Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a9fb34fa
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a9fb34fa
编写于
12月 18, 2018
作者:
Z
Zhaolong Xing
提交者:
GitHub
12月 18, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #14903 from NHZlX/add_conv_elementwise_pass
Add conv + elementwiseAdd pass
上级
3e32a464
050a68dd
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
251 addition
and
127 deletion
+251
-127
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+1
-0
paddle/fluid/framework/ir/conv_elementwise_add_fuse_pass.cc
paddle/fluid/framework/ir/conv_elementwise_add_fuse_pass.cc
+91
-0
paddle/fluid/framework/ir/conv_elementwise_add_fuse_pass.h
paddle/fluid/framework/ir/conv_elementwise_add_fuse_pass.h
+33
-0
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+27
-1
paddle/fluid/framework/ir/graph_pattern_detector.h
paddle/fluid/framework/ir/graph_pattern_detector.h
+18
-0
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
...id/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
+0
-3
paddle/fluid/inference/api/paddle_pass_builder.h
paddle/fluid/inference/api/paddle_pass_builder.h
+1
-0
paddle/fluid/inference/tensorrt/convert/op_converter.h
paddle/fluid/inference/tensorrt/convert/op_converter.h
+2
-0
paddle/fluid/operators/tensorrt/CMakeLists.txt
paddle/fluid/operators/tensorrt/CMakeLists.txt
+1
-1
paddle/fluid/operators/tensorrt/tensorrt_engine_op.cc
paddle/fluid/operators/tensorrt/tensorrt_engine_op.cc
+1
-4
paddle/fluid/operators/tensorrt/tensorrt_engine_op.cu.cc
paddle/fluid/operators/tensorrt/tensorrt_engine_op.cu.cc
+0
-24
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
+75
-92
paddle/fluid/operators/tensorrt/tensorrt_engine_op_test.cc
paddle/fluid/operators/tensorrt/tensorrt_engine_op_test.cc
+1
-2
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
a9fb34fa
...
...
@@ -44,6 +44,7 @@ pass_library(seqconv_eltadd_relu_fuse_pass inference)
pass_library
(
is_test_pass base
)
pass_library
(
conv_elementwise_add_act_fuse_pass inference
)
pass_library
(
conv_elementwise_add2_act_fuse_pass inference
)
pass_library
(
conv_elementwise_add_fuse_pass inference
)
if
(
WITH_MKLDNN
)
pass_library
(
mkldnn_placement_pass base
)
pass_library
(
depthwise_conv_mkldnn_pass base
)
...
...
paddle/fluid/framework/ir/conv_elementwise_add_fuse_pass.cc
0 → 100644
浏览文件 @
a9fb34fa
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include "paddle/fluid/framework/ir/conv_elementwise_add_fuse_pass.h"
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
#define GET_IR_NODE(node__) GET_IR_NODE_FROM_SUBGRAPH(node__, node__, pattern);
#define GET_NODES \
GET_IR_NODE(conv_op); \
GET_IR_NODE(conv_out); \
GET_IR_NODE(conv_filter); \
GET_IR_NODE(elementwise_add_op); \
GET_IR_NODE(elementwise_add_in_y); \
GET_IR_NODE(elementwise_add_out);
std
::
unique_ptr
<
ir
::
Graph
>
ConvElementwiseAddFusePass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
const
std
::
string
pattern_name
=
"conv_elementwise_add_fuse"
;
FusePassBase
::
Init
(
pattern_name
,
graph
.
get
());
GraphPatternDetector
gpd
;
auto
*
x
=
gpd
.
mutable_pattern
()
->
NewNode
(
"x"
)
->
assert_is_op_input
(
"conv2d"
,
"Input"
)
->
AsInput
();
patterns
::
ConvElementwiseadd
pattern
(
gpd
.
mutable_pattern
(),
pattern_name
);
pattern
(
x
);
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
GET_NODES
;
auto
base_op_desc
=
*
conv_op
->
Op
()
->
Proto
();
std
::
string
bias_name
=
elementwise_add_in_y
->
Name
();
std
::
string
output_name
=
elementwise_add_out
->
Name
();
std
::
string
act_type
=
"identity"
;
framework
::
OpDesc
new_op_desc
(
base_op_desc
,
nullptr
);
new_op_desc
.
