Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
aa0e84e3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
aa0e84e3
编写于
9月 21, 2022
作者:
W
wenbin
提交者:
GitHub
9月 21, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
residual_no_bias (#46129)
* residual_no_bias * comments * more ut * fix input
上级
3d59fee5
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
347 addition
and
69 deletion
+347
-69
paddle/fluid/framework/ir/preln_residual_bias_fuse_pass.cc
paddle/fluid/framework/ir/preln_residual_bias_fuse_pass.cc
+98
-44
paddle/fluid/framework/ir/preln_residual_bias_fuse_pass.h
paddle/fluid/framework/ir/preln_residual_bias_fuse_pass.h
+11
-0
paddle/fluid/inference/tensorrt/convert/preln_residual_bias.cc
...e/fluid/inference/tensorrt/convert/preln_residual_bias.cc
+20
-13
paddle/fluid/inference/tensorrt/plugin/preln_residual_bias_plugin.cu
...d/inference/tensorrt/plugin/preln_residual_bias_plugin.cu
+15
-12
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+1
-0
python/paddle/fluid/tests/unittests/ir/inference/CMakeLists.txt
.../paddle/fluid/tests/unittests/ir/inference/CMakeLists.txt
+4
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_preln_residual_no_bias.py
...s/ir/inference/test_trt_convert_preln_residual_no_bias.py
+166
-0
python/paddle/fluid/tests/unittests/ir/test_ir_preln_residual_bias_fuse_pass.py
...sts/unittests/ir/test_ir_preln_residual_bias_fuse_pass.py
+32
-0
未找到文件。
paddle/fluid/framework/ir/preln_residual_bias_fuse_pass.cc
浏览文件 @
aa0e84e3
...
...
@@ -33,11 +33,16 @@ namespace ir {
namespace
patterns
{
struct
PrelnResidualBias
:
public
PatternBase
{
PrelnResidualBias
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"preln_residual_bias"
)
{}
PrelnResidualBias
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
,
bool
with_bias
)
:
PatternBase
(
pattern
,
name_scope
,
"preln_residual_bias"
)
{
with_bias_
=
with_bias
;
}
void
operator
()(
PDNode
*
x
,
PDNode
*
y
);
bool
with_bias_
;
// declare operator node's name
PATTERN_DECL_NODE
(
elementwise_bias
);
PATTERN_DECL_NODE
(
elementwise0
);
...
...
@@ -55,32 +60,41 @@ struct PrelnResidualBias : public PatternBase {
};
void
PrelnResidualBias
::
operator
()(
PDNode
*
x
,
PDNode
*
y
)
{
PDNode
*
elementwise0
=
nullptr
;
PDNode
*
elementwise_bias_var
=
nullptr
;
PDNode
*
elementwise0_out_var
=
nullptr
;
// Create nodes for elementwise add op.
x
->
assert_is_op_input
(
"elementwise_add"
);
y
->
assert_is_op_input
(
"elementwise_add"
,
"X"
);
auto
*
elementwise0
=
pattern
->
NewNode
(
elementwise0_repr
())
->
assert_is_op
(
"elementwise_add"
);
auto
*
elementwise_bias_var
=
pattern
->
NewNode
(
elementwise_bias_repr
())
->
assert_is_op_input
(
"elementwise_add"
,
"Y"
)
->
assert_is_persistable_var
();
auto
*
elementwise0_out_var
=
pattern
->
NewNode
(
elementwise0_out_repr
())
->
assert_is_op_output
(
"elementwise_add"
)
->
assert_is_op_input
(
"elementwise_add"
)
->
assert_more
([](
Node
*
x
)
{
if
(
x
->
outputs
.
size
()
==
1
)
{
return
true
;
}
else
{
return
false
;
}
});
if
(
with_bias_
)
{
elementwise0
=
pattern
->
NewNode
(
elementwise0_repr
())
->
assert_is_op
(
"elementwise_add"
);
elementwise_bias_var
=
pattern
->
NewNode
(
elementwise_bias_repr
())
->
assert_is_op_input
(
"elementwise_add"
,
"Y"
)
->
assert_is_persistable_var
();
elementwise0_out_var
=
pattern
->
NewNode
(
elementwise0_out_repr
())
->
assert_is_op_output
(
"elementwise_add"
)
->
assert_is_op_input
(
"elementwise_add"
)
->
assert_more
([](
Node
*
x
)
{
if
(
x
->
outputs
.
