neg()
for i in range(num_old - 1, -1, -1):
al[i] = old_sk[i].dot(q) * ro[i]
paddle.assign(q.add(old_yk[i] * (-al[i])), q)
# multiply by initial Hessian
# r/d is the final direction
d = r = paddle.multiply(q, H_diag)
for i in range(num_old):
be_i = old_yk[i].dot(r) * ro[i]
paddle.assign(r.add(old_sk[i] * (al[i] - be_i)), r)
if prev_flat_grad is None:
prev_flat_grad = flat_grad.clone()
else:
paddle.assign(flat_grad, prev_flat_grad)
prev_loss = loss
############################################################
# compute step length
############################################################
# reset initial guess for step size
if state['n_iter'] == 1:
alpha = min(1.0, 1.0 / flat_grad.abs().sum()) * lr
else:
alpha = lr
# directional derivative
gtd = flat_grad.dot(d)
# directional derivative is below tolerance
if gtd > -tolerance_change:
break
# optional line search: user function
ls_func_evals = 0
if line_search_fn is not None:
# perform line search, using user function
if line_search_fn != "strong_wolfe":
raise RuntimeError("only 'strong_wolfe' is supported")
else:
x_init = self._clone_param()
def obj_func(x, alpha, d):
return self._directional_evaluate(
closure, x, alpha, d
)
loss, flat_grad, alpha, ls_func_evals = _strong_wolfe(
obj_func, x_init, alpha, d, loss, flat_grad, gtd
)
self._add_grad(alpha, d)
opt_cond = flat_grad.abs().max() <= tolerance_grad
else:
# no line search, simply move with fixed-step
self._add_grad(alpha, d)
if n_iter != max_iter:
with paddle.set_grad_enabled(True):
loss = float(closure())
flat_grad = self._gather_flat_grad()
opt_cond = flat_grad.abs().max() <= tolerance_grad
ls_func_evals = 1
# update func eval
current_evals += ls_func_evals
state['func_evals'] += ls_func_evals
# optimal condition
if opt_cond:
break
# lack of progress
if (d * alpha).abs().max() <= tolerance_change:
break
if abs(loss - prev_loss) < tolerance_change:
break
# check conditions
if current_evals >= max_eval:
break
if n_iter == max_iter:
break
state['d'] = d
state['alpha'] = alpha
state['old_yk'] = old_yk
state['old_sk'] = old_sk
state['ro'] = ro
state['H_diag'] = H_diag
state['prev_flat_grad'] = prev_flat_grad
state['prev_loss'] = prev_loss
return orig_loss
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
def _cubic_interpolate(x1, f1, g1, x2, f2, g2, bounds=None):
r"""Cubic interpolation between (x1, f1, g1) and (x2, f2, g2).
Use two points and their gradient to determine a cubic function and get the minimun point
between them in the cubic curve.
Reference:
Jorge Nocedal, Stephen J. Wright, Numerical Optimization, Second Edition, 2006.
pp59: formula 3.59
Args:
x1, f1, g1: point1's position, value and gradient.
x2, f2, g2: point2's position, value and gradient.
bounds: bounds of interpolation area
Returns:
min_pos: the minimun point between the specified points in the cubic curve.
"""
# Compute bounds of interpolation area
if bounds is not None:
xmin_bound, xmax_bound = bounds
else:
xmin_bound, xmax_bound = (x1, x2) if x1 <= x2 else (x2, x1)
d1 = g1 + g2 - 3 * (f1 - f2) / (x1 - x2)
d2_square = d1**2 - g1 * g2
if d2_square >= 0:
d2 = d2_square.sqrt()
if x1 <= x2:
min_pos = x2 - (x2 - x1) * ((g2 + d2 - d1) / (g2 - g1 + 2 * d2))
else:
min_pos = x1 - (x1 - x2) * ((g1 + d2 - d1) / (g1 - g2 + 2 * d2))
return min(max(min_pos, xmin_bound), xmax_bound)
else:
return (xmin_bound + xmax_bound) / 2.0
def _strong_wolfe(
obj_func,
xk,
alpha,
d,
loss,
grad,
gtd,
c1=1e-4,
c2=0.9,
tolerance_change=1e-9,
max_ls=25,
):
r"""Implements of line search algorithm that satisfies the strong Wolfe conditions using double zoom.