SetType
(
"conv2d_fusion"
);
new_op_desc
.
SetInput
(
"Bias"
,
{
bias_name
});
new_op_desc
.
SetInput
(
"ResidualData"
,
{});
new_op_desc
.
SetAttr
(
"activation"
,
act_type
);
new_op_desc
.
SetOutput
(
"Output"
,
{
output_name
});
new_op_desc
.
SetAttr
(
"is_test"
,
true
);
new_op_desc
.
SetAttr
(
"use_cudnn"
,
false
);
new_op_desc
.
Flush
();
// Create a new node for the fused op.
auto
*
new_conv_op
=
graph
->
CreateOpNode
(
&
new_op_desc
);
// Link inputs and outputs.
PADDLE_ENFORCE
(
subgraph
.
count
(
x
));
auto
*
conv_in_node
=
subgraph
.
at
(
x
);
IR_NODE_LINK_TO
(
conv_in_node
,
new_conv_op
);
// Input
IR_NODE_LINK_TO
(
conv_filter
,
new_conv_op
);
// Filter
IR_NODE_LINK_TO
(
elementwise_add_in_y
,
new_conv_op
);
// Bias
IR_NODE_LINK_TO
(
new_conv_op
,
elementwise_add_out
);
// Output
// Delete the unneeded nodes.
GraphSafeRemoveNodes
(
graph
.
get
(),
{
conv_op
,
conv_out
,
elementwise_add_op
});
};
gpd
(
graph
.
get
(),
handler
);
return
graph
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
conv_elementwise_add_fuse_pass
,
paddle
::
framework
::
ir
::
ConvElementwiseAddFusePass
);
paddle/fluid/framework/ir/conv_elementwise_add_fuse_pass.h
0 → 100644
浏览文件 @
a9fb34fa
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
ConvElementwiseAddFusePass
:
public
FusePassBase
{
public:
virtual
~
ConvElementwiseAddFusePass
()
{}
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
;
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
a9fb34fa
...
...
@@ -17,7 +17,6 @@
#include <string>
#include <vector>
#include "graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/graph_traits.h"
...
...
@@ -1210,6 +1209,33 @@ PDNode *patterns::ConvElementwiseadd2Act::operator()(PDNode *conv_in) {
return
act_out
;
}
PDNode
*
patterns
::
ConvElementwiseadd
::
operator
()(
PDNode
*
conv_in
)
{
conv_in
->
AsInput
();
auto
conv_op
=
pattern
->
NewNode
(
conv_op_repr
())
->
assert_is_op
(
"conv2d"
);
auto
conv_out
=
pattern
->
NewNode
(
conv_out_repr
())
->
assert_is_op_output
(
"conv2d"
)
->
assert_is_op_input
(
"elementwise_add"
,
"X"
)
->
AsIntermediate
();
auto
conv_filter
=
pattern
->
NewNode
(
conv_filter_repr
())
->
assert_is_op_input
(
"conv2d"
,
"Filter"
)
->
AsInput
();
auto
elementwise_add_op
=
pattern
->
NewNode
(
elementwise_add_op_repr
())
->
assert_is_op
(
"elementwise_add"
);
auto
elementwise_add_in_y
=
pattern
->
NewNode
(
elementwise_add_in_y_repr
())
->
assert_is_op_input
(
"elementwise_add"
,
"Y"
)
->
AsInput
();
auto
elementwise_add_out
=
pattern
->
NewNode
(
elementwise_add_out_repr
())
->
assert_is_op_output
(
"elementwise_add"
)
->
AsOutput
();
conv_op
->
LinksFrom
({
conv_in
,
conv_filter
});
conv_out
->
LinksFrom
({
conv_op
});
elementwise_add_op
->
LinksFrom
({
conv_out
,
elementwise_add_in_y
})
.
