未验证 提交 a98a3fdc 编写于 作者: T Tao Luo 提交者: GitHub

Merge pull request #9385 from mozga-intel/mozga/mkldnn-fc

Implementation of MKLDNN FC
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/fc_op.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
namespace paddle {
namespace operators {
using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
template <typename T>
class MKLDNNMD {
public:
explicit MKLDNNMD(const T* in, const T* w, bool bias)
: in{paddle::framework::vectorize2int(in->dims())},
w{paddle::framework::vectorize2int(w->dims())} {
with_bias_ = bias;
}
mkldnn::memory::desc dst() const {
return platform::MKLDNNMemDesc({in[0], w[1]},
mkldnn::memory::data_type::f32,
mkldnn::memory::format::nc);
}
mkldnn::memory::desc src() const {
return is_spatial()
? platform::MKLDNNMemDesc({in[0], in[1], in[2], in[3]},
mkldnn::memory::data_type::f32,
mkldnn::memory::format::nchw)
: platform::MKLDNNMemDesc({in[0], in[1]},
mkldnn::memory::data_type::f32,
mkldnn::memory::format::nc);
}
mkldnn::memory::desc weights() const {
return is_spatial()
? platform::MKLDNNMemDesc({w[1], in[1], in[2], in[3]},
mkldnn::memory::data_type::f32,
mkldnn::memory::format::oihw)
: platform::MKLDNNMemDesc({w[1], in[1]},
mkldnn::memory::data_type::f32,
mkldnn::memory::format::oi);
}
mkldnn::memory::desc bias() const {
return with_bias_
? platform::MKLDNNMemDesc({w[1]}, mkldnn::memory::data_type::f32,
mkldnn::memory::format::format_undef)
: platform::MKLDNNMemDesc({}, mkldnn::memory::data_type::f32,
mkldnn::memory::format::format_undef);
}
private:
bool is_spatial() const { return in.size() > 1 && w.size() > 1; }
std::vector<int> in;
std::vector<int> w;
bool with_bias_;
bool is_spatial_;
};
class MKLDNNMemory {
public:
MKLDNNMemory(MKLDNNMD<Tensor>* t, const mkldnn::engine& e)
: md_{t}, engine_{e} {}
virtual ~MKLDNNMemory() = default;
template <typename Output>
mkldnn::memory dst(const Output* out) {
return mkldnn::memory({md_->dst(), engine_},
static_cast<void*>(const_cast<float*>(out)));
}
template <typename Output>
mkldnn::memory dst(Output* out) {
return mkldnn::memory({md_->dst(), engine_}, out);
}
template <typename Input>
mkldnn::memory src(const Input* in) {
return mkldnn::memory({md_->src(), engine_},
static_cast<void*>(const_cast<float*>(in)));
}
template <typename Weight>
mkldnn::memory weights(const Weight* w) {
return mkldnn::memory({md_->weights(), engine_},
static_cast<void*>(const_cast<float*>(w)));
}
mkldnn::memory bias() {
return mkldnn::memory(mkldnn::memory::primitive_desc(md_->bias(), engine_));
}
private:
MKLDNNMD<Tensor>* md_;
const mkldnn::engine& engine_;
};
template <typename T>
class FCMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
const auto& mkldnn_engine = dev_ctx.GetEngine();
auto input = ctx.Input<Tensor>("Input");
auto w = ctx.Input<Tensor>("W");
PADDLE_ENFORCE(input->dims().size() == 2 || input->dims().size() == 4,
"Input must be with 2 or 4 dimensions, i.e. NCHW");
PADDLE_ENFORCE(w->dims().size() == 2 || w->dims().size() == 4,
"Weights must be with 2 or 4 dimensions, i.e. OI or OIHW");
bool with_bias = ctx.Attr<bool>("bias_attr");
MKLDNNMD<Tensor> md(input, w, with_bias);
std::shared_ptr<mkldnn::inner_product_forward::primitive_desc> pd =
FcFwdPrimitiveDesc(md.src(), md.weights(), md.dst(), md.bias(),
with_bias, mkldnn_engine);
const std::string key = ctx.op().Output("Out");
const std::string key_fc_pd = key + "@fc_pd";
dev_ctx.SetBlob(key_fc_pd, pd);
MKLDNNMemory mem(&md, mkldnn_engine);
const T* input_data = input->data<T>();
const T* w_data = w->data<T>();
auto output = ctx.Output<Tensor>("Out");
T* output_data = output->mutable_data<T>(ctx.GetPlace());
auto dst_memory = mem.dst(output_data);
auto src_memory = mem.src(input_data);
auto weights_memory = mem.weights(w_data);
auto bias_memory = mem.bias();
auto forward = with_bias ? mkldnn::inner_product_forward(
*pd, src_memory, weights_memory, bias_memory,
dst_memory)
: mkldnn::inner_product_forward(
*pd, src_memory, weights_memory, dst_memory);
std::vector<mkldnn::primitive> pipeline = {forward};
