未验证 提交 a9ed6f96 编写于 作者: 学渣戊's avatar 学渣戊 🏄 提交者: GitHub

按在线文档需求 61~70 更新了部分文档 (#49014)

* Update docstring:
1. 去除 python/paddle/tensor/manipulation.py 中 cast 函数描述中的 This OP;
2. 调整 python/paddle/fluid/layers/control_flow.py 中 Print 函数中参数描述的顺序,添加 optional 描述;
3. 为 python/paddle/tensor/logic.py 中 logical_and 函数添加 optional 描述;
4. 为 python/paddle/fluid/reader.py 中 DataLoader 类中 from_generator、from_dataset 函数添加 optional 描述;
5. 在 python/paddle/fluid/layers/nn.py 中 crf_decoding 函数的 param_attr 在使用中确实可视为存在默认值 None,故添加 optional 描述;
6. 修复 python/paddle/static/nn/common.py 中 data_norm 函数描述里 tex 语法错误的问题,并一并修复同一文件中的相同问题。

* 根据 review 意见修改部分内容。

* 将谓语动词去掉第三人称单数形式。

* 同步中文文档变更。

* string-->str; test=document_fix
Co-authored-by: NLigoml <39876205+Ligoml@users.noreply.github.com>
上级 c5af51ca
...@@ -294,27 +294,27 @@ def Print( ...@@ -294,27 +294,27 @@ def Print(
tensor `t`. tensor `t`.
Args: Args:
input (Variable): A Tensor to print. input (Tensor): A Tensor to print.
summarize (int): Number of elements in the tensor to be print. If it's first_n (int, optional): Only log `first_n` number of times. Default: -1.
value is -1, then all elements in the tensor will be print. message (str, optional): A string message to print as a prefix. Default: None.
message (str): A string message to print as a prefix. summarize (int, optional): Number of elements in the tensor to be print. If
first_n (int): Only log `first_n` number of times. it's value is -1, then all elements in the tensor will be print.
print_tensor_name (bool, optional): Print the tensor name. Default: True. print_tensor_name (bool, optional): Print the tensor name. Default: True.
print_tensor_type (bool, optional): Print the tensor type. Defaultt: True. print_tensor_type (bool, optional): Print the tensor type. Defaultt: True.
print_tensor_shape (bool, optional): Print the tensor shape. Default: True. print_tensor_shape (bool, optional): Print the tensor shape. Default: True.
print_tensor_layout (bool, optional): Print the tensor layout. Default: True. print_tensor_layout (bool, optional): Print the tensor layout. Default: True.
print_tensor_lod (bool, optional): Print the tensor lod. Default: True. print_tensor_lod (bool, optional): Print the tensor lod. Default: True.
print_phase (str): Which phase to displace, including 'forward', print_phase (str, optional): Which phase to displace, including 'forward',
'backward' and 'both'. Default: 'both'. If set to 'backward', will 'backward' and 'both'. Default: 'both'. If set to 'backward', will
only print the gradients of input tensor; If set to 'both', will only print the gradients of input tensor; If set to 'both', will
both print the input tensor itself and the gradients of input tensor. both print the input tensor itself and the gradients of input tensor.
Returns: Returns:
Variable: Output tensor. Tensor: Output tensor.
NOTES: NOTES:
The input and output are two different variables, and in the The input and output are two different Tensor, and in the
following process, you should use the output variable but not the input, following process, you should use the output Tensor but not the input,
otherwise, the print layer doesn't have backward. otherwise, the print layer doesn't have backward.
Examples: Examples:
......
...@@ -1056,7 +1056,7 @@ def sequence_unpad(x, length, name=None): ...@@ -1056,7 +1056,7 @@ def sequence_unpad(x, length, name=None):
""" """
Note: Note:
The input of the OP is Tensor and the output is LoDTensor. For padding operation, See:** :ref:`api_fluid_layers_sequence_pad` The input of this API is Tensor and the output is LoDTensor. For padding operation, See:** :ref:`api_fluid_layers_sequence_pad`
Remove the padding data from the input based on the length information and returns a LoDTensor. Remove the padding data from the input based on the length information and returns a LoDTensor.