LinksTo
({
elementwise_add_out
});
return
elementwise_add_out
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/graph_pattern_detector.h
浏览文件 @
a9fb34fa
...
...
@@ -716,6 +716,24 @@ struct ConvElementwiseadd2Act : public PatternBase {
PATTERN_DECL_NODE
(
act_out
);
};
// Conv + ElementwiseAdd
// This pattern should be used after ConvElementwiseadd2Act or
// ConvElementwiseadd pass
struct
ConvElementwiseadd
:
public
PatternBase
{
ConvElementwiseadd
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"conv_elementwiseadd"
)
{}
PDNode
*
operator
()(
PDNode
*
conv_in
);
PATTERN_DECL_NODE
(
conv_op
);
PATTERN_DECL_NODE
(
conv_out
);
PATTERN_DECL_NODE
(
conv_filter
);
PATTERN_DECL_NODE
(
elementwise_add_op
);
PATTERN_DECL_NODE
(
elementwise_add_in_y
);
PATTERN_DECL_NODE
(
elementwise_add_out
);
};
}
// namespace patterns
// Link two ir::Nodes from each other.
...
...
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
浏览文件 @
a9fb34fa
...
...
@@ -63,7 +63,6 @@ std::unique_ptr<framework::ir::Graph> analysis::TensorRtSubgraphPass::ApplyImpl(
void
TensorRtSubgraphPass
::
CreateTensorRTOp
(
framework
::
ir
::
Node
*
node
,
Graph
*
graph
)
const
{
auto
*
op_desc
=
node
->
Op
();
static
int
counter
{
0
};
auto
&
subgraph
=
*
Agent
(
node
).
subgraph
();
PADDLE_ENFORCE
(
!
subgraph
.
empty
());
...
...
@@ -192,8 +191,6 @@ void TensorRtSubgraphPass::CreateTensorRTOp(framework::ir::Node *node,
block_desc
.
Proto
()
->
SerializeAsString
());
SetAttr
(
op_desc
->
Proto
(),
"max_batch_size"
,
Get
<
int
>
(
"max_batch_size"
));
SetAttr
(
op_desc
->
Proto
(),
"workspace_size"
,
Get
<
int
>
(
"workspace_size"
));
SetAttr
(
op_desc
->
Proto
(),
"engine_uniq_key"
,
"trt-"
+
std
::
to_string
(
counter
++
));
SetAttr
(
op_desc
->
Proto
(),
"parameters"
,
ExtractParameters
(
graph
->
Nodes
()));
SetAttr
(
op_desc
->
Proto
(),
"output_name_mapping"
,
output_mapping
);
}
...
...
paddle/fluid/inference/api/paddle_pass_builder.h
浏览文件 @
a9fb34fa
...
...
@@ -122,6 +122,7 @@ class GpuPassStrategy : public PassStrategy {
"conv_bn_fuse_pass"
,
//
"conv_elementwise_add_act_fuse_pass"
,
//
"conv_elementwise_add2_act_fuse_pass"
,
//
"conv_elementwise_add_fuse_pass"
,
//
});
}
...
...
paddle/fluid/inference/tensorrt/convert/op_converter.h
浏览文件 @
a9fb34fa
...
...
@@ -103,6 +103,7 @@ class OpConverter {
void
ConvertBlock
(
const
framework
::
proto
::
BlockDesc
&
block
,
const
std
::
unordered_set
<
std
::
string
>&
parameters
,
const
framework
::
Scope
&
scope
,
TensorRTEngine
*
engine
)
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
mut_
);
for
(
int
i
=
0
;
i
<
block
.
ops_size
();
i
++
)
{
const
auto
&
op
=
block
.
ops
(
i
);
ConvertOp
(
op
,
parameters
,
scope
,
engine
);
...
...