Reference:
Jorge Nocedal, Stephen J. Wright, Numerical Optimization, Second Edition, 2006.
pp60: Algorithm 3.5 (Line Search Algorithm).
Args:
obj_func: the objective function to minimize. ```` accepts a multivariate input and returns a scalar.
xk (Tensor): the starting point of the iterates.
alpha (Scalar): the initial step size.
d (Tensor): search direction.
loss (scalar): the initial loss
grad (Tensor): the initial grad
c1 (Scalar): parameter for sufficient decrease condition.
c2 (Scalar): parameter for curvature condition.
tolerance_change (Scalar): terminates if the change of function value/position/parameter between
two iterations is smaller than this value.
max_ls(int): max iteration of line search.
alpha_max (float): max step length.
Returns:
loss_new (Scaler): loss of obj_func at final alpha.
grad_new, (Tensor): derivative of obj_func at final alpha.
alpha(Tensor): optimal step length, or 0. if the line search algorithm did not converge.
ls_func_evals (Scaler): number of objective function called in line search process.
Following summarizes the essentials of the strong Wolfe line search algorithm.
Some notations used in the description:
- `func` denotes the objective function.
- `obi_func` is a function of step size alpha, restricting `obj_func` on a line.
obi_func = func(xk + alpha * d),
where xk is the position of k'th iterate, d is the line search direction(decent direction),
and a is the step size.
- alpha : substitute of alpha
- a1 is alpha of last iteration, which is alpha_(i-1).
- a2 is alpha of current iteration, which is alpha_i.
- a_lo is alpha in left position when calls zoom, which is alpha_low.
- a_hi is alpha in right position when calls zoom, which is alpha_high.
Line Search Algorithm:
repeat
Compute obi_func(a2) and derphi(a2).
1. If obi_func(a2) > obi_func(0) + c_1 * a2 * obi_func'(0) or [obi_func(a2) >= obi_func(a1) and i > 1],
alpha= zoom(a1, a2) and stop;
2. If |obi_func'(a2)| <= -c_2 * obi_func'(0),
alpha= a2 and stop;
3. If obi_func'(a2) >= 0,
alpha= zoom(a2, a1) and stop;
a1 = a2
a2 = min(2 * a2, a2)
i = i + 1
end(repeat)
zoom(a_lo, a_hi) Algorithm:
repeat
aj = cubic_interpolation(a_lo, a_hi)
Compute obi_func(aj) and derphi(aj).
1. If obi_func(aj) > obi_func(0) + c_1 * aj * obi_func'(0) or obi_func(aj) >= obi_func(a_lo),
then a_hi <- aj;
2.
2.1. If |obi_func'(aj)| <= -c_2 * obi_func'(0), then alpha= a2 and stop;
2.2. If obi_func'(aj) * (a2 - a1) >= 0, then a_hi = a_lo
a_lo = aj;
end(repeat)
"""
d_norm = d.abs().max()
grad = grad.clone()
# evaluate objective and gradient using initial step
loss_new, grad_new = obj_func(xk, alpha, d)
ls_func_evals = 1
gtd_new = paddle.dot(grad_new, d)
# bracket an interval containing a point satisfying the Wolfe criteria
t_prev, f_prev, g_prev, gtd_prev = (
paddle.to_tensor(0, dtype=grad.dtype),
loss,
grad,
gtd,
)
done = False
ls_iter = 0
while ls_iter < max_ls:
# check conditions
if loss_new > (loss + c1 * alpha * gtd) or (
ls_iter > 1 and loss_new >= f_prev
):
bracket = [t_prev, alpha]
bracket_f = [f_prev, loss_new]
bracket_g = [g_prev, grad_new.clone()]
bracket_gtd = [gtd_prev, gtd_new]
break
if paddle.abs(gtd_new) <= -c2 * gtd:
bracket = [alpha]
bracket_f = [loss_new]
bracket_g = [grad_new]
done = True
break
if gtd_new >= 0:
bracket = [t_prev, alpha]
bracket_f = [f_prev, loss_new]
bracket_g = [g_prev, grad_new.clone()]
bracket_gtd = [gtd_prev, gtd_new]
break
# interpolate
min_step = alpha + 0.01 * (alpha - t_prev)
max_step = alpha * 10
tmp = alpha
alpha = _cubic_interpolate(
t_prev,
f_prev,
gtd_prev,
alpha,
loss_new,
gtd_new,
bounds=(min_step, max_step),
)
# next step
t_prev = tmp
f_prev = loss_new
g_prev = grad_new.clone()
gtd_prev = gtd_new
loss_new, grad_new = obj_func(xk, alpha, d)
ls_func_evals += 1
gtd_new = grad_new.dot(d)
