提交 a7fa2051 编写于 作者: G guosheng

Merge branch 'develop' of https://github.com/PaddlePaddle/paddle into add-multiBatch-chunkEval-dev

...@@ -2,8 +2,8 @@ ...@@ -2,8 +2,8 @@
[![Build Status](https://travis-ci.org/PaddlePaddle/Paddle.svg?branch=develop)](https://travis-ci.org/PaddlePaddle/Paddle) [![Build Status](https://travis-ci.org/PaddlePaddle/Paddle.svg?branch=develop)](https://travis-ci.org/PaddlePaddle/Paddle)
[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://doc.paddlepaddle.org/develop/doc/) [![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/index_en.html)
[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](http://doc.paddlepaddle.org/develop/doc_cn/) [![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](http://www.paddlepaddle.org/docs/develop/documentation/zh/getstarted/index_cn.html)
[![Coverage Status](https://coveralls.io/repos/github/PaddlePaddle/Paddle/badge.svg?branch=develop)](https://coveralls.io/github/PaddlePaddle/Paddle?branch=develop) [![Coverage Status](https://coveralls.io/repos/github/PaddlePaddle/Paddle/badge.svg?branch=develop)](https://coveralls.io/github/PaddlePaddle/Paddle?branch=develop)
[![Release](https://img.shields.io/github/release/PaddlePaddle/Paddle.svg)](https://github.com/PaddlePaddle/Paddle/releases) [![Release](https://img.shields.io/github/release/PaddlePaddle/Paddle.svg)](https://github.com/PaddlePaddle/Paddle/releases)
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE) [![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
......
...@@ -14,7 +14,7 @@ limitations under the License. */ ...@@ -14,7 +14,7 @@ limitations under the License. */
#include "error.h" #include "error.h"
const char* paddle_error_string(paddle_error err) { extern "C" const char* paddle_error_string(paddle_error err) {
switch (err) { switch (err) {
case kPD_NULLPTR: case kPD_NULLPTR:
return "nullptr error"; return "nullptr error";
......
...@@ -29,9 +29,17 @@ typedef enum { ...@@ -29,9 +29,17 @@ typedef enum {
kPD_UNDEFINED_ERROR = -1, kPD_UNDEFINED_ERROR = -1,
} paddle_error; } paddle_error;
#ifdef __cplusplus
extern "C" {
#endif
/** /**
* Error string for Paddle API. * Error string for Paddle API.
*/ */
PD_API const char* paddle_error_string(paddle_error err); PD_API const char* paddle_error_string(paddle_error err);
#ifdef __cplusplus
}
#endif
#endif #endif
...@@ -430,14 +430,14 @@ std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward( ...@@ -430,14 +430,14 @@ std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
std::vector<std::unique_ptr<OpDescBind>> op_grads; std::vector<std::unique_ptr<OpDescBind>> op_grads;
if ((*it)->Type() == "recurrent" || (*it)->Type() == "while") { if ((*it)->Type() == "recurrent" || (*it)->Type() == "while") {
int step_block_idx = (*it)->GetBlockAttr("step_block"); int step_block_idx = (*it)->GetBlockAttr("sub_block");
BlockDescBind* backward_block = CreateStepBlock( BlockDescBind* backward_block = CreateStepBlock(
program_desc, no_grad_vars, grad_to_var, step_block_idx); program_desc, no_grad_vars, grad_to_var, step_block_idx);
op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var, {backward_block}); op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var, {backward_block});
} else if ((*it)->Type() == "conditional_block") { } else if ((*it)->Type() == "conditional_block") {
BlockDescBind* backward_block = BlockDescBind* backward_block =
CreateStepBlock(program_desc, no_grad_vars, grad_to_var, CreateStepBlock(program_desc, no_grad_vars, grad_to_var,
(*it)->GetBlockAttr("block")); (*it)->GetBlockAttr("sub_block"));
op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var, {backward_block}); op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var, {backward_block});
} else { } else {
op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var); op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var);
......