@@ -125,6 +126,7 @@ class OpConverter {
std
::
unordered_map
<
std
::
string
,
OpConverter
*>
converters_
;
// fluid inference scope
framework
::
Scope
*
scope_
{
nullptr
};
std
::
mutex
mut_
;
};
}
// namespace tensorrt
...
...
paddle/fluid/operators/tensorrt/CMakeLists.txt
浏览文件 @
a9fb34fa
op_library
(
tensorrt_engine_op DEPS tensorrt_engine tensorrt_converter
)
file
(
APPEND
${
pybind_file
}
"USE_
CUDA_ONLY
_OP(tensorrt_engine);
\n
"
)
file
(
APPEND
${
pybind_file
}
"USE_
NO_KERNEL
_OP(tensorrt_engine);
\n
"
)
nv_test
(
test_tensorrt_engine_op SRCS tensorrt_engine_op_test.cc
DEPS tensorrt_engine_op
analysis
)
paddle/fluid/operators/tensorrt/tensorrt_engine_op.cc
浏览文件 @
a9fb34fa
...
...
@@ -21,8 +21,6 @@
namespace
paddle
{
DEFINE_int32
(
tensorrt_engine_batch_size
,
1
,
"the batch_size of TensorRT"
);
namespace
operators
{
class
TensorRTEngineOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
@@ -31,7 +29,6 @@ class TensorRTEngineOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Xs"
,
"A list of inputs."
).
AsDuplicable
();
AddOutput
(
"Ys"
,
"A list of outputs"
).
AsDuplicable
();
AddAttr
<
std
::
string
>
(
"subgraph"
,
"the subgraph."
);
AddAttr
<
std
::
string
>
(
"engine_uniq_key"
,
"unique key for the TRT engine."
);
AddAttr
<
int
>
(
"max_batch_size"
,
"the maximum batch size."
);
AddAttr
<
int
>
(
"workspace_size"
,
"the workspace size."
);
AddComment
(
"TensorRT engine operator."
);
...
...
@@ -50,6 +47,6 @@ class TensorRTEngineInferVarType : public framework::VarTypeInference {
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
tensorrt_engine
,
ops
::
TensorRTEngineOp
,
ops
::
TensorRTEngineOpMaker
,
ops
::
TensorRTEngineOpMaker
);
ops
::
TensorRTEngineOpMaker
);
#endif // PADDLE_WITH_CUDA
paddle/fluid/operators/tensorrt/tensorrt_engine_op.cu.cc
已删除
100644 → 0
浏览文件 @
3e32a464
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/tensorrt/tensorrt_engine_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
tensorrt_engine
,
ops
::
TensorRTEngineKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
TensorRTEngineKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
TensorRTEngineKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
TensorRTEngineKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
浏览文件 @
a9fb34fa
...
...
@@ -27,8 +27,6 @@
namespace
paddle
{
DECLARE_int32
(
tensorrt_engine_batch_size
);
namespace
operators
{
using
FluidDT
=
framework
::
proto
::
VarType_Type
;
...
...
@@ -49,7 +47,7 @@ TRT_DT FluidDataType2TRT(FluidDT type) {
return
TRT_DT
::
kINT32
;
}
nvinfer1
::
Dims
Vec2TRT_Dims
(
const
std
::
vector
<
int64_t
>
&
shape
)
{
nvinfer1
::
Dims
Vec2TRT_Dims
(
const
std
::
vector
<
int64_t
>
&
shape
)
{
PADDLE_ENFORCE_GT
(
shape
.
size
(),
1UL
,
"TensorRT' tensor input requires at least 2 dimensions"
);
PADDLE_ENFORCE_LE
(
shape
.
size
(),
4UL
,
...
...
