Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a7a4843c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a7a4843c
编写于
6月 29, 2022
作者:
Z
zmxdream
提交者:
GitHub
6月 29, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[GPUPS]Optimize dymf kernel (#43911)
上级
aa45f931
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
217 addition
and
42 deletion
+217
-42
paddle/fluid/framework/fleet/heter_ps/hashtable_kernel.cu
paddle/fluid/framework/fleet/heter_ps/hashtable_kernel.cu
+32
-19
paddle/fluid/framework/fleet/heter_ps/heter_comm_inl.h
paddle/fluid/framework/fleet/heter_ps/heter_comm_inl.h
+1
-0
paddle/fluid/framework/fleet/heter_ps/heter_comm_kernel.cu
paddle/fluid/framework/fleet/heter_ps/heter_comm_kernel.cu
+158
-16
paddle/fluid/framework/fleet/heter_ps/heter_comm_kernel.h
paddle/fluid/framework/fleet/heter_ps/heter_comm_kernel.h
+26
-7
未找到文件。
paddle/fluid/framework/fleet/heter_ps/hashtable_kernel.cu
浏览文件 @
a7a4843c
...
...
@@ -89,31 +89,42 @@ __global__ void dy_mf_search_kernel(Table* table,
char
*
vals
,
size_t
len
,
size_t
pull_feature_value_size
)
{
const
size_t
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
// return
;
const
size_t
i
=
blockIdx
.
x
*
blockDim
.
y
+
threadIdx
.
y
;
const
size_t
k
=
threadIdx
.
x
;
if
(
i
<
len
)
{
auto
it
=
table
->
find
(
keys
[
i
]);
if
(
it
!=
table
->
end
())
{
uint64_t
offset
=
i
*
pull_feature_value_size
;
FeatureValue
*
cur
=
(
FeatureValue
*
)(
vals
+
offset
);
FeatureValue
&
input
=
*
(
FeatureValue
*
)(
it
->
second
);
cur
->
slot
=
input
.
slot
;
cur
->
show
=
input
.
show
;
cur
->
clk
=
input
.
clk
;
cur
->
mf_dim
=
input
.
mf_dim
;
cur
->
lr
=
input
.
lr
;
cur
->
mf_size
=
input
.
mf_size
;
cur
->
cpu_ptr
=
input
.
cpu_ptr
;
cur
->
delta_score
=
input
.
delta_score
;
cur
->
lr_g2sum
=
input
.
lr_g2sum
;
for
(
int
j
=
0
;
j
<
cur
->
mf_dim
+
1
;
++
j
)
{
cur
->
mf
[
j
]
=
input
.
mf
[
j
];
char
*
cur_p
=
(
char
*
)
cur
;
char
*
input_p
=
(
char
*
)(
&
input
);
int
len
=
9
+
input
.
mf_dim
+
1
;
if
(
k
==
3
||
k
==
6
||
k
==
7
)
*
(
int
*
)(
cur_p
+
k
*
4
)
=
*
(
int
*
)(
input_p
+
k
*
4
);
else
if
(
k
<
8
)
*
(
float
*
)(
cur_p
+
k
*
4
)
=
*
(
float
*
)(
input_p
+
k
*
4
);
else
if
(
k
==
8
)
{
*
(
uint64_t
*
)(
cur_p
+
k
*
4
)
=
*
(
uint64_t
*
)(
input_p
+
k
*
4
);
}
else
{
int
len_per_thread
=
(
len
-
9
)
/
(
blockDim
.
y
-
9
);
int
remain
=
(
len
-
9
)
%
(
blockDim
.
y
-
9
);
int
real_len
=
len_per_thread
;
if
((
k
-
9
)
<
remain
)
real_len
++
;
int
left
=
-
1
,
right
=
-
1
;
if
((
k
-
9
)
<
remain
)
{
left
=
9
+
(
k
-
9
)
*
(
len_per_thread
+
1
);
right
=
left
+
real_len
;
}
else
{
left
=
9
+
remain
*
(
len_per_thread
+
1
)
+
(
k
-
9
-
remain
)
*
len_per_thread
;
right
=
left
+
real_len
;
}
for
(
int
j
=
left
;
j
<
right
;
j
++
)
*
(
float
*
)(
cur_p
+
(
j
+
1
)
*
4
)
=
*
(
float
*
)(
input_p
+
(
j
+
1
)
*
4
);
}
}
else
{
if
(
keys
[
i
]
!=
0
)
{
printf
(
"warning::pull miss key: %llu"
,
keys
[
i
]);
}
if
(
keys
[
i
]
!=
0
)
printf
(
"pull miss key: %llu"
,
keys
[
i
]);
}
}
}
...
...