...@@ -1084,7 +1084,7 @@ def sequence_unpad(x, length, name=None): ...@@ -1084,7 +1084,7 @@ def sequence_unpad(x, length, name=None):
Supported data types: float32, float64, int32, int64. Supported data types: float32, float64, int32, int64.
length(Variable): A 1D Tensor that stores the actual length of each sample, and the Tensor length(Variable): A 1D Tensor that stores the actual length of each sample, and the Tensor
has the same shape with the 0th dimension of the X . Supported data types: int64. has the same shape with the 0th dimension of the X . Supported data types: int64.
name(str|None): The default value is None. Normally there is no need for user to set this property. name(str|None, optional): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` For more information, please refer to :ref:`api_guide_Name`
Returns: Returns:
......
...@@ -660,13 +660,13 @@ class DataLoader: ...@@ -660,13 +660,13 @@ class DataLoader:
capacity (int): capacity of the queue maintained in DataLoader. capacity (int): capacity of the queue maintained in DataLoader.
The unit is batch number. Set larger capacity if your reader The unit is batch number. Set larger capacity if your reader
is fast. is fast.
use_double_buffer (bool): whether to use double_buffer_reader. use_double_buffer (bool, optional): whether to use double_buffer_reader.
If use_double_buffer=True, the DataLoader would prefetch next If use_double_buffer=True, the DataLoader would prefetch next
batch data asynchronously, so it would speed up data feeding batch data asynchronously, so it would speed up data feeding
and occupies a little more CPU or GPU memory, i.e., the memory and occupies a little more CPU or GPU memory, i.e., the memory
of one batch input data. of one batch input data.
iterable (bool): whether the created DataLoader is iterable. iterable (bool, optional): whether the created DataLoader is iterable.
return_list (bool): whether the return value on each device is return_list (bool, optional): whether the return value on each device is
presented as a list. It is only valid when iterable=True. presented as a list. It is only valid when iterable=True.
If return_list=False, the return value on each device would If return_list=False, the return value on each device would
be a dict of str -> LoDTensor, where the key of the dict is be a dict of str -> LoDTensor, where the key of the dict is
...@@ -674,14 +674,14 @@ class DataLoader: ...@@ -674,14 +674,14 @@ class DataLoader:
return value on each device would be a list(LoDTensor). It is return value on each device would be a list(LoDTensor). It is
recommended to use return_list=False in static graph mode and recommended to use return_list=False in static graph mode and
use return_list=True in dygraph mode. use return_list=True in dygraph mode.
use_multiprocess (bool): whether to use multi-process to speed up use_multiprocess (bool, optional): whether to use multi-process to
the data loading process in dygraph. Note: this parameter only speed up the data loading process in dygraph. Note: this parameter
can be used in the dygraph mode. In the static graph mode, only can be used in the dygraph mode. In the static graph mode,
whether this parameter is set or not has no effect. whether this parameter is set or not has no effect.
The Default value is False. The Default value is False.
drop_last (bool): whether to drop the last batches whose number is drop_last (bool, optional): whether to drop the last batches whose
less than the CPU core/GPU card number. The default value is number is less than the CPU core/GPU card number. The default
True. In training phase, users should not set drop_last=False, value is True. In training phase, users should not set drop_last=False,
because all CPU cores/GPU cards must read data from DataLoader. because all CPU cores/GPU cards must read data from DataLoader.
In inference phase, users can set drop_last=False, so that the In inference phase, users can set drop_last=False, so that the
last batches whose number is less than the CPU core/GPU card last batches whose number is less than the CPU core/GPU card
...@@ -974,9 +974,9 @@ class DataLoader: ...@@ -974,9 +974,9 @@ class DataLoader:
places (list(CUDAPlace)|list(CPUPlace)|list(str)): places where the result places (list(CUDAPlace)|list(CPUPlace)|list(str)): places where the result
data should be converted. If places is list of string, the string in the list data should be converted. If places is list of string, the string in the list
can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where x is the index of the GPUs. can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where x is the index of the GPUs.
drop_last (bool): whether to drop the last batch whose sample drop_last (bool, optional): whether to drop the last batch whose
number is less than batch size. If drop_last = True, they sample number is less than batch size. If drop_last = True,
would be dropped. If drop_last = False, they would be kept. they would be dropped. If drop_last = False, they would be kept.