size
()
==
1
)
{
return
true
;
}
else
{
return
false
;
}
});
}
else
{
elementwise0_out_var
=
y
;
}
auto
*
elementwise1
=
pattern
->
NewNode
(
elementwise1_repr
())
->
assert_is_op
(
"elementwise_add"
);
auto
*
elementwise1_out_var
=
pattern
->
NewNode
(
elementwise1_out_repr
())
->
assert_is_op_output
(
"elementwise_add"
)
->
assert_is_op_input
(
"layer_norm"
,
"X"
);
// Add links for elementwise_add op.
elementwise0
->
LinksFrom
({
y
,
elementwise_bias_var
})
.
LinksTo
({
elementwise0_out_var
});
if
(
with_bias_
)
{
elementwise0
->
LinksFrom
({
y
,
elementwise_bias_var
})
.
LinksTo
({
elementwise0_out_var
});
elementwise1_out_var
->
assert_is_op_output
(
"elementwise_add"
);
}
elementwise1
->
LinksFrom
({
x
,
elementwise0_out_var
})
.
LinksTo
({
elementwise1_out_var
});
// Create nodes for layer_norm op.
...
...
@@ -115,7 +129,8 @@ void PrelnResidualBias::operator()(PDNode *x, PDNode *y) {
}
// namespace patterns
void
PrelnResidualBiasFusePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
int
PrelnResidualBiasFusePass
::
ApplyPattern
(
ir
::
Graph
*
graph
,
bool
with_bias
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be null."
));
FusePassBase
::
Init
(
"preln_residual_bias_fuse"
,
graph
);
...
...
@@ -123,18 +138,32 @@ void PrelnResidualBiasFusePass::ApplyImpl(ir::Graph *graph) const {
int
found_subgraph_count
=
0
;
GraphPatternDetector
gpd
;
auto
*
x
=
gpd
.
mutable_pattern
()
->
NewNode
(
"preln_residual_bias_fuse/x"
)
->
AsInput
()
->
assert_is_op_input
(
"elementwise_add"
)
->
assert_var_not_persistable
();
auto
*
y
=
gpd
.
mutable_pattern
()
->
NewNode
(
"preln_residual_bias_fuse/y"
)
->
AsInput
()
->
assert_is_op_input
(
"elementwise_add"
,
"X"
)
->
assert_var_not_persistable
();
patterns
::
PrelnResidualBias
fused_pattern
(
gpd
.
mutable_pattern
(),
"preln_residual_bias_fuse"
);
PDNode
*
x
=
nullptr
;
PDNode
*
y
=
nullptr
;
if
(
with_bias
)
{
x
=
gpd
.
mutable_pattern
()
->
NewNode
(
"preln_residual_bias_fuse/x"
)
->
AsInput
()
->
assert_is_op_input
(
"elementwise_add"
)
->
assert_var_not_persistable
();
y
=
gpd
.
mutable_pattern
()
->
NewNode
(
"preln_residual_bias_fuse/y"
)
->
AsInput
()
->
assert_is_op_input
(
"elementwise_add"
,
"X"
)
->
assert_var_not_persistable
();
}
else
{
x
=
gpd
.
mutable_pattern
()
->
NewNode
(
"preln_residual_bias_fuse/x"
)
->
AsInput
()
->
assert_is_op_input
(
"elementwise_add"
,
"X"
);
y
=
gpd
.
mutable_pattern
()
->
NewNode
(
"preln_residual_bias_fuse/y"
)
->
AsInput
()
->
assert_is_op_input
(
"elementwise_add"
,
"Y"
);
}
patterns
::
PrelnResidualBias
fused_pattern
(
gpd
.
mutable_pattern
(),
"preln_residual_bias_fuse"
,
with_bias
);
fused_pattern
(
x
,
y
);
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
...
...