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
private:
std::unique_ptr<mkldnn::inner_product_forward::primitive_desc>
FcFwdPrimitiveDesc(const mkldnn::memory::desc& src,
const mkldnn::memory::desc& weights,
const mkldnn::memory::desc& dst,
const mkldnn::memory::desc& bias, const bool with_bias,
const mkldnn::engine& engine) const {
auto desc = with_bias
? mkldnn::inner_product_forward::desc(
mkldnn::prop_kind::forward, src, weights, bias, dst)
: mkldnn::inner_product_forward::desc(
mkldnn::prop_kind::forward, src, weights, dst);
auto pd = new mkldnn::inner_product_forward::primitive_desc(desc, engine);
return std::unique_ptr<mkldnn::inner_product_forward::primitive_desc>(pd);
}
};
template <typename T>
class FCMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
const auto& mkldnn_engine = dev_ctx.GetEngine();
T* input_grad_data = nullptr;
T* w_grad_data = nullptr;
Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
Tensor* w_grad = ctx.Output<Tensor>(framework::GradVarName("W"));
if (input_grad) {
input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
}
if (w_grad) {
w_grad_data = w_grad->mutable_data<T>(ctx.GetPlace());
}
const Tensor* input = ctx.Input<Tensor>("Input");
const T* input_data = input->data<T>();
const Tensor* w = ctx.Input<Tensor>("W");
const T* w_data = w->data<T>();
const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
const T* out_grad_data = out_grad->data<T>();
bool with_bias = ctx.Attr<bool>("bias_attr");
MKLDNNMD<Tensor> md(input, w, with_bias);
MKLDNNMemory mem(&md, mkldnn_engine);
auto dst_memory = mem.dst(out_grad_data);
auto src_memory = mem.src(input_data);
auto weights_memory = mem.weights(w_data);
auto bias_memory = mem.bias();
const std::string key = ctx.op().Input("Out");
const std::string key_fc_pd = key + "@fc_pd";
auto pd =
std::static_pointer_cast<mkldnn::inner_product_forward::primitive_desc>(
dev_ctx.GetBlob(key_fc_pd));
PADDLE_ENFORCE(pd != nullptr, "Fail to find key_fc_pd in device context");
if (w_grad) {
auto weights_grad_memory = mem.weights(w_grad_data);
mkldnn::inner_product_backward_weights::primitive_desc bwd_weight_pd =
FcBwdWeightsPrimitiveDesc(md.src(), md.weights(), md.dst(), md.bias(),
with_bias, *pd, mkldnn_engine);
auto bwd_weights_prim = mkldnn::inner_product_backward_weights(
bwd_weight_pd, src_memory, dst_memory, weights_grad_memory,
bias_memory);
std::vector<mkldnn::primitive> pipeline{bwd_weights_prim};
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
if (input_grad) {
auto src_grad_memory = mem.src(input_grad_data);
mkldnn::inner_product_backward_data::primitive_desc bwd_data_pd =
FcBwdDataPrimitiveDesc(md.src(), md.weights(), md.dst(), *pd,
mkldnn_engine);
auto bwd_data_prim = mkldnn::inner_product_backward_data(
bwd_data_pd, dst_memory, weights_memory, src_grad_memory);
std::vector<mkldnn::primitive> pipeline{bwd_data_prim};
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
}
private:
mkldnn::inner_product_backward_weights::primitive_desc
FcBwdWeightsPrimitiveDesc(
const mkldnn::memory::desc& src, const mkldnn::memory::desc& diff_weights,
const mkldnn::memory::desc& diff_dst, const mkldnn::memory::desc& bias,
const bool with_bias,
const mkldnn::inner_product_forward::primitive_desc& pd,
const mkldnn::engine& engine) const {
auto bwd_weight_desc = with_bias
? mkldnn::inner_product_backward_weights::desc(
src, diff_weights, bias, diff_dst)
: mkldnn::inner_product_backward_weights::desc(
src, diff_weights, bias, diff_dst);
return mkldnn::inner_product_backward_weights::primitive_desc(
bwd_weight_desc, engine, pd);
}
mkldnn::inner_product_backward_data::primitive_desc FcBwdDataPrimitiveDesc(
const mkldnn::memory::desc& diff_src, const mkldnn::memory::desc& weights,
const mkldnn::memory::desc& diff_dst,
const mkldnn::inner_product_forward::primitive_desc& pd,
const mkldnn::engine& engine) const {
auto bwd_data_desc =
mkldnn::inner_product_backward_data::desc(diff_src, weights, diff_dst);
return mkldnn::inner_product_backward_data::primitive_desc(bwd_data_desc,
engine, pd);
