Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
aa2ed0dc
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
aa2ed0dc
编写于
1月 03, 2020
作者:
F
FDInSky
提交者:
Kaipeng Deng
1月 03, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix generate_proposal_labesl op (#21793)
* test=develop fix generate_proposal_labesl op
上级
81030125
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
98 addition
and
42 deletion
+98
-42
paddle/fluid/operators/detection/generate_proposal_labels_op.cc
.../fluid/operators/detection/generate_proposal_labels_op.cc
+25
-22
python/paddle/fluid/tests/unittests/test_generate_proposal_labels_op.py
...fluid/tests/unittests/test_generate_proposal_labels_op.py
+73
-20
未找到文件。
paddle/fluid/operators/detection/generate_proposal_labels_op.cc
浏览文件 @
aa2ed0dc
...
...
@@ -124,6 +124,7 @@ std::vector<std::vector<int>> SampleFgBgGt(
// Follow the Faster RCNN's implementation
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
const
T
*
v
=
proposal_to_gt_overlaps
+
i
*
col
;
T
max_overlap
=
*
std
::
max_element
(
v
,
v
+
col
);
if
((
i
<
gt_num
)
&&
(
crowd_data
[
i
]))
{
max_overlap
=
-
1.0
;
...
...
@@ -254,38 +255,40 @@ std::vector<Tensor> SampleRoisForOneImage(
bool
is_cls_agnostic
)
{
// 1.1 map to original image
auto
im_scale
=
im_info
.
data
<
T
>
()[
2
];
Tensor
rpn_rois_slice
;
Tensor
rpn_rois
;
if
(
is_cascade_rcnn
)
{
// slice rpn_rois from gt_box_num refer to detectron
rpn_rois_slice
=
rpn_rois_in
.
Slice
(
gt_boxes
.
dims
()[
0
],
rpn_rois_in
.
dims
()[
0
]);
rpn_rois
.
mutable_data
<
T
>
(
rpn_rois_slice
.
dims
(),
context
.
GetPlace
());
const
T
*
rpn_rois_in_dt
=
rpn_rois_slice
.
data
<
T
>
();
T
*
rpn_rois_dt
=
rpn_rois
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
rpn_rois
.
numel
();
++
i
)
{
rpn_rois_dt
[
i
]
=
rpn_rois_in_dt
[
i
]
/
im_scale
;
}
}
else
{
rpn_rois
.
mutable_data
<
T
>
(
rpn_rois_in
.
dims
(),
context
.
GetPlace
());
const
T
*
rpn_rois_in_dt
=
rpn_rois_in
.
data
<
T
>
();
T
*
rpn_rois_dt
=
rpn_rois
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
rpn_rois
.
numel
();
++
i
)
{
Tensor
rpn_rois
;
rpn_rois
.
mutable_data
<
T
>
(
rpn_rois_in
.
dims
(),
context
.
GetPlace
());
const
T
*
rpn_rois_in_dt
=
rpn_rois_in
.
data
<
T
>
();
T
*
rpn_rois_dt
=
rpn_rois
.
data
<
T
>
();
int
gt_num
=
gt_boxes
.
dims
()[
0
]
*
4
;
for
(
int
i
=
0
;
i
<
rpn_rois
.
numel
();
++
i
)
{
if
(
i
<
gt_num
&&
is_cascade_rcnn
)
{
rpn_rois_dt
[
i
]
=
rpn_rois_in_dt
[
i
];
}
else
{
rpn_rois_dt
[
i
]
=
rpn_rois_in_dt
[
i
]
/
im_scale
;
}
}
// 1.2 compute overlaps
int
proposals_num
=
gt_boxes
.
dims
()[
0
]
+
rpn_rois
.
dims
()[
0
];
Tensor
boxes
;
boxes
.
mutable_data
<
T
>
({
proposals_num
,
kBoxDim
},
context
.
GetPlace
())
;
Concat
<
T
>
(
context
,
gt_boxes
,
rpn_rois
,
&
boxes
);
int
proposals_num
=
rpn_rois
.
dims
()[
0
];
if
(
!
is_cascade_rcnn
)
{
proposals_num
+=
gt_boxes
.
dims
()[
0
]
;
}
Tensor
proposal_to_gt_overlaps
;
proposal_to_gt_overlaps
.
mutable_data
<
T
>
({
proposals_num
,
gt_boxes
.
dims
()[
0
]},
context
.