...@@ -65,7 +65,7 @@ class ConditionalBlockOp : public ConditionalOp { ...@@ -65,7 +65,7 @@ class ConditionalBlockOp : public ConditionalOp {
scopes->front() = &scope.NewScope(); scopes->front() = &scope.NewScope();
auto &cur_scope = *scopes->front(); auto &cur_scope = *scopes->front();
auto *block = Attr<framework::BlockDescBind *>("block"); auto *block = Attr<framework::BlockDescBind *>("sub_block");
framework::Executor exec(dev_ctx); framework::Executor exec(dev_ctx);
exec.Run(*block->Program(), &cur_scope, block->ID(), false); exec.Run(*block->Program(), &cur_scope, block->ID(), false);
} }
...@@ -88,7 +88,7 @@ class ConditionalBlockOpProtoMaker : public framework::OpProtoAndCheckerMaker { ...@@ -88,7 +88,7 @@ class ConditionalBlockOpProtoMaker : public framework::OpProtoAndCheckerMaker {
"unify the conditional block, rnn and while op, the type of " "unify the conditional block, rnn and while op, the type of "
"scope is std::vector<Scope*>"); "scope is std::vector<Scope*>");
AddAttr<framework::BlockDescBind *>( AddAttr<framework::BlockDescBind *>(
"block", "The step block of conditional block operator"); "sub_block", "The step block of conditional block operator");
AddComment(R"DOC(Conditional block operator AddComment(R"DOC(Conditional block operator
Run the sub-block if X is not empty. Params is the other inputs and Out is the Run the sub-block if X is not empty. Params is the other inputs and Out is the
...@@ -117,7 +117,7 @@ class ConditionalBlockGradOp : public ConditionalOp { ...@@ -117,7 +117,7 @@ class ConditionalBlockGradOp : public ConditionalOp {
auto &scopes = scope_var->Get<std::vector<framework::Scope *>>(); auto &scopes = scope_var->Get<std::vector<framework::Scope *>>();
framework::Scope &cur_scope = *scopes[0]; framework::Scope &cur_scope = *scopes[0];
auto *block = Attr<framework::BlockDescBind *>("block"); auto *block = Attr<framework::BlockDescBind *>("sub_block");
framework::Executor exec(dev_ctx); framework::Executor exec(dev_ctx);
exec.Run(*block->Program(), &cur_scope, block->ID(), false); exec.Run(*block->Program(), &cur_scope, block->ID(), false);
...@@ -181,7 +181,7 @@ class ConditionalBlockGradMaker : public framework::SingleGradOpDescMaker { ...@@ -181,7 +181,7 @@ class ConditionalBlockGradMaker : public framework::SingleGradOpDescMaker {
grad_op->SetInput("Scope", Output("Scope")); grad_op->SetInput("Scope", Output("Scope"));
grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X")); grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
grad_op->SetOutput(framework::GradVarName("Params"), InputGrad("Params")); grad_op->SetOutput(framework::GradVarName("Params"), InputGrad("Params"));
grad_op->SetBlockAttr("block", *this->grad_block_[0]); grad_op->SetBlockAttr("sub_block", *this->grad_block_[0]);
return std::unique_ptr<framework::OpDescBind>(grad_op); return std::unique_ptr<framework::OpDescBind>(grad_op);
} }
}; };
......
...@@ -273,6 +273,13 @@ void set_constant_with_place<platform::GPUPlace>( ...@@ -273,6 +273,13 @@ void set_constant_with_place<platform::GPUPlace>(
TensorSetConstantGPU(context, tensor, value)); TensorSetConstantGPU(context, tensor, value));
} }
template <>
void set_constant_with_place<platform::CudnnPlace>(
const platform::DeviceContext& context, framework::Tensor* tensor,
float value) {
set_constant_with_place<platform::GPUPlace>(context, tensor, value);
}
template struct RowwiseAdd<platform::CUDADeviceContext, float>; template struct RowwiseAdd<platform::CUDADeviceContext, float>;
template struct RowwiseAdd<platform::CUDADeviceContext, double>; template struct RowwiseAdd<platform::CUDADeviceContext, double>;
template struct ColwiseSum<platform::CUDADeviceContext, float>; template struct ColwiseSum<platform::CUDADeviceContext, float>;
......