@@ -63,128 +61,119 @@ nvinfer1::Dims Vec2TRT_Dims(const std::vector<int64_t>& shape) {
}
// namespace // NOLINT
using
inference
::
Singleton
;
using
inference
::
tensorrt
::
TRT_EngineManager
;
using
inference
::
tensorrt
::
TensorRTEngine
;
class
TensorRTEngineOp
:
public
framework
::
OperatorBase
{
private:
std
::
vector
<
std
::
string
>
input_names_
;
std
::
unordered_set
<
std
::
string
>
param_names_
;
mutable
std
::
unique_ptr
<
TensorRTEngine
>
trt_engine_
;
int
max_batch_size_
;
int
workspace_size_
;
class
TensorRTEngineOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
TensorRTEngineOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
framework
::
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{
input_names_
=
Inputs
(
"Xs"
);
max_batch_size_
=
Attr
<
int
>
(
"max_batch_size"
);
workspace_size_
=
Attr
<
int
>
(
"workspace_size"
);
auto
params
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"parameters"
);
for
(
const
auto
&
param
:
params
)
{
param_names_
.
insert
(
param
);
}
}
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{}
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
input0
=
ctx
.
Inputs
(
"Xs"
).
front
();
framework
::
OpKernelType
kt
=
framework
::
OpKernelType
(
ctx
.
scope
().
FindVar
(
input0
)
->
GetMutable
<
framework
::
LoDTensor
>
()
->
type
(),
ctx
.
GetPlace
());
return
kt
;
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
RunTrt
(
scope
,
dev_place
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
TensorRTEngineKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
engine_name
=
context
.
Attr
<
std
::
string
>
(
"engine_uniq_key"
);
int
max_batch_size
=
context
.
Attr
<
int
>
(
"max_batch_size"
);
if
(
!
Singleton
<
TRT_EngineManager
>::
Global
().
HasEngine
(
engine_name
))
{
Prepare
(
context
);
void
RunTrt
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
{
int
runtime_batch
=
1
;
if
(
trt_engine_
.
get
()
==
nullptr
)
{
trt_engine_
.
reset
(
new
TensorRTEngine
(
max_batch_size_
,
workspace_size_
,
nullptr
,
boost
::
get
<
platform
::
CUDAPlace
>
(
dev_place
).
device
));
Prepare
(
scope
,
dev_place
,
trt_engine_
.
get
()
);
}
auto
*
engine
=
Singleton
<
TRT_EngineManager
>::
Global
().
Get
(
engine_name
);
auto
input_names
=
context
.
op
().
Inputs
(
"Xs"
);
PADDLE_ENFORCE
(
!
input_names
.
empty
(),
"should pass more than one inputs"
);
PADDLE_ENFORCE_LE
(
FLAGS_tensorrt_engine_batch_size
,
max_batch_size
);
auto
*
engine
=
trt_engine_
.
get
();
PADDLE_ENFORCE
(
!
input_names_
.
empty
(),
"should pass more than one inputs"
);
std
::
vector
<
std
::
string
>
output_maps
=
context
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"output_name_mapping"
);
Attr
<
std
::
vector
<
std
::
string
>>
(
"output_name_mapping"
);
auto
params
=
context
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"parameters"
);
std
::
unordered_set
<
std
::
string
>
parameters
;
for
(
const
auto
&
param
:
params
)
{
parameters
.
insert
(
param
);
}
// Convert input tensor from fluid to engine.
for
(
const
auto
&
x
:
context
.
Inputs
(
"Xs"
))
{
if
(
param
eters
.
count
(
x
))
continue
;
for
(
const
auto
&
x
:
Inputs
(
"Xs"
))
{
if
(
param
_names_
.
count
(
x
))
continue
;
// convert input and copy to TRT engine's buffer
auto
&
t
=
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
context
.
scope
(),
x
);
auto
&
t
=
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
scope
,
x
);
auto
t_shape
=
framework
::
vectorize
(
t
.
dims
());
runtime_batch
=
t_shape
[
0
];
if
(
platform
::
is_cpu_place
(
t
.
place
()))
{
engine
->
SetInputFromCPU
(
x
,
static_cast
<
const
void
*>
(
t
.
data
<
void
>
()),
engine
->
SetInputFromCPU
(
x
,
static_cast
<
const
void
*>
(
t
.
data
<
void
>
()),
t
.
memory_size
());
}
else
{
engine
->
SetInputFromGPU
(
x
,
static_cast
<
const
void
*>
(
t
.
data
<
void
>
()),
engine
->
SetInputFromGPU
(
x
,
static_cast
<
const
void
*>
(
t
.
data
<
void
>
()),
t
.
memory_size
());
}
}
PADDLE_ENFORCE_LE
(
runtime_batch
,
max_batch_size_
);
// Execute the engine.