GetPlace
());
BboxOverlaps
<
T
>
(
boxes
,
gt_boxes
,
&
proposal_to_gt_overlaps
);
Tensor
boxes
;
boxes
.
mutable_data
<
T
>
({
proposals_num
,
kBoxDim
},
context
.
GetPlace
());
if
(
!
is_cascade_rcnn
)
{
Concat
<
T
>
(
context
,
gt_boxes
,
rpn_rois
,
&
boxes
);
}
else
{
T
*
boxes_dt
=
boxes
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
boxes
.
numel
();
++
i
)
{
boxes_dt
[
i
]
=
rpn_rois_dt
[
i
];
}
}
BboxOverlaps
<
T
>
(
boxes
,
gt_boxes
,
&
proposal_to_gt_overlaps
);
// Generate proposal index
std
::
vector
<
std
::
vector
<
int
>>
fg_bg_gt
=
SampleFgBgGt
<
T
>
(
context
,
&
proposal_to_gt_overlaps
,
is_crowd
,
...
...
python/paddle/fluid/tests/unittests/test_generate_proposal_labels_op.py
浏览文件 @
aa2ed0dc
...
...
@@ -25,7 +25,7 @@ from op_test import OpTest
def
generate_proposal_labels_in_python
(
rpn_rois
,
gt_classes
,
is_crowd
,
gt_boxes
,
im_info
,
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weights
,
class_nums
,
is_cls_agnostic
,
is_cascade_rcnn
):
class_nums
,
use_random
,
is_cls_agnostic
,
is_cascade_rcnn
):
rois
=
[]
labels_int32
=
[]
bbox_targets
=
[]
...
...
@@ -36,11 +36,11 @@ def generate_proposal_labels_in_python(
im_info
),
'batch size of rpn_rois and ground_truth is not matched'
for
im_i
in
range
(
len
(
im_info
)):
frcn_blobs
=
_sample_rois
(
rpn_rois
[
im_i
],
gt_classes
[
im_i
],
is_crowd
[
im_i
],
gt_boxes
[
im_i
],
im_info
[
im_i
],
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weight
s
,
class_nums
,
is_cls_agnostic
,
is_cascade_rcnn
)
frcn_blobs
=
_sample_rois
(
rpn_rois
[
im_i
],
gt_classes
[
im_i
],
is_crowd
[
im_i
],
gt_boxes
[
im_i
],
im_info
[
im_i
],
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weights
,
class_num
s
,
use_random
,
is_cls_agnostic
,
is_cascade_rcnn
)
lod
.
append
(
frcn_blobs
[
'rois'
].
shape
[
0
])
rois
.
append
(
frcn_blobs
[
'rois'
])
labels_int32
.
append
(
frcn_blobs
[
'labels_int32'
])
...
...
@@ -53,18 +53,19 @@ def generate_proposal_labels_in_python(
def
_sample_rois
(
rpn_rois
,
gt_classes
,
is_crowd
,
gt_boxes
,
im_info
,
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weights
,
class_nums
,
is_cls_agnostic
,
is_cascade_rcnn
):
bg_thresh_lo
,
bbox_reg_weights
,
class_nums
,
use_random
,
is_c
ls_agnostic
,
is_c
ascade_rcnn
):
rois_per_image
=
int
(
batch_size_per_im
)
fg_rois_per_im
=
int
(
np
.
round
(
fg_fraction
*
rois_per_image
))
# Roidb
im_scale
=
im_info
[
2
]
inv_im_scale
=
1.
/
im_scale
rpn_rois
=
rpn_rois
*
inv_im_scale
if
is_cascade_rcnn
:
rpn_rois
=
rpn_rois
[
gt_boxes
.
shape
[
0
]:,
:]
rpn_rois
=
rpn_rois
[
len
(
gt_boxes
):,
:]
rpn_rois
=
rpn_rois
*
inv_im_scale
boxes
=
np
.
vstack
([
gt_boxes
,
rpn_rois
])
gt_overlaps
=
np
.
zeros
((
boxes
.
shape
[
0
],
class_nums
))
box_to_gt_ind_map
=
np
.
zeros
((
boxes
.
shape
[
0
]),
dtype
=
np
.
int32
)
if
len
(
gt_boxes
)
>
0
:
...
...