...@@ -25,7 +25,7 @@ constexpr char kOutputs[] = "outputs"; ...@@ -25,7 +25,7 @@ constexpr char kOutputs[] = "outputs";
constexpr char kStepScopes[] = "step_scopes"; constexpr char kStepScopes[] = "step_scopes";
constexpr char kExStates[] = "ex_states"; constexpr char kExStates[] = "ex_states";
constexpr char kStates[] = "states"; constexpr char kStates[] = "states";
constexpr char kStepBlock[] = "step_block"; constexpr char kStepBlock[] = "sub_block";
constexpr char kReverse[] = "reverse"; constexpr char kReverse[] = "reverse";
constexpr char kIsTrain[] = "is_train"; constexpr char kIsTrain[] = "is_train";
#define GRAD_SUFFIX "@GRAD" #define GRAD_SUFFIX "@GRAD"
......
...@@ -25,7 +25,7 @@ namespace operators { ...@@ -25,7 +25,7 @@ namespace operators {
using StepScopeVar = std::vector<framework::Scope *>; using StepScopeVar = std::vector<framework::Scope *>;
using LoDTensor = framework::LoDTensor; using LoDTensor = framework::LoDTensor;
constexpr char kStepBlock[] = "step_block"; constexpr char kStepBlock[] = "sub_block";
constexpr char kCondition[] = "Condition"; constexpr char kCondition[] = "Condition";
constexpr char kStepScopes[] = "StepScopes"; constexpr char kStepScopes[] = "StepScopes";
constexpr char kParameters[] = "X"; constexpr char kParameters[] = "X";
......
...@@ -125,6 +125,22 @@ cudnnHandle_t CUDADeviceContext::cudnn_handle() const { return cudnn_handle_; } ...@@ -125,6 +125,22 @@ cudnnHandle_t CUDADeviceContext::cudnn_handle() const { return cudnn_handle_; }
cudaStream_t CUDADeviceContext::stream() const { return stream_; } cudaStream_t CUDADeviceContext::stream() const { return stream_; }
CudnnDeviceContext::CudnnDeviceContext(CudnnPlace place)
: CUDADeviceContext(place), place_(place) {
PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_));
PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, stream()));
}
CudnnDeviceContext::~CudnnDeviceContext() {
SetDeviceId(place_.device);
Wait();
PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_));
}
Place CudnnDeviceContext::GetPlace() const { return CudnnPlace(); }
cudnnHandle_t CudnnDeviceContext::cudnn_handle() const { return cudnn_handle_; }
#endif #endif
} // namespace platform } // namespace platform
......
...@@ -86,6 +86,22 @@ class CUDADeviceContext : public DeviceContext { ...@@ -86,6 +86,22 @@ class CUDADeviceContext : public DeviceContext {
cublasHandle_t cublas_handle_; cublasHandle_t cublas_handle_;
}; };
class CudnnDeviceContext : public CUDADeviceContext {
public:
explicit CudnnDeviceContext(CudnnPlace place);
virtual ~CudnnDeviceContext();
/*! \brief Return place in the device context. */
Place GetPlace() const final;
/*! \brief Return cudnn handle in the device context. */
cudnnHandle_t cudnn_handle() const;
private:
cudnnHandle_t cudnn_handle_;
CudnnPlace place_;
};
#endif #endif
} // namespace platform } // namespace platform
......