@@ -145,11 +174,19 @@ void PrelnResidualBiasFusePass::ApplyImpl(ir::Graph *graph) const {
}
VLOG
(
4
)
<<
"handle PrelnResidualBias fuse"
;
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_bias
,
elementwise_bias
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise0
,
elementwise0
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise0_out
,
elementwise0_out
,
fused_pattern
);
Node
*
elementwise_bias
=
nullptr
;
Node
*
elementwise0
=
nullptr
;
Node
*
elementwise0_out
=
nullptr
;
if
(
with_bias
)
{
GET_IR_NODE_FROM_SUBGRAPH
(
tmp_elementwise_bias
,
elementwise_bias
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
tmp_elementwise0
,
elementwise0
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
tmp_elementwise0_out
,
elementwise0_out
,
fused_pattern
);
elementwise_bias
=
tmp_elementwise_bias
;
elementwise0
=
tmp_elementwise0
;
elementwise0_out
=
tmp_elementwise0_out
;
}
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise1
,
elementwise1
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise1_out
,
elementwise1_out
,
fused_pattern
);
...
...
@@ -185,7 +222,9 @@ void PrelnResidualBiasFusePass::ApplyImpl(ir::Graph *graph) const {
new_desc
.
SetInput
(
"Y"
,
{
subgraph
.
at
(
y
)
->
Name
()});
new_desc
.
SetInput
(
"Scale"
,
{
layer_norm_scale
->
Name
()});
new_desc
.
SetInput
(
"Bias"
,
{
layer_norm_bias
->
Name
()});
new_desc
.
SetInput
(
"EleBias"
,
{
elementwise_bias
->
Name
()});
if
(
with_bias
)
{
new_desc
.
SetInput
(
"EleBias"
,
{
elementwise_bias
->
Name
()});
}
// outputs
new_desc
.
SetOutput
(
"Out_0"
,
{
layer_norm_out
->
Name
()});
new_desc
.
SetOutput
(
"Out_1"
,
{
elementwise1_out
->
Name
()});
...
...
@@ -194,16 +233,20 @@ void PrelnResidualBiasFusePass::ApplyImpl(ir::Graph *graph) const {
new_desc
.
SetAttr
(
"begin_norm_axis"
,
layer_norm
->
Op
()
->
GetAttr
(
"begin_norm_axis"
));
auto
fused_node
=
graph
->
CreateOpNode
(
&
new_desc
);
// OpDesc will be copied.
del_node_set
.
insert
(
elementwise0
);
if
(
with_bias
)
{
del_node_set
.
insert
(
elementwise0
);
del_node_set
.
insert
(
elementwise0_out
);
}
del_node_set
.
insert
(
elementwise1
);
del_node_set
.
insert
(
elementwise0_out
);
del_node_set
.
insert
(
layer_norm
);
del_node_set
.
insert
(
layer_norm_mean
);
del_node_set
.
insert
(
layer_norm_variance
);
GraphSafeRemoveNodes
(
graph
,
del_node_set
);
IR_NODE_LINK_TO
(
subgraph
.
at
(
x
),
fused_node
);
IR_NODE_LINK_TO
(
subgraph
.
at
(
y
),
fused_node
);
IR_NODE_LINK_TO
(
elementwise_bias
,
fused_node
);
if
(
with_bias
)
{
IR_NODE_LINK_TO
(
elementwise_bias
,
fused_node
);
}
IR_NODE_LINK_TO
(
layer_norm_scale
,
fused_node
);
IR_NODE_LINK_TO
(
layer_norm_bias
,
fused_node
);
IR_NODE_LINK_TO
(
fused_node
,
layer_norm_out
);
...
...
@@ -212,6 +255,17 @@ void PrelnResidualBiasFusePass::ApplyImpl(ir::Graph *graph) const {
};
gpd
(
graph
,
handler
);
return
found_subgraph_count
;
}
void
PrelnResidualBiasFusePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be null."
));
FusePassBase
::
Init
(
"preln_residual_bias_fuse"
,
graph
);
int
found_subgraph_count
=
0
;
found_subgraph_count
=
ApplyPattern
(
graph
,
true
);
found_subgraph_count
+=
ApplyPattern
(
graph
,
false
);
AddStatis
(
found_subgraph_count
);
}
...
...
paddle/fluid/framework/ir/preln_residual_bias_fuse_pass.h
浏览文件 @
aa0e84e3
...
...
