未验证 提交 a7b8d46f 编写于 作者: C Chen Weihang 提交者: GitHub

Fix Program API doc sample code error (#23635)

* fix program sample code error, test=develop, test=document_fix

* fix detail error, test=develop, test=document_fix

* fix typo, test=develop, test=document_fix
上级 189dbccc
...@@ -3833,10 +3833,12 @@ class Program(object): ...@@ -3833,10 +3833,12 @@ class Program(object):
import paddle.fluid as fluid import paddle.fluid as fluid
prog = fluid.default_main_program() prog = fluid.default_main_program()
x = fluid.layers.data(name="X", shape=[2,3], dtype="float32", append_batch_size=False)
pred = fluid.layers.fc(x, size=3)
prog_string = prog.to_string(throw_on_error=True, with_details=False) prog_string = prog.to_string(throw_on_error=True, with_details=False)
prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
print("program string without detail: {}".format(prog_string)) print("program string without detail: {}".format(prog_string))
prog_string_with_detail = prog.to_string(throw_on_error=True, with_details=True) print("program string with detail: {}".format(prog_string_with_details))
print("program string with detail: {}".format(prog_string_with_detail))
""" """
assert isinstance( assert isinstance(
throw_on_error, bool throw_on_error, bool
...@@ -3882,34 +3884,38 @@ class Program(object): ...@@ -3882,34 +3884,38 @@ class Program(object):
**3. This API has no effect in Dygraph Mode** **3. This API has no effect in Dygraph Mode**
Create a new Program with forward content of original one when ``for_test=True``. Create a new Program with forward content of original one when ``for_test=True``.
Create a new Program as the same as original one when ``for_test=False`` Create a new Program as same as the original one when ``for_test=False``.
Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
training and testing. They have an attribute, :code:`is_test`, to training and testing. They have an attribute, :code:`is_test`, to
control this behaviour. This method will change the :code:`is_test` control this behaviour. This method will change the :code:`is_test`
attribute of them to :code:`True` when :code:`for_test=True`. attribute of them to :code:`True` when :code:`for_test=True`.
* Set for_test to False when we want to clone the program for training. * Set for_test to False when you want to clone the program for training.
* Set for_test to True when we want to clone the program for testing. * Set for_test to True when you want to clone the program for testing.
We will prune the backward and optimize part of the program when you We will prune the backward and optimize part of the program when you
use :code:`clone` after :code:`Opimizer.minimize`, but we still use :code:`clone` after :code:`Opimizer.minimize`, but we still
recommend you to use :code:`clone` before using :code:`Opimizer.minimize`. recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
For Example: For Example:
.. code-block:: python ::
test_program = fluid.default_main_program().clone(for_test=True) import paddle.fluid as fluid
# Here we use clone before Momentum img = fluid.layers.data(name='image', shape=[784])
optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9) pred = fluid.layers.fc(input=img, size=10, act='relu')
optimizer.minimize() loss = fluid.layers.mean(pred)
# Here we use clone before Momentum
test_program = fluid.default_main_program().clone(for_test=True)
optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
optimizer.minimize(loss)
Args: Args:
for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`. for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
and prune the backward and optimize part of the program. The default value is :code:`False` .
Returns: Returns:
Program: A new Program with forward content of original one when ``for_test=True``. A new Program as the same as original one when ``for_test=False`` Program: A new Program with forward content of original one when ``for_test=True``. A new Program as same as the original one when ``for_test=False``
Examples: Examples:
...@@ -3924,7 +3930,6 @@ class Program(object): ...@@ -3924,7 +3930,6 @@ class Program(object):
import paddle.fluid as fluid import paddle.fluid as fluid
import six import six
def print_prog(prog): def print_prog(prog):
for name, value in sorted(six.iteritems(prog.block(0).vars)): for name, value in sorted(six.iteritems(prog.block(0).vars)):
print(value) print(value)
...@@ -3968,7 +3973,7 @@ class Program(object): ...@@ -3968,7 +3973,7 @@ class Program(object):
input=fluid.layers.fc(hidden, size=10, act='softmax'), input=fluid.layers.fc(hidden, size=10, act='softmax'),
label=fluid.layers.data(name='label', shape=[1], dtype='int64')) label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
avg_loss = fluid.layers.mean(loss) avg_loss = fluid.layers.mean(loss)
test_program = train_program.clone(for_test=False) test_program = train_program.clone(for_test=True)
print_prog(test_program) print_prog(test_program)
# Due to parameter sharing usage for train and test, so we need to use startup program of train # Due to parameter sharing usage for train and test, so we need to use startup program of train
...@@ -4001,7 +4006,8 @@ class Program(object): ...@@ -4001,7 +4006,8 @@ class Program(object):
for key, value in sorted(six.iteritems(op.all_attrs())): for key, value in sorted(six.iteritems(op.all_attrs())):
if key not in ['op_callstack', 'op_role_var']: if key not in ['op_callstack', 'op_role_var']:
print(" [ attrs: {}: {} ]".format(key, value)) print(" [ attrs: {}: {} ]".format(key, value))
def network(is_test):
def network():
img = fluid.layers.data(name='image', shape=[784]) img = fluid.layers.data(name='image', shape=[784])
hidden = fluid.layers.fc(input=img, size=200, act='relu') hidden = fluid.layers.fc(input=img, size=200, act='relu')
hidden = fluid.layers.dropout(hidden, dropout_prob=0.5) hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
...@@ -4011,19 +4017,19 @@ class Program(object): ...@@ -4011,19 +4017,19 @@ class Program(object):
avg_loss = fluid.layers.mean(loss) avg_loss = fluid.layers.mean(loss)
return avg_loss return avg_loss
train_program_2 = fluid.Program() train_program_2 = fluid.Program()
startup_program_2 = fluid.Program() startup_program_2 = fluid.Program()
test_program_2 = fluid.Program() test_program_2 = fluid.Program()
with fluid.program_guard(train_program_2, startup_program_2): with fluid.program_guard(train_program_2, startup_program_2):
with fluid.unique_name.guard(): with fluid.unique_name.guard():
sgd = fluid.optimizer.SGD(learning_rate=1e-3) avg_loss = network()
sgd.minimize(avg_loss) sgd = fluid.optimizer.SGD(learning_rate=1e-3)
sgd.minimize(avg_loss)
# the test startup program is not used. # the test startup program is not used.
with fluid.program_guard(test_program_2, fluid.Program()): with fluid.program_guard(test_program_2, startup_program_2):
with fluid.unique_name.guard(): with fluid.unique_name.guard():
loss = network(is_test=True) avg_loss = network()
print(test_program_2) print_prog(test_program_2)
The two code snippets above will generate and print same programs. The two code snippets above will generate and print same programs.
""" """
...@@ -4299,13 +4305,17 @@ class Program(object): ...@@ -4299,13 +4305,17 @@ class Program(object):
prog = fluid.default_main_program() prog = fluid.default_main_program()
random_seed = prog.random_seed random_seed = prog.random_seed
x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False) x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)
print(random_seed)
## 0
## the default random seed is 0
# Here we need to set random seed before we use fluid.layers.dropout # Here we need to set random seed before we use fluid.layers.dropout
print(random_seed)
prog.random_seed = 1 prog.random_seed = 1
z_var = fluid.layers.dropout(x_var, 0.7) z_var = fluid.layers.dropout(x_var, 0.7)
print(prog.random_seed) print(prog.random_seed)
## 1
## the random seed is change to 1
""" """
return self._seed return self._seed
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册