PADDLE_ENFORCE_GT
(
FLAGS_tensorrt_engine_batch_size
,
0
);
engine
->
Execute
(
FLAGS_tensorrt_engine_batch_size
);
engine
->
Execute
(
runtime_batch
);
// Convert output tensor from engine to fluid
int
output_index
=
0
;
VLOG
(
4
)
<<
"TensorRT Engine Op Outputs:"
;
for
(
const
auto
&
y
:
context
.
Outputs
(
"Ys"
))
{
for
(
const
auto
&
y
:
Outputs
(
"Ys"
))
{
VLOG
(
4
)
<<
y
;
// convert output and copy to fluid.
nvinfer1
::
ITensor
*
trt_t
=
engine
->
GetITensor
(
output_maps
[
output_index
]);
nvinfer1
::
ITensor
*
trt_t
=
engine
->
GetITensor
(
output_maps
[
output_index
]);
auto
dims
=
trt_t
->
getDimensions
();
// Use the output ITensor's dims to reshape the Fluid Tensor.
// The ITensor doesn't contain the batch size dim.
std
::
vector
<
int
>
ddim
;
ddim
.
push_back
(
FLAGS_tensorrt_engine_batch_size
);
ddim
.
push_back
(
runtime_batch
);
for
(
int
i
=
0
;
i
<
dims
.
nbDims
;
i
++
)
{
ddim
.
push_back
(
dims
.
d
[
i
]);
}
auto
*
fluid_v
=
context
.
scope
()
.
FindVar
(
y
);
auto
*
fluid_v
=
scope
.
FindVar
(
y
);
PADDLE_ENFORCE_NOT_NULL
(
fluid_v
,
"no output variable called %s"
,
y
);
auto
*
fluid_t
=
fluid_v
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
fluid_t
=
fluid_v
->
GetMutable
<
framework
::
LoDTensor
>
();
fluid_t
->
Resize
(
framework
::
make_ddim
(
ddim
));
// TODO(Superjomn) find some way to determine which device to output the
// tensor.
// if (platform::is_cpu_place(fluid_t->place())) {
// TODO(Superjomn) change this float to dtype size.
auto
size
=
inference
::
analysis
::
AccuDims
(
dims
.
d
,
dims
.
nbDims
)
*
FLAGS_tensorrt_engine_batch_size
;
auto
size
=
inference
::
analysis
::
AccuDims
(
dims
.
d
,
dims
.
nbDims
)
*
runtime_batch
;
engine
->
GetOutputInGPU
(
output_maps
[
output_index
],
fluid_t
->
mutable_data
<
float
>
(
platform
::
CUDAPlace
(
boost
::
get
<
platform
::
CUDAPlace
>
(
context
.
GetPlace
()
).
device
)),
boost
::
get
<
platform
::
CUDAPlace
>
(
dev_place
).
device
)),
size
*
sizeof
(
float
));
output_index
+=
1
;
}
cudaStreamSynchronize
(
*
engine
->
stream
());
}
protected:
void
Prepare
(
const
framework
::
ExecutionContext
&
context
)
const
{
void
Prepare
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
,
TensorRTEngine
*
engine
)
const
{
VLOG
(
4
)
<<
"Prepare engine"
;
// Get the ProgramDesc and pass to convert.
framework
::
proto
::
BlockDesc
block_desc
;
block_desc
.
ParseFromString
(
context
.
Attr
<
std
::
string
>
(
"subgraph"
));
int
max_batch_size
=
context
.