@@ -29,6 +29,16 @@ namespace ir {
// other_op4 layer_norm other_op4 other_op3
// |
// other_op3
// or
//
// | | | |
// other_op1 other_op2 other_op1 other_op2
// | | fuse \ /
// |------elementwise_add -> preln_residual_bias
// | | | |
// other_op4 layer_norm other_op4 other_op3
// |
// other_op3
class
Graph
;
class
PrelnResidualBiasFusePass
:
public
FusePassBase
{
...
...
@@ -80,6 +90,7 @@ class PrelnResidualBiasFusePass : public FusePassBase {
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
int
ApplyPattern
(
ir
::
Graph
*
graph
,
bool
with_bias
)
const
;
};
}
// namespace ir
...
...
paddle/fluid/inference/tensorrt/convert/preln_residual_bias.cc
浏览文件 @
aa0e84e3
...
...
@@ -51,12 +51,15 @@ class PrelnResidualBiasOpConverter : public OpConverter {
framework
::
DDim
bias_dims
,
scale_dims
,
ele_bias_dims
;
auto
*
bias
=
get_persistable_data
(
"Bias"
,
&
bias_dims
);
auto
*
scale
=
get_persistable_data
(
"Scale"
,
&
scale_dims
);
auto
*
ele_bias
=
get_persistable_data
(
"EleBias"
,
&
ele_bias_dims
);
auto
const
&
vars
=
op_desc
.
Inputs
(
false
);
bool
has_bias
=
vars
.
find
(
"EleBias"
)
!=
vars
.
end
();
float
*
ele_bias
=
has_bias
?
get_persistable_data
(
"EleBias"
,
&
ele_bias_dims
)
:
nullptr
;
int
bias_size
=
phi
::
product
(
bias_dims
);
int
scale_size
=
phi
::
product
(
scale_dims
);
int
ele_bias_size
=
phi
::
product
(
ele_bias_dims
)
;
int
ele_bias_size
=
has_bias
?
phi
::
product
(
ele_bias_dims
)
:
0
;
float
epsilon
=
PADDLE_GET_CONST
(
float
,
op_desc
.
GetAttr
(
"epsilon"
));
bool
with_fp16
=
engine_
->
WithFp16
()
&&
!
engine_
->
disable_trt_plugin_fp16
();
if
(
engine_
->
precision
()
==
AnalysisConfig
::
Precision
::
kInt8
)
{
...
...
@@ -66,18 +69,22 @@ class PrelnResidualBiasOpConverter : public OpConverter {
nvinfer1
::
ILayer
*
layer
=
nullptr
;
plugin
::
DynamicPluginTensorRT
*
plugin
=
nullptr
;
if
(
with_fp16
)
{
auto
half_ele_bias_data
=
new
half
[
ele_bias_size
];
for
(
int
i
=
0
;
i
<
ele_bias_size
;
i
++
)
{
half_ele_bias_data
[
i
]
=
static_cast
<
half
>
(
ele_bias
[
i
]);
half
*
half_ele_bias_data
=
nullptr
;
if
(
ele_bias_size
>
0
)
{
half_ele_bias_data
=
new
half
[
ele_bias_size
];
for
(
int
i
=
0
;
i
<
ele_bias_size
;
i
++
)
{
half_ele_bias_data
[
i
]
=
static_cast
<
half
>
(
ele_bias
[
i
]);
}
}
plugin
=
new
plugin
::
PrelnResidualBiasPluginDynamic
(
bias
,
scale
,
half_ele_bias_data
,
bias_size
,
scale_size
,
ele_bias_size
,
epsilon
,
with_fp16
);
plugin
=
new
plugin
::
PrelnResidualBiasPluginDynamic
(
bias
,
scale
,
ele_bias_size
>
0
?
half_ele_bias_data
:
nullptr
,
bias_size
,
scale_size
,
ele_bias_size
,
epsilon
,
with_fp16
);
}
else
{
plugin
=
new
plugin
::
PrelnResidualBiasPluginDynamic
(
bias
,
scale
,
...
...
paddle/fluid/inference/tensorrt/plugin/preln_residual_bias_plugin.cu
浏览文件 @
aa0e84e3
...
...