Returns: Returns:
loader (DataLoader): the created DataLoader object, which can be loader (DataLoader): the created DataLoader object, which can be
......
...@@ -203,13 +203,13 @@ def instance_norm( ...@@ -203,13 +203,13 @@ def instance_norm(
.. math:: .. math::
\\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\ \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//
\\ mean\ of\ one\ feature\ map\ in\ mini-batch \\\\ \ mean\ of\ one\ feature\ map\ in\ mini-batch \\
\\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\ \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i -
\\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\ \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
\\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\ \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{
\\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\ \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
Note: Note:
`H` means height of feature map, `W` means width of feature map. `H` means height of feature map, `W` means width of feature map.
...@@ -403,41 +403,42 @@ def data_norm( ...@@ -403,41 +403,42 @@ def data_norm(
.. math:: .. math::
\\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\ \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//
\ mini-batch\ mean \\\\ \ mini-batch\ mean \\
\\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\ \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i -
\\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\ \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
\\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\ \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{
\\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\ \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
Args: Args:
input(Tensor): The input Tensor. input (Tensor): The input Tensor.
act(string, Default None): Activation type, linear|relu|prelu|... act (str, optional): Activation type, linear|relu|prelu|... Default: None.
epsilon(float, Default 1e-05): epsilon(float, optional): Whether to add small values ​in​to the variance during calculations
param_attr(ParamAttr): The parameter attribute for Parameter `scale`. to prevent division by zero. Default: 1e-05.
param_attr (ParamAttr, optional): The parameter attribute for Parameter `scale`. Default: None.
data_layout (str, optional): Specify the data format of the input, and the data format of the output data_layout (str, optional): Specify the data format of the input, and the data format of the output
will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`. will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
`[batch_size, input_channels, input_height, input_width]`. `[batch_size, input_channels, input_height, input_width]`. Default: `"NCHW"`.
in_place(bool, Default False): Make the input and output of batch norm reuse memory. in_place (bool, optional): Make the input and output of batch norm reuse memory. Default: False.
name(string, Default None): A name for this layer(optional). If set None, the layer name (str, optional): A name for this layer (optional). If set None, the layer
will be named automatically. will be named automatically. Default: None.
moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. moving_mean_name (str, optional): The name of moving_mean which store the global Mean. Default: None.
moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance. moving_variance_name (str, optional): The name of the moving_variance which store the global Variance. Default: None.
do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance do_model_average_for_mean_and_var (bool, optional): Whether parameter mean and variance
should do model average when model average is enabled. should do model average when model average is enabled. Default: True.
slot_dim(int): The embedding dimension of one slot. Slot is a set of one specific feature. In pslib mode, we slot_dim (int, optional): The embedding dimension of one slot. Slot is a set of one specific feature. In pslib mode,
distinguish feature ids by slot and pull their embeddings from parameter server (pslib). The first we distinguish feature ids by slot and pull their embeddings from parameter server (pslib). The first
place of the embedding is the historical show number (occurence time of this feature id with a label 0). place of the embedding is the historical show number (occurence time of this feature id with a label 0).
If the input of this op is concated by slot-wise embeddings, and the show number is zero when this slot If the input of this op is concated by slot-wise embeddings, and the show number is zero when this slot
is new or empty, the normalization result may be impractical. To avoid this, we add slot_dim to locate is new or empty, the normalization result may be impractical. To avoid this, we add slot_dim to locate
the show number and judge if the show number is zero. If so, we choose to skip normalization on this the show number and judge if the show number is zero. If so, we choose to skip normalization on this
embedding. embedding. Default: -1.
sync_stats(bool, Default False): When running with multiple GPU cards, using allreduce to sync the sync_stats (bool, optional): When running with multiple GPU cards, using allreduce to sync the
summary messages. summary messages. Default: False.
summary_decay_rate(float, Default 0.9999999): The decay rate when updating summary. summary_decay_rate (float, optional): The decay rate when updating summary. Default: 0.9999999.
enable_scale_and_shift(bool, Default False): do scale&shift after normalization. enable_scale_and_shift (bool, optional): do scale&shift after normalization. Default: False.
Returns: Returns:
Tensor: A tensor which is the result after applying data normalization on the input. Tensor: A tensor which is the result after applying data normalization on the input.