...@@ -46,3 +46,19 @@ TEST(Device, CUDADeviceContext) { ...@@ -46,3 +46,19 @@ TEST(Device, CUDADeviceContext) {
delete device_context; delete device_context;
} }
} }
TEST(Device, CudnnDeviceContext) {
using paddle::platform::CudnnDeviceContext;
using paddle::platform::CudnnPlace;
if (paddle::platform::dynload::HasCUDNN()) {
int count = paddle::platform::GetCUDADeviceCount();
for (int i = 0; i < count; ++i) {
CudnnDeviceContext* device_context =
new CudnnDeviceContext(CudnnPlace(i));
cudnnHandle_t cudnn_handle = device_context->cudnn_handle();
ASSERT_NE(nullptr, cudnn_handle);
ASSERT_NE(nullptr, device_context->stream());
delete device_context;
}
}
}
...@@ -43,6 +43,11 @@ struct GPUPlace { ...@@ -43,6 +43,11 @@ struct GPUPlace {
int device; int device;
}; };
struct CudnnPlace : public GPUPlace {
CudnnPlace() : GPUPlace() {}
explicit CudnnPlace(int d) : GPUPlace(d) {}
};
struct IsGPUPlace : public boost::static_visitor<bool> { struct IsGPUPlace : public boost::static_visitor<bool> {
bool operator()(const CPUPlace &) const { return false; } bool operator()(const CPUPlace &) const { return false; }
bool operator()(const GPUPlace &gpu) const { return true; } bool operator()(const GPUPlace &gpu) const { return true; }
...@@ -52,7 +57,7 @@ struct IsGPUPlace : public boost::static_visitor<bool> { ...@@ -52,7 +57,7 @@ struct IsGPUPlace : public boost::static_visitor<bool> {
// should be less equal than 2^(NUM_PLACE_TYPE_LIMIT_IN_BIT) // should be less equal than 2^(NUM_PLACE_TYPE_LIMIT_IN_BIT)
#define NUM_PLACE_TYPE_LIMIT_IN_BIT 4 #define NUM_PLACE_TYPE_LIMIT_IN_BIT 4
typedef boost::variant<GPUPlace, CPUPlace> Place; typedef boost::variant<CudnnPlace, GPUPlace, CPUPlace> Place;
// static check number of place types is less equal than // static check number of place types is less equal than
// 2^(NUM_PLACE_TYPE_LIMIT_IN_BIT) // 2^(NUM_PLACE_TYPE_LIMIT_IN_BIT)
......
...@@ -282,6 +282,23 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -282,6 +282,23 @@ All parameter, weight, gradient are variables in Paddle.
} }
return ret_values; return ret_values;
}); });
m.def("get_grad_op_descs",
[](const OpDescBind &op_desc,
const std::unordered_set<std::string> &no_grad_set,
std::unordered_map<std::string, std::string> &grad_to_var,
const std::vector<BlockDescBind *> &grad_sub_block) {
std::vector<std::unique_ptr<OpDescBind>> grad_op_descs =
framework::OpInfoMap::Instance()
.Get(op_desc.Type())
.GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
grad_sub_block);
std::vector<OpDescBind *> grad_op_desc_ptrs(grad_op_descs.size());
std::transform(
grad_op_descs.begin(), grad_op_descs.end(),
grad_op_desc_ptrs.begin(),
[](std::unique_ptr<OpDescBind> &p) { return p.release(); });
return grad_op_desc_ptrs;
});
m.def("prune", [](const ProgramDescBind &origin, m.def("prune", [](const ProgramDescBind &origin,
const std::vector<std::array<size_t, 2>> &targets) { const std::vector<std::array<size_t, 2>> &targets) {
ProgramDescBind prog_with_targets(origin); ProgramDescBind prog_with_targets(origin);
......
import ops
from ops import *
import nn
from nn import *
import io
from io import *
import tensor
from tensor import *
import control_flow
from control_flow import *
__all__ = []
__all__ += nn.__all__
__all__ += io.__all__
__all__ += tensor.__all__
__all__ += control_flow.__all__
__all__ += ops.__all__
from .. import core
from ..layer_helper import LayerHelper
__all__ = ['data']
def data(name,
shape,
append_batch_size=True,
dtype='float32',
lod_level=0,
type=core.VarDesc.VarType.LOD_TENSOR,
main_program=None,
startup_program=None,
stop_gradient=True):
"""
Data Layer.
Args:
name: The name/alias of the function
shape: Tuple declaring the shape.
append_batch_size: Whether or not to append the data as a batch.
dtype: The type of data : float32, float_16, int etc
type: The output type. By default it is LOD_TENSOR.
lod_level(int): The LoD Level. 0 means the input data is not a sequence.
main_program: Name of the main program that calls this
startup_program: Name of the startup program
stop_gradient: A boolean that mentions whether gradient should flow.