@@ -83,13 +84,12 @@ def _sample_rois(rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
overlapped_boxes_ind
]
crowd_ind
=
np
.
where
(
is_crowd
)[
0
]
gt_overlaps
[
crowd_ind
]
=
-
1
gt_overlaps
[
crowd_ind
]
=
-
1.0
max_overlaps
=
gt_overlaps
.
max
(
axis
=
1
)
max_classes
=
gt_overlaps
.
argmax
(
axis
=
1
)
# Cascade RCNN Decode Filter
if
is_cascade_rcnn
:
# Cascade RCNN Decode Filter
ws
=
boxes
[:,
2
]
-
boxes
[:,
0
]
+
1
hs
=
boxes
[:,
3
]
-
boxes
[:,
1
]
+
1
keep
=
np
.
where
((
ws
>
0
)
&
(
hs
>
0
))[
0
]
...
...
@@ -104,7 +104,7 @@ def _sample_rois(rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
fg_inds
=
np
.
where
(
max_overlaps
>=
fg_thresh
)[
0
]
fg_rois_per_this_image
=
np
.
minimum
(
fg_rois_per_im
,
fg_inds
.
shape
[
0
])
# Sample foreground if there are too many
if
fg_inds
.
shape
[
0
]
>
fg_rois_per_this_image
:
if
(
fg_inds
.
shape
[
0
]
>
fg_rois_per_this_image
)
and
use_random
:
fg_inds
=
np
.
random
.
choice
(
fg_inds
,
size
=
fg_rois_per_this_image
,
replace
=
False
)
fg_inds
=
fg_inds
[:
fg_rois_per_this_image
]
...
...
@@ -115,7 +115,7 @@ def _sample_rois(rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
bg_rois_per_this_image
=
np
.
minimum
(
bg_rois_per_this_image
,
bg_inds
.
shape
[
0
])
# Sample background if there are too many
if
bg_inds
.
shape
[
0
]
>
bg_rois_per_this_image
:
if
(
bg_inds
.
shape
[
0
]
>
bg_rois_per_this_image
)
and
use_random
:
bg_inds
=
np
.
random
.
choice
(
bg_inds
,
size
=
bg_rois_per_this_image
,
replace
=
False
)
bg_inds
=
bg_inds
[:
bg_rois_per_this_image
]
...
...
@@ -223,9 +223,12 @@ def _expand_bbox_targets(bbox_targets_input, class_nums, is_cls_agnostic):
class
TestGenerateProposalLabelsOp
(
OpTest
):
def
set_data
(
self
):
self
.
use_random
=
False
self
.
init_test_cascade
()
self
.
init_test_params
()
self
.
init_test_input
()
self
.
init_test_output
()
self
.
inputs
=
{
'RpnRois'
:
(
self
.
rpn_rois
[
0
],
self
.
rpn_rois_lod
),
'GtClasses'
:
(
self
.
gt_classes
[
0
],
self
.
gts_lod
),
...
...
@@ -241,7 +244,7 @@ class TestGenerateProposalLabelsOp(OpTest):
'bg_thresh_lo'
:
self
.
bg_thresh_lo
,
'bbox_reg_weights'
:
self
.
bbox_reg_weights
,
'class_nums'
:
self
.
class_nums
,
'use_random'
:
False
,
'use_random'
:
self
.
use_random
,
'is_cls_agnostic'
:
self
.
is_cls_agnostic
,
'is_cascade_rcnn'
:
self
.
is_cascade_rcnn
}
...
...
@@ -260,6 +263,9 @@ class TestGenerateProposalLabelsOp(OpTest):
self
.
op_type
=
'generate_proposal_labels'
self
.
set_data
()
def
init_test_cascade
(
self
,
):
self
.
is_cascade_rcnn
=
False
def
init_test_params
(
self
):
self
.
batch_size_per_im
=
512
self
.
fg_fraction
=
0.25
...
...
@@ -267,9 +273,7 @@ class TestGenerateProposalLabelsOp(OpTest):
self
.
bg_thresh_hi
=
0.5
self
.
bg_thresh_lo
=
0.0
self
.
bbox_reg_weights
=
[
0.1
,
0.1
,
0.2
,
0.2
]
#self.class_nums = 81
self
.
is_cls_agnostic
=
False
#True
self
.
is_cascade_rcnn
=
True
self
.
is_cls_agnostic
=
False
self
.
class_nums
=
2
if
self
.
is_cls_agnostic
else
81
def
init_test_input
(
self
):
...
...