ls_iter += 1
# reached max number of iterations?
if ls_iter == max_ls:
bracket = [0, alpha]
bracket_f = [loss, loss_new]
bracket_g = [grad, grad_new]
# zoom phase: we now have a point satisfying the criteria, or
# a bracket around it. We refine the bracket until we find the
# exact point satisfying the criteria
insuf_progress = False
# find high and low points in bracket
low_pos, high_pos = (0, 1) if bracket_f[0] <= bracket_f[-1] else (1, 0)
while not done and ls_iter < max_ls:
# line-search bracket is so small
if paddle.abs(bracket[1] - bracket[0]) * d_norm < tolerance_change:
break
# compute new trial value
alpha = _cubic_interpolate(
bracket[0],
bracket_f[0],
bracket_gtd[0],
bracket[1],
bracket_f[1],
bracket_gtd[1],
)
# test that we are making sufficient progress:
# in case `alpha` is so close to boundary, we mark that we are making
# insufficient progress, and if
# + we have made insufficient progress in the last step, or
# + `alpha` is at one of the boundary,
# we will move `alpha` to a position which is `0.1 * len(bracket)`
# away from the nearest boundary point.
eps = 0.1 * (max(bracket) - min(bracket))
if min(max(bracket) - alpha, alpha - min(bracket)) < eps:
# interpolation close to boundary
if insuf_progress or alpha >= max(bracket) or alpha <= min(bracket):
# evaluate at 0.1 away from boundary
if paddle.abs(alpha - max(bracket)) < paddle.abs(
alpha - min(bracket)
):
alpha = max(bracket) - eps
else:
alpha = min(bracket) + eps
insuf_progress = False
else:
insuf_progress = True
else:
insuf_progress = False
# Evaluate new point
loss_new, grad_new = obj_func(xk, alpha, d)
ls_func_evals += 1
gtd_new = grad_new.dot(d)
ls_iter += 1
if (
loss_new > (loss + c1 * alpha * gtd)
or loss_new >= bracket_f[low_pos]
):
# Armijo condition not satisfied or not lower than lowest point
bracket[high_pos] = alpha
bracket_f[high_pos] = loss_new
# bracket_g[high_pos] = grad_new.clone(memory_format=torch.contiguous_format)
bracket_g[high_pos] = grad_new.clone()
bracket_gtd[high_pos] = gtd_new
low_pos, high_pos = (
(0, 1) if bracket_f[0] <= bracket_f[1] else (1, 0)
)
else:
if paddle.abs(gtd_new) <= -c2 * gtd:
# Wolfe conditions satisfied
done = True
elif gtd_new * (bracket[high_pos] - bracket[low_pos]) >= 0:
# old high becomes new low
bracket[high_pos] = bracket[low_pos]
bracket_f[high_pos] = bracket_f[low_pos]
bracket_g[high_pos] = bracket_g[low_pos]
bracket_gtd[high_pos] = bracket_gtd[low_pos]
# new point becomes new low
bracket[low_pos] = alpha
bracket_f[low_pos] = loss_new
bracket_g[low_pos] = grad_new.clone()
bracket_gtd[low_pos] = gtd_new
# return stuff
alpha = bracket[low_pos]
loss_new = bracket_f[low_pos]
grad_new = bracket_g[low_pos]
return loss_new, grad_new, alpha, ls_func_evals
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册