This function takes in input and based on whether data has
to be returned back as a minibatch, it creates the global variable using
the helper functions. The global variables can be accessed by all the
following operations and layers in the graph.
All the input variables of this function are passed in as local variables
to the LayerHelper constructor.
"""
helper = LayerHelper('data', **locals())
shape = list(shape)
for i in xrange(len(shape)):
if shape[i] is None:
shape[i] = -1
append_batch_size = False
elif shape[i] < 0:
append_batch_size = False
if append_batch_size:
shape = [-1] + shape # append batch size as -1
return helper.create_global_variable(
name=name,
shape=shape,
dtype=dtype,
type=type,
stop_gradient=stop_gradient,
lod_level=lod_level)
此差异已折叠。
from ..registry import register_layer
__all__ = [
'mean', 'mul', 'dropout', 'reshape', 'sigmoid', 'scale', 'transpose',
'sigmoid_cross_entropy_with_logits', 'elementwise_add', 'elementwise_div',
'elementwise_sub', 'elementwise_mul', 'clip', 'abs'
]
for _OP in set(__all__):
globals()[_OP] = register_layer(_OP)
from ..layer_helper import LayerHelper
__all__ = [
'create_tensor', 'cast', 'concat', 'sums', 'assign',
'fill_constant_batch_size_like', 'fill_constant', 'ones', 'zeros'
]
def create_tensor(dtype, name=None, main_program=None, startup_program=None):
helper = LayerHelper("create_tensor", **locals())
return helper.create_variable(name=helper.name, dtype=dtype)
def cast(x, dtype, main_program=None):
"""
This function takes in the input with input_dtype
and casts it to the output_dtype as the output.
"""
helper = LayerHelper('cast', **locals())
out = helper.create_tmp_variable(dtype=dtype)
helper.append_op(
type='cast',
inputs={'X': [x]},
outputs={'Out': [out]},
attrs={'in_dtype': x.dtype,
'out_dtype': out.dtype})
return out
def concat(input, axis, main_program=None, startup_program=None):
"""
This function concats the input along the axis mentioned
and returns that as the output.
"""
helper = LayerHelper('concat', **locals())
out = helper.create_tmp_variable(dtype=helper.input_dtype())
helper.append_op(
type='concat',
inputs={'X': input},
outputs={'Out': [out]},
attrs={'axis': axis})
return out
def sums(input, out=None, main_program=None, startup_program=None):
"""
This function takes in the input and performs the sum operation on it
and returns that as the output.
"""
helper = LayerHelper('sum', **locals())
if out is None:
out = helper.create_tmp_variable(dtype=helper.input_dtype())
helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
return out
def assign(input, output, main_program=None, startup_program=None):
helper = LayerHelper('assign', **locals())
helper.append_op(
type='scale',
inputs={'X': [input]},
outputs={'Out': [output]},
attrs={'scale': 1.0})
return output
def fill_constant(shape,
dtype,
value,
out=None,
main_program=None,
startup_program=None):
"""
This function creates a tensor , with shape as mentioned in the input and
specified dtype and fills this up with a constant value that
comes in the input. It also sets the stop_gradient to be True.
"""
helper = LayerHelper("fill_constant", **locals())
if out is None:
out = helper.create_tmp_variable(dtype=dtype)
helper.append_op(
type='fill_constant',
inputs={},
outputs={'Out': [out]},
attrs={'shape': shape,
'dtype': out.dtype,
'value': float(value)})
out.stop_gradient = True
return out
def fill_constant_batch_size_like(input,
shape,
dtype,
value,
input_dim_idx=0,
output_dim_idx=0,
main_program=None,
startup_program=None):
helper = LayerHelper("fill_constant_batch_size_like", **locals())
out = helper.create_tmp_variable(dtype=dtype)
helper.append_op(
type='fill_constant_batch_size_like',
inputs={'Input': input},
outputs={'Out': [out]},
attrs={
'shape': shape,
'dtype': out.dtype,
'value': float(value),
'input_dim_idx': input_dim_idx,
'output_dim_idx': output_dim_idx
})
out.stop_gradient = True
return out
def ones(shape, dtype, main_program=None):
"""
This function performs the same function as fill_constant() declared above
with the constant value being 1.0.