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP_KERNEL(fc, MKLDNN, ::paddle::platform::CPUPlace,
paddle::operators::FCMKLDNNOpKernel<float>);
REGISTER_OP_KERNEL(fc_grad, MKLDNN, ::paddle::platform::CPUPlace,
paddle::operators::FCMKLDNNGradOpKernel<float>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fc_op.h"
#include <vector>
namespace paddle {
namespace operators {
void FCOp::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE(ctx->HasInput("Input"),
"X(Input) of Fully Connected should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Out(Output) of Fully Connected should not be null.");
PADDLE_ENFORCE(ctx->HasInput("W"),
"W(Input) of Fully Connected should not be null.");
auto in_dims = ctx->GetInputDim("Input");
auto w_dims = ctx->GetInputDim("W");
std::vector<int64_t> output_shape({in_dims[0], w_dims[1]});
PADDLE_ENFORCE(in_dims.size() == 2 || in_dims.size() == 4,
"Fully Connected input should be 2-D or 4-D tensor.");
PADDLE_ENFORCE(w_dims.size() == 2 || w_dims.size() == 4,
"Fully Connected input should be 2-D or 4-D tensor.");
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
ctx->ShareLoD("Input", "Out");
}
framework::OpKernelType FCOp::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
framework::LibraryType library{framework::LibraryType::kMKLDNN};
framework::DataLayout layout{framework::DataLayout::kAnyLayout};
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
layout, library);
}
void FCOpGrad::InferShape(framework::InferShapeContext* ctx) const {
auto in_dims = ctx->GetInputDim("Input");
auto w_dims = ctx->GetInputDim("W");
if (ctx->HasOutput(framework::GradVarName("Input"))) {
ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
}
if (ctx->HasOutput(framework::GradVarName("W"))) {
ctx->SetOutputDim(framework::GradVarName("W"), w_dims);
}
}
framework::OpKernelType FCOpGrad::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
framework::LibraryType library{framework::LibraryType::kMKLDNN};
framework::DataLayout layout{framework::DataLayout::kAnyLayout};
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
layout, library);
}
FCOpMaker::FCOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Input", "(Tensor) The input tensor of fully connected operator. ");
AddInput("W", "(Tensor), The second input tensor of fc op.");
AddOutput("Out", "(Tensor) The output tensor of fully connected operator. ");
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr<bool>("bias_attr", "(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddComment(R"DOC(
Fully Connected Operator.
The fully connected operation calculates the output based on the input, weights and bias attribute.
The size of each dimension of the parameters checked in the infer-shape.
The matrix of bias is generated by the mkldnn framework, when the bias_attr is True.
Additional parametrs are use_mkldnn and bias_attr.
The input(X) size and output(Out) size may be diffrent.
The fully connected layer only supports MKLDNN version
)DOC");
}
} // namespace operators
} // namespace paddle
REGISTER_OP(fc, paddle::operators::FCOp, paddle::operators::FCOpMaker, fc_grad,
paddle::operators::FCOpGrad);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
class FCOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override;
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override;
};
class FCOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override;
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override;
};
class FCOpMaker : public framework::OpProtoAndCheckerMaker {
public:
FCOpMaker(OpProto* proto, OpAttrChecker* op_checker);
};
} // namespace operators
} // namespace paddle
......@@ -133,6 +133,8 @@ def fc(input,
bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
of this layer. If it is set to None, no bias will be added to the output units.
act (str, default None): Activation to be applied to the output of this layer.
use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
library is installed. Default: False
name (str, default None): The name of this layer.
