提交 a994327f 编写于 作者: Q qiaolongfei

add TestSGDOpOptimizeSelectedRows

上级 abb7deee
...@@ -101,31 +101,50 @@ class TestSGDOpOptimizeSelectedRows(unittest.TestCase): ...@@ -101,31 +101,50 @@ class TestSGDOpOptimizeSelectedRows(unittest.TestCase):
def check_with_place(self, place): def check_with_place(self, place):
scope = core.Scope() scope = core.Scope()
row_width = 12
# create and initialize Grad Variable # create and initialize Grad Variable
height = 10 grad_height = 10
rows = [0, 4, 7] grad_rows = [0, 4, 7]
row_numel = 12
grad_selected_rows = scope.var('Grad').get_selected_rows() grad_selected_rows = scope.var('Grad').get_selected_rows()
grad_selected_rows.set_height(height) grad_selected_rows.set_height(grad_height)
grad_selected_rows.set_rows(rows) grad_selected_rows.set_rows(grad_rows)
np_array = np.ones((len(rows), row_numel)).astype("float32") grad_array = np.ones((len(grad_rows), row_width)).astype("float32")
np_array[0, 0] = 2.0 grad_array[0, 0] = 2.0
np_array[2, 8] = 4.0 grad_array[2, 8] = 4.0
grad_tensor = grad_selected_rows.get_tensor() grad_tensor = grad_selected_rows.get_tensor()
grad_tensor.set(np_array, place) grad_tensor.set(grad_array, place)
# create and initialize Param Variable # create and initialize Param Variable
param = scope.var('Param').get_tensor() # create and initialize W Variable
param_array = np.full((height, row_numel), 5.0).astype("float32") param_rows = [0, 1, 2, 3, 4, 5, 6, 7]
param.set(param_array, place)
# init Param
w_selected_rows = scope.var('Param').get_selected_rows()
w_selected_rows.set_height(len(param_rows))
w_selected_rows.set_rows(param_rows)
w_array = np.ones((len(param_rows), row_width)).astype("float32")
for i in range(len(param_rows)):
w_array[i] *= i
w_tensor = w_selected_rows.get_tensor()
w_tensor.set(w_array, place)
w_before_optimize = np.array(w_tensor)
print(w_before_optimize)
# create and initialize LeraningRate Variable # create and initialize LeraningRate Variable
lr_value = 0.1
lr = scope.var('LearningRate').get_tensor() lr = scope.var('LearningRate').get_tensor()
lr_array = np.full((1), 2.0).astype("float32") lr_array = np.full((1), lr_value).astype("float32")
lr.set(lr_array, place) lr.set(lr_array, place)
# optimize with Python
w_after_optimize = np.copy(w_before_optimize)
for index, id in enumerate(grad_rows):
w_after_optimize[id] = w_before_optimize[
id] - lr_value * grad_array[index]
# create and run sgd operator # create and run sgd operator
sgd_op = Operator( sgd_op = Operator(
"sgd", "sgd",
...@@ -136,22 +155,8 @@ class TestSGDOpOptimizeSelectedRows(unittest.TestCase): ...@@ -136,22 +155,8 @@ class TestSGDOpOptimizeSelectedRows(unittest.TestCase):
sgd_op.run(scope, place) sgd_op.run(scope, place)
# get and compare result # get and compare result
result_array = np.array(param) result_array = np.array(w_tensor)
assert (result_array == w_after_optimize).all()
# rows[0] = 0, 5.0 - 2.0 * 2.0
self.assertAlmostEqual(1.0, result_array[rows[0], 0])
# rows[0] = 0, 5.0 - 2.0 * 1.0
self.assertAlmostEqual(3.0, result_array[rows[0], 2])
# 5.0 - 2.0 * 0.0
self.assertAlmostEqual(5.0, result_array[1, 0])
# rows[1] = 4, 5.0 - 2.0 * 1.0
self.assertAlmostEqual(3.0, result_array[rows[1], 10])
# 5.0 - 2.0 * 0.0
self.assertAlmostEqual(5.0, result_array[5, 8])
# rows[2] = 7, 5.0 - 2.0 * 1.0
self.assertAlmostEqual(3.0, result_array[rows[2], 1])
# rows[2] = 7, 5.0 - 2.0 * 4.0
self.assertAlmostEqual(-3.0, result_array[rows[2], 8])
def test_sparse_sgd(self): def test_sparse_sgd(self):
places = [core.CPUPlace()] places = [core.CPUPlace()]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册