@@ -44,19 +44,22 @@ int PrelnResidualBiasPluginDynamic::initialize() TRT_NOEXCEPT {
scale_
.
data
(),
scale_size_
*
sizeof
(
float
),
cudaMemcpyHostToDevice
);
if
(
with_fp16_
)
{
cudaMalloc
(
&
ele_bias_gpu_
,
sizeof
(
half
)
*
ele_bias_size_
);
cudaMemcpy
(
ele_bias_gpu_
,
fp16_ele_bias_
.
data
(),
ele_bias_size_
*
sizeof
(
half
),
cudaMemcpyHostToDevice
);
if
(
ele_bias_size_
>
0
)
{
if
(
with_fp16_
)
{
cudaMalloc
(
&
ele_bias_gpu_
,
sizeof
(
half
)
*
ele_bias_size_
);
cudaMemcpy
(
ele_bias_gpu_
,
fp16_ele_bias_
.
data
(),
ele_bias_size_
*
sizeof
(
half
),
cudaMemcpyHostToDevice
);
}
else
{
cudaMalloc
(
&
ele_bias_gpu_
,
sizeof
(
float
)
*
ele_bias_size_
);
cudaMemcpy
(
ele_bias_gpu_
,
fp32_ele_bias_
.
data
(),
ele_bias_size_
*
sizeof
(
float
),
cudaMemcpyHostToDevice
);
}
}
else
{
cudaMalloc
(
&
ele_bias_gpu_
,
sizeof
(
float
)
*
ele_bias_size_
);
cudaMemcpy
(
ele_bias_gpu_
,
fp32_ele_bias_
.
data
(),
ele_bias_size_
*
sizeof
(
float
),
cudaMemcpyHostToDevice
);
ele_bias_gpu_
=
nullptr
;
}
return
0
;
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
aa0e84e3
...
...
@@ -142,6 +142,7 @@ if(WIN32)
list
(
REMOVE_ITEM TEST_OPS test_complex_matmul
)
list
(
REMOVE_ITEM TEST_OPS test_ops_nms
)
list
(
REMOVE_ITEM TEST_OPS test_trt_convert_preln_residual_bias
)
list
(
REMOVE_ITEM TEST_OPS test_trt_convert_preln_residual_no_bias
)
list
(
REMOVE_ITEM TEST_OPS test_fused_multi_transformer_int8_op
)
endif
()
list
(
REMOVE_ITEM TEST_OPS test_checkpoint_saver
)
...
...
python/paddle/fluid/tests/unittests/ir/inference/CMakeLists.txt
浏览文件 @
aa0e84e3
...
...
@@ -22,6 +22,10 @@ if(NOT WITH_DISTRIBUTE)
"test_trt_convert_preln_residual_bias"
)
list
(
REMOVE_ITEM TEST_TRT_IR_PASSES
"test_trt_convert_preln_residual_bias"
)
list
(
REMOVE_ITEM TEST_TRT_CONVERTER
"test_trt_convert_preln_residual_bias"
)
list
(
REMOVE_ITEM TEST_INFERENCE_IR_PASSES
"test_trt_convert_preln_residual_no_bias"
)
list
(
REMOVE_ITEM TEST_TRT_IR_PASSES
"test_trt_convert_preln_residual_no_bias"
)
list
(
REMOVE_ITEM TEST_TRT_CONVERTER
"test_trt_convert_preln_residual_no_bias"
)
list
(
REMOVE_ITEM TEST_INFERENCE_IR_PASSES
"test_trt_convert_c_allreduce"
)
list
(
REMOVE_ITEM TEST_TRT_IR_PASSES
"test_trt_convert_c_allreduce"
)
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_preln_residual_no_bias.py
0 → 100644
浏览文件 @
aa0e84e3
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
,
SkipReasons
from
program_config
import
TensorConfig
,
ProgramConfig
import
numpy
as
np
import
paddle.inference
as
paddle_infer
from
functools
import
partial
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
import
unittest
class
TrtConvertSkipLayernormTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
inputs
=
program_config
.
inputs
weights
=
program_config
.
weights
outputs
=
program_config
.
outputs
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
#The input dimension should be less than or equal to the set axis.
if
'begin_norm_axis'
in
attrs
[
0
]
and
attrs
[
0
][
'begin_norm_axis'
]
>=
0
:
if
len
(
inputs
[
'inputX_data'
].
shape
)
<=
attrs
[
0
][
'begin_norm_axis'
]:
return
False
return
True
def
sample_program_configs
(
self
):
def
generate_input1
(
attrs
:
List
[
Dict
[
str
,
Any
]],
batch
):
return
np
.