Attr
<
int
>
(
"max_batch_size"
);
int
workspace_size
=
context
.
Attr
<
int
>
(
"workspace_size"
);
auto
params
=
context
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"parameters"
);
std
::
unordered_set
<
std
::
string
>
parameters
;
for
(
const
auto
&
param
:
params
)
{
parameters
.
insert
(
param
);
}
block_desc
.
ParseFromString
(
Attr
<
std
::
string
>
(
"subgraph"
));
std
::
vector
<
std
::
string
>
output_maps
=
context
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"output_name_mapping"
);
// TODO(Superjomn) replace this with a different stream
auto
*
engine
=
Singleton
<
TRT_EngineManager
>::
Global
().
Create
(
max_batch_size
,
workspace_size
,
nullptr
/*engine hold its own stream*/
,
context
.
Attr
<
std
::
string
>
(
"engine_uniq_key"
),
boost
::
get
<
platform
::
CUDAPlace
>
(
context
.
GetPlace
()).
device
);
Attr
<
std
::
vector
<
std
::
string
>>
(
"output_name_mapping"
);
engine
->
InitNetwork
();
...
...
@@ -192,39 +181,33 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
VLOG
(
4
)
<<
"parsed var size "
<<
block
.
AllVars
().
size
();
// Add inputs
VLOG
(
4
)
<<
"declare inputs"
;
for
(
auto
&
input
:
context
.
Inputs
(
"Xs"
))
{
if
(
param
eters
.
count
(
input
))
continue
;
for
(
auto
&
input
:
Inputs
(
"Xs"
))
{
if
(
param
_names_
.
count
(
input
))
continue
;
VLOG
(
4
)
<<
"declare input "
<<
input
;
auto
*
var
=
block
.
FindVar
(
input
);
auto
&
t
=
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
scope
,
input
);
auto
t_shape
=
framework
::
vectorize
(
t
.
dims
());
auto
*
var
=
block
.
FindVar
(
input
);
// TensorRT engine need to create parameters. The parameter's description
// should be set in
PADDLE_ENFORCE
(
var
,
"no variable called %s"
,
input
);
PADDLE_ENFORCE_EQ
(
var
->
GetType
(),
FluidDT
::
VarType_Type_LOD_TENSOR
,
"TensorRT engine only takes LoDTensor as input"
);
auto
shape
=
var
->
GetShape
();
// For the special batch_size placeholder -1, drop it and pass the real
// shape of data.
// TODO(Superjomn) fix this with batch broadcast, or it can't handle
// variational batch size.
if
(
shape
[
0
]
==
-
1
)
{
shape
[
0
]
=
FLAGS_tensorrt_engine_batch_size
;
}
engine
->
DeclareInput
(
input
,
FluidDataType2TRT
(
var
->
Proto
()
->
type
().
lod_tensor
().
tensor
().
data_type
()),
Vec2TRT_Dims
(
shape
));
Vec2TRT_Dims
(
t_
shape
));
}
inference
::
Singleton
<
inference
::
tensorrt
::
OpConverter
>::
Global
()
.
ConvertBlock
(
block_desc
,
param
eters
,
context
.
scope
()
,
engine
);
.
ConvertBlock
(
block_desc
,
param
_names_
,
scope
,
engine
);
// Add outputs
for
(
auto
&
output
:
output_maps
)
{
if
(
!
engine
->
HasDeclared
(
output
))
{
engine
->
DeclareOutput
(
output
);
}
for
(
auto
&
output
:
output_maps
)
{
engine
->
DeclareOutput
(
output
);
}
engine
->
FreezeNetwork
();
}
};
...
...
paddle/fluid/operators/tensorrt/tensorrt_engine_op_test.cc
浏览文件 @
a9fb34fa
...
...
@@ -24,8 +24,7 @@ limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"
USE_CUDA_ONLY_OP
(
tensorrt_engine
);
USE_NO_KERNEL_OP
(
tensorrt_engine
);
namespace
paddle
{
namespace
operators
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录