@@ -287,10 +291,20 @@ class TestGenerateProposalLabelsOp(OpTest):
proposal_nums
)
ground_truth
,
self
.
gts_lod
=
_generate_groundtruth
(
images_shape
,
self
.
class_nums
,
gt_nums
)
self
.
gt_classes
=
[
gt
[
'gt_classes'
]
for
gt
in
ground_truth
]
self
.
gt_boxes
=
[
gt
[
'boxes'
]
for
gt
in
ground_truth
]
self
.
is_crowd
=
[
gt
[
'is_crowd'
]
for
gt
in
ground_truth
]
if
self
.
is_cascade_rcnn
:
rpn_rois_new
=
[]
for
im_i
in
range
(
len
(
self
.
im_info
)):
gt_boxes
=
self
.
gt_boxes
[
im_i
]
rpn_rois
=
np
.
vstack
(
[
gt_boxes
,
self
.
rpn_rois
[
im_i
][
len
(
gt_boxes
):,
:]])
rpn_rois_new
.
append
(
rpn_rois
)
self
.
rpn_rois
=
rpn_rois_new
def
init_test_output
(
self
):
self
.
rois
,
self
.
labels_int32
,
self
.
bbox_targets
,
\
self
.
bbox_inside_weights
,
self
.
bbox_outside_weights
,
\
...
...
@@ -298,7 +312,7 @@ class TestGenerateProposalLabelsOp(OpTest):
self
.
rpn_rois
,
self
.
gt_classes
,
self
.
is_crowd
,
self
.
gt_boxes
,
self
.
im_info
,
self
.
batch_size_per_im
,
self
.
fg_fraction
,
self
.
fg_thresh
,
self
.
bg_thresh_hi
,
self
.
bg_thresh_lo
,
self
.
bbox_reg_weights
,
self
.
class_nums
,
self
.
bbox_reg_weights
,
self
.
class_nums
,
self
.
use_random
,
self
.
is_cls_agnostic
,
self
.
is_cascade_rcnn
)
self
.
rois
=
np
.
vstack
(
self
.
rois
)
...
...
@@ -309,6 +323,45 @@ class TestGenerateProposalLabelsOp(OpTest):
self
.
bbox_outside_weights
=
np
.
vstack
(
self
.
bbox_outside_weights
)
class
TestCascade
(
TestGenerateProposalLabelsOp
):
def
init_test_cascade
(
self
):
self
.
is_cascade_rcnn
=
True
class
TestClsAgnostic
(
TestCascade
):
def
init_test_params
(
self
):
self
.
batch_size_per_im
=
512
self
.
fg_fraction
=
0.25
self
.
fg_thresh
=
0.5
self
.
bg_thresh_hi
=
0.5
self
.
bg_thresh_lo
=
0.0
self
.
bbox_reg_weights
=
[
0.1
,
0.1
,
0.2
,
0.2
]
self
.
is_cls_agnostic
=
True
self
.
class_nums
=
2
if
self
.
is_cls_agnostic
else
81
class
TestOnlyGT
(
TestCascade
):
def
init_test_input
(
self
):
np
.
random
.
seed
(
0
)
gt_nums
=
6
# Keep same with batch_size_per_im for unittest
proposal_nums
=
6
images_shape
=
[[
64
,
64
]]
self
.
im_info
=
np
.
ones
((
len
(
images_shape
),
3
)).
astype
(
np
.
float32
)
for
i
in
range
(
len
(
images_shape
)):
self
.
im_info
[
i
,
0
]
=
images_shape
[
i
][
0
]
self
.
im_info
[
i
,
1
]
=
images_shape
[
i
][
1
]
self
.
im_info
[
i
,
2
]
=
0.8
#scale
ground_truth
,
self
.
gts_lod
=
_generate_groundtruth
(
images_shape
,
self
.
class_nums
,
gt_nums
)
self
.
gt_classes
=
[
gt
[
'gt_classes'
]
for
gt
in
ground_truth
]
self
.
gt_boxes
=
[
gt
[
'boxes'
]
for
gt
in
ground_truth
]
self
.
is_crowd
=
[
gt
[
'is_crowd'
]
for
gt
in
ground_truth
]
self
.
rpn_rois
=
self
.
gt_boxes
self
.
rpn_rois_lod
=
self
.
gts_lod
def
_generate_proposals
(
images_shape
,
proposal_nums
):
rpn_rois
=
[]
rpn_rois_lod
=
[]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录