Returns:
......@@ -153,38 +155,64 @@ def fc(input,
dtype = helper.input_dtype()
mul_results = []
for input_var, param_attr in helper.iter_inputs_and_params():
input_shape = input_var.shape
if use_mkldnn:
tmp = helper.create_tmp_variable(dtype)
input_shape = input.shape
param_shape = [
reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
] + [size]
w = helper.create_parameter(
attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
tmp = helper.create_tmp_variable(dtype)
attr=helper.param_attr,
shape=param_shape,
dtype=dtype,
is_bias=False)
if bias_attr is None or bias_attr is False:
bias_attr = False
else:
bias_attr = True
helper.append_op(
type="mul",
inputs={"X": input_var,
"Y": w},
type="fc",
inputs={"Input": input,
"W": w},
outputs={"Out": tmp},
attrs={
"x_num_col_dims": num_flatten_dims,
"y_num_col_dims": 1,
'use_mkldnn': use_mkldnn
})
mul_results.append(tmp)
# sum
if len(mul_results) == 1:
pre_bias = mul_results[0]
attrs={"use_mkldnn": use_mkldnn,
"bias_attr": bias_attr})
return helper.append_activation(tmp)
else:
pre_bias = helper.create_tmp_variable(dtype)
helper.append_op(
type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
# add bias
pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
# add activation
return helper.append_activation(pre_activation)
for input_var, param_attr in helper.iter_inputs_and_params():
input_shape = input_var.shape
param_shape = [
reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
] + [size]
w = helper.create_parameter(
attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
tmp = helper.create_tmp_variable(dtype)
helper.append_op(
type="mul",
inputs={"X": input_var,
"Y": w},
outputs={"Out": tmp},
attrs={
"x_num_col_dims": num_flatten_dims,
"y_num_col_dims": 1,
})
mul_results.append(tmp)
if len(mul_results) == 1:
pre_bias = mul_results[0]
else:
pre_bias = helper.create_tmp_variable(dtype)
helper.append_op(
type="sum",
inputs={"X": mul_results},
outputs={"Out": pre_bias})
# add bias
pre_activation = helper.append_bias_op(
pre_bias, dim_start=num_flatten_dims)
# add activation
return helper.append_activation(pre_activation)
def embedding(input,
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
def fully_connected_naive(input, weights, bias_data=None):
in_n, in_c, in_h, in_w = input.shape
w_h, w_c = weights.shape
x_data = np.reshape(input, [in_n, in_c * in_h * in_w])
w_data = np.transpose(np.reshape(weights, (w_c, in_c * in_h * in_w)))
result = None
if not bias_data:
result = np.dot(x_data, w_data)
else:
result = np.dot(x_data, w_data) + bias_data
return result
class MatrixGenerate:
def __init__(self, mb, ic, oc, h, w):
self.input = np.random.random((mb, ic, h, w)).astype("float32")
self.weights = np.random.random((ic * h * w, oc)).astype("float32")
class TestFCMKLDNNOp(OpTest):
def setUp(self):
self.op_type = "fc"
self.use_mkldnn = True
self.with_bias = True
self.matrix = MatrixGenerate(1, 10, 15, 3, 3)
self.inputs = {'Input': self.matrix.input, 'W': self.matrix.weights}
self.attrs = {
'use_mkldnn': self.use_mkldnn,
'with_bias': self.with_bias
}
self.outputs = {
'Out': fully_connected_naive(self.matrix.input, self.matrix.weights)
}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(set(['Input', 'W']), 'Out', max_relative_error=0.9)
def test_check_grad_no_weight(self):
self.check_grad(
['Input'], 'Out', max_relative_error=0.5, no_grad_set=set('W'))
class TestFCMKLDNNOp1(TestFCMKLDNNOp):
def init_op_type(self):
self.matrix = MatrixGenerate(2, 15, 48, 2, 2)
class TestFCMKLDNNOp2(TestFCMKLDNNOp):
def init_op_type(self):
self.matrix = MatrixGenerate(2, 32, 40, 1, 1)
class TestFCMKLDNNOp3(TestFCMKLDNNOp):
def init_op_type(self):
self.matrix = MatrixGenerate(2, 2, 4, 1, 1)
class TestFCMKLDNNOp4(TestFCMKLDNNOp):
def init_op_type(self):
self.with_bias = False
self.matrix = MatrixGenerate(2, 32, 48, 2, 2)
class TestFCMKLDNNOp4(TestFCMKLDNNOp):
def init_op_type(self):
self.with_bias = False
self.matrix = MatrixGenerate(2, 32, 1000, 6, 6)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册