...@@ -715,15 +716,15 @@ def conv3d( ...@@ -715,15 +716,15 @@ def conv3d(
.. math:: .. math::
Out = \sigma (W \\ast X + b) Out = \sigma (W \ast X + b)
In the above equation: In the above equation:
* :math:`X`: Input value, a tensor with NCDHW or NDHWC format. * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
* :math:`W`: Filter value, a tensor with MCDHW format. * :math:`W`: Filter value, a tensor with MCDHW format.
* :math:`\\ast`: Convolution operation. * :math:`\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1]. * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
* :math:`\\sigma`: Activation function. * :math:`\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example: Example:
...@@ -741,9 +742,9 @@ def conv3d( ...@@ -741,9 +742,9 @@ def conv3d(
.. math:: .. math::
D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\ D_{out}&= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\
H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\ H_{out}&= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\
W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1 W_{out}&= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1
Args: Args:
input (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data input (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data
...@@ -1027,15 +1028,15 @@ def conv2d_transpose( ...@@ -1027,15 +1028,15 @@ def conv2d_transpose(
.. math:: .. math::
Out = \sigma (W \\ast X + b) Out = \sigma (W \ast X + b)
Where: Where:
* :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format. * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
* :math:`W`: Filter value, a 4-D Tensor with MCHW format. * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
* :math:`\\ast`: Convolution operation. * :math:`\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D Tensor with shape [M, 1]. * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
* :math:`\\sigma`: Activation function. * :math:`\sigma`: Activation function.
* :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different. * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.
Example: Example:
...@@ -1054,9 +1055,9 @@ def conv2d_transpose( ...@@ -1054,9 +1055,9 @@ def conv2d_transpose(
.. math:: .. math::
H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\ H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\
W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\ W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\
H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\ H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\
W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ] W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]
Note: Note:
...@@ -1416,11 +1417,11 @@ def conv3d_transpose( ...@@ -1416,11 +1417,11 @@ def conv3d_transpose(
.. math:: .. math::
D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\ D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\
H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\ H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\
W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\ W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\
D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\ D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\
H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\ H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\
W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ] W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]
Note: Note:
...@@ -1777,8 +1778,8 @@ def deformable_conv( ...@@ -1777,8 +1778,8 @@ def deformable_conv(
.. math:: .. math::
H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\ H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\
W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1 W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
Args: Args:
input (Tensor): The input image with [N, C, H, W] format. A Tensor with type input (Tensor): The input image with [N, C, H, W] format. A Tensor with type
...@@ -2016,8 +2017,8 @@ def deform_conv2d( ...@@ -2016,8 +2017,8 @@ def deform_conv2d(
.. math:: .. math::
H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\ H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\
W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1 W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
Args: Args:
x (Tensor): The input image with [N, C, H, W] format. A Tensor with type x (Tensor): The input image with [N, C, H, W] format. A Tensor with type
......
...@@ -88,7 +88,7 @@ def _logical_op(op_name, x, y, out=None, name=None, binary_op=True): ...@@ -88,7 +88,7 @@ def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
def logical_and(x, y, out=None, name=None): def logical_and(x, y, out=None, name=None):
r""" r"""
``logical_and`` operator computes element-wise logical AND on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``. Compute element-wise logical AND on ``x`` and ``y``, and return ``out``. ``out`` is N-dim boolean ``Tensor``.
Each element of ``out`` is calculated by Each element of ``out`` is calculated by
.. math:: .. math::
...@@ -103,7 +103,7 @@ def logical_and(x, y, out=None, name=None): ...@@ -103,7 +103,7 @@ def logical_and(x, y, out=None, name=None):
Args: Args:
x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64. x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64. y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output. out(Tensor, optional): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns: Returns:
......
...@@ -47,7 +47,7 @@ __all__ = [] ...@@ -47,7 +47,7 @@ __all__ = []
def cast(x, dtype): def cast(x, dtype):
""" """
This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it Take in the Tensor :attr:`x` with :attr:`x.dtype` and cast it
to the output with :attr:`dtype`. It's meaningless if the output dtype to the output with :attr:`dtype`. It's meaningless if the output dtype
equals the input dtype, but it's fine if you do so. equals the input dtype, but it's fine if you do so.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册