"""
return fill_constant(value=1.0, **locals())
def zeros(shape, dtype, main_program=None):
"""
This function performs the same function as fill_constant() declared above
with the constant value being 0.0.
"""
return fill_constant(value=0.0, **locals())
from __future__ import print_function from __future__ import print_function
import numpy as np import sys
import paddle.v2 as paddle import paddle.v2 as paddle
import paddle.v2.fluid as fluid import paddle.v2.fluid as fluid
import sys
def resnet_cifar10(input, depth=32): def resnet_cifar10(input, depth=32):
......
import numpy as np import numpy as np
import paddle.v2 as paddle import paddle.v2 as paddle
import paddle.v2.fluid as fluid import paddle.v2.fluid as fluid
from paddle.v2.fluid.layer_helper import LayerHelper
def lstm(x,
c_pre_init,
hidden_dim,
forget_bias=None,
main_program=None,
startup_program=None):
"""
This function helps create an operator for the LSTM (Long Short Term
Memory) cell that can be used inside an RNN.
"""
helper = LayerHelper('lstm_unit', **locals())
rnn = fluid.layers.StaticRNN()
with rnn.step():
c_pre = rnn.memory(init=c_pre_init)
x_t = rnn.step_input(x)
before_fc = fluid.layers.concat(
input=[x_t, c_pre],
axis=1,
main_program=main_program,
startup_program=startup_program)
after_fc = fluid.layers.fc(input=before_fc,
size=hidden_dim * 4,
main_program=main_program,
startup_program=startup_program)
dtype = x.dtype
c = helper.create_tmp_variable(dtype)
h = helper.create_tmp_variable(dtype)
helper.append_op(
type='lstm_unit',
inputs={"X": after_fc,
"C_prev": c_pre},
outputs={"C": c,
"H": h},
attrs={"forget_bias": forget_bias})
rnn.update_memory(c_pre, c)
rnn.output(h)
return rnn()
def lstm_net(dict_dim, class_dim=2, emb_dim=32, seq_len=80, batch_size=50): def lstm_net(dict_dim, class_dim=2, emb_dim=32, seq_len=80, batch_size=50):
...@@ -23,8 +68,7 @@ def lstm_net(dict_dim, class_dim=2, emb_dim=32, seq_len=80, batch_size=50): ...@@ -23,8 +68,7 @@ def lstm_net(dict_dim, class_dim=2, emb_dim=32, seq_len=80, batch_size=50):
c_pre_init = fluid.layers.fill_constant( c_pre_init = fluid.layers.fill_constant(
dtype=emb.dtype, shape=[batch_size, emb_dim], value=0.0) dtype=emb.dtype, shape=[batch_size, emb_dim], value=0.0)
c_pre_init.stop_gradient = False c_pre_init.stop_gradient = False
layer_1_out = fluid.layers.lstm( layer_1_out = lstm(emb, c_pre_init=c_pre_init, hidden_dim=emb_dim)
emb, c_pre_init=c_pre_init, hidden_dim=emb_dim)
layer_1_out = fluid.layers.transpose(x=layer_1_out, axis=[1, 0, 2]) layer_1_out = fluid.layers.transpose(x=layer_1_out, axis=[1, 0, 2])
prediction = fluid.layers.fc(input=layer_1_out, prediction = fluid.layers.fc(input=layer_1_out,
......
...@@ -68,6 +68,7 @@ packages=['paddle', ...@@ -68,6 +68,7 @@ packages=['paddle',
'paddle.v2.plot', 'paddle.v2.plot',
'paddle.v2.fluid', 'paddle.v2.fluid',
'paddle.v2.fluid.proto', 'paddle.v2.fluid.proto',
'paddle.v2.fluid.layers',
'py_paddle'] 'py_paddle']
with open('@PADDLE_SOURCE_DIR@/python/requirements.txt') as f: with open('@PADDLE_SOURCE_DIR@/python/requirements.txt') as f:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册