ones
([
batch
,
128
,
768
]).
astype
(
np
.
float32
)
def
generate_input2
(
attrs
:
List
[
Dict
[
str
,
Any
]],
batch
):
return
np
.
ones
([
batch
,
128
,
768
]).
astype
(
np
.
float32
)
def
generate_weight1
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
random
.
random
([
768
]).
astype
(
np
.
float32
)
def
generate_weight2
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
random
.
random
([
768
]).
astype
(
np
.
float32
)
for
batch
in
[
4
]:
for
epsilon
in
[
1e-5
]:
for
begin_norm_axis
in
[
2
]:
for
enable_int8
in
[
False
,
True
]:
dics
=
[{
"epsilon"
:
epsilon
,
"begin_norm_axis"
:
begin_norm_axis
,
},
{}]
ops_config
=
[{
"op_type"
:
"elementwise_add"
,
"op_inputs"
:
{
"X"
:
[
"inputX_data"
],
"Y"
:
[
"inputY_data"
]
},
"op_outputs"
:
{
"Out"
:
[
"ele_out"
]
},
"op_attrs"
:
{
"axis"
:
-
1
}
},
{
"op_type"
:
"layer_norm"
,
"op_inputs"
:
{
"X"
:
[
"ele_out"
],
"Bias"
:
[
"Bias"
],
"Scale"
:
[
"Scale"
]
},
"op_outputs"
:
{
"Y"
:
[
"layernorm_out"
],
"Mean"
:
[
"Mean"
],
"Variance"
:
[
"Variance"
]
},
"op_attrs"
:
dics
[
0
]
}]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{
"Bias"
:
TensorConfig
(
data_gen
=
partial
(
generate_weight1
,
dics
)),
"Scale"
:
TensorConfig
(
data_gen
=
partial
(
generate_weight2
,
dics
))
},
inputs
=
{
"inputX_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dics
,
batch
)),
"inputY_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input2
,
dics
,
batch
))
},
outputs
=
[
"ele_out"
,
"layernorm_out"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
self
.
dynamic_shape
.
min_input_shape
=
{
"inputX_data"
:
[
4
,
128
,
768
],
"inputY_data"
:
[
4
,
128
,
768
],
"Bias"
:
[
768
],
"Scale"
:
[
768
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"inputX_data"
:
[
4
,
128
,
768
],
"inputY_data"
:
[
4
,
128
,
768
],
"Bias"
:
[
768
],
"Scale"
:
[
768
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"inputX_data"
:
[
4
,
128
,
768
],
"inputY_data"
:
[
4
,
128
,
768
],
"Bias"
:
[
768
],
"Scale"
:
[
768
]
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
return
1
,
4
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# just support dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-2
# atol=1e-2 while rtol is 1e-8
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-2
# atol=1e-2 while rtol is 1e-8
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ir/test_ir_preln_residual_bias_fuse_pass.py
浏览文件 @
aa0e84e3
...
...
@@ -57,5 +57,37 @@ class PrelnResidualBiasFusePassTest(PassTest):
self
.
check_program
(
opt_program
)
class
PrelnResidualBiasFusePassNoBiasTest
(
PassTest
):
def
setUp
(
self
):
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
128
,
768
],
dtype
=
"float32"
,
lod_level
=
0
)
y
=
paddle
.
static
.
data
(
name
=
"y"
,
shape
=
[
128
,
768
],
dtype
=
"float32"
,
lod_level
=
0
)
elementwise_out
=
x
+
y
out
=
paddle
.
static
.
nn
.
layer_norm
(
input
=
elementwise_out
)
self
.
fetch_list
=
[
out
,
elementwise_out
]
self
.
pass_names
=
"preln_residual_bias_fuse_pass"
self
.
fused_op_type
=
"preln_residual_bias"
self
.
num_fused_ops
=
1
def
test_check_program
(
self
):
use_gpu_set
=
[
False
]
if
paddle
.
device
.
is_compiled_with_cuda
():
use_gpu_set
.
append
(
True
)
for
use_gpu
in
use_gpu_set
:
place
=
paddle
.
CUDAPlace
(
0
)
if
use_gpu
else
paddle
.
CPUPlace
()
opt_program
=
self
.
_apply_ir_passes
()
self
.
check_program
(
opt_program
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录