@@ -220,8 +231,10 @@ void HashTable<KeyType, ValType>::get(const KeyType* d_keys,
if
(
len
==
0
)
{
return
;
}
const
int
grid_size
=
(
len
-
1
)
/
BLOCK_SIZE_
+
1
;
dy_mf_search_kernel
<<<
grid_size
,
BLOCK_SIZE_
,
0
,
stream
>>>
(
dim3
block_dims
(
32
,
32
);
const
int
grid_size
=
(
len
-
1
)
/
32
+
1
;
dim3
grid_dims
(
grid_size
);
dy_mf_search_kernel
<<<
grid_dims
,
block_dims
,
0
,
stream
>>>
(
container_
,
d_keys
,
d_vals
,
len
,
pull_feature_value_size_
);
}
...
...
paddle/fluid/framework/fleet/heter_ps/heter_comm_inl.h
浏览文件 @
a7a4843c
...
...
@@ -760,6 +760,7 @@ void HeterComm<KeyType, ValType, GradType>::dynamic_merge_grad(
(
char
*
)
d_grads
,
(
char
*
)
d_merge_grads_ptr
,
uniq_len
,
max_mf_dim_
,
grad_value_size
,
merger_
,
stream
);
...
...
paddle/fluid/framework/fleet/heter_ps/heter_comm_kernel.cu
浏览文件 @
a7a4843c
...
...
@@ -144,28 +144,106 @@ __global__ void dy_mf_fill_shard_grads_kernel(KeyType* d_shard_keys,
}
}
__global__
void
merge_gradients_kernel
(
const
uint32_t
*
offset
,
const
uint32_t
*
fea_num
,
const
uint32_t
*
index
,
const
char
*
input
,
char
*
output
,
int
n
,
size_t
grad_value_size
,
DynamicGradMerger
&
merger_
)
{
// optimized version
template
<
>
__global__
void
dy_mf_fill_shard_grads_kernel
<
FeatureKey
,
FeaturePushValue
,
int
>
(
FeatureKey
*
d_shard_keys
,
FeatureKey
*
d_keys
,
FeaturePushValue
*
d_shard_grads
,
FeaturePushValue
*
d_grads
,
int
*
idx
,
size_t
len
,
size_t
grad_value_size
)
{
const
size_t
i
=
blockIdx
.
x
*
blockDim
.
y
+
threadIdx
.
y
;
const
size_t
k
=
threadIdx
.
x
;
if
(
i
<
len
)
{
if
(
k
==
0
)
{
d_shard_keys
[
i
]
=
d_keys
[
idx
[
i
]];
}
FeaturePushValue
*
cur
=
(
FeaturePushValue
*
)((
char
*
)
d_shard_grads
+
i
*
grad_value_size
);
FeaturePushValue
&
input
=
*
(
FeaturePushValue
*
)((
char
*
)
d_grads
+
uint64_t
(
idx
[
i
])
*
grad_value_size
);
char
*
cur_p
=
(
char
*
)
cur
;
char
*
input_p
=
(
char
*
)(
&
input
);
int
len
=
5
+
input
.
mf_dim
;
if
(
k
==
2
||
k
==
4
)
*
(
int
*
)(
cur_p
+
k
*
4
)
=
*
(
int
*
)(
input_p
+
k
*
4
);
else
if
(
k
<
5
)
*
(
float
*
)(
cur_p
+
k
*
4
)
=
*
(
float
*
)(
input_p
+
k
*
4
);
else
{
int
len_per_thread
=
(
len
-
5
)
/
(
blockDim
.
y
-
5
);
int
remain
=
(
len
-
5
)
%
(
blockDim
.
y
-
5
);
int
real_len
=
len_per_thread
;
if
((
k
-
5
)
<
remain
)
real_len
++
;
int
left
=
-
1
,
right
=
-
1
;
if
((
k
-
5
)
<
remain
)
{
left
=
5
+
(
k
-
5
)
*
(
len_per_thread
+
1
);
right
=
left
+
real_len
;
}
else
{
left
=
5
+
remain
*
(
len_per_thread
+
1
)
+
(
k
-
5
-
remain
)
*
len_per_thread
;
right
=
left
+
real_len
;
}
for
(
int
j
=
left
;
j
<
right
;
j
++
)
*
(
float
*
)(
cur_p
+
j
*
4
)
=
*
(
float
*
)(
input_p
+
j
*
4
);
}
}
}
__global__
void
merge_gradients_basic_kernel
(
const
uint32_t
*
offset
,
const
uint32_t
*
fea_num
,
const
uint32_t
*
index
,
const
char
*
input
,
char
*
output
,
int
n
,
size_t
grad_value_size
,
DynamicGradMerger
&
merger
)
{
const
size_t
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
i
<
n
)
{
uint32_t
start
=
offset
[
i
];
uint32_t
num
=
fea_num
[
i
];
int
ori_index
=
index
[
start
];
FeaturePushValue
&
out
=
*
(
FeaturePushValue
*
)(
output
+
i
*
grad_value_size
);
FeaturePushValue
&
lhs
=
*
(
FeaturePushValue
*
)(
output
+
i
*
grad_value_size
);
FeaturePushValue
&
in
=
*
(
FeaturePushValue
*
)(
input
+
size_t
(
ori_index
)
*
grad_value_size
);
merger
_
.
update_one
(
out
,
in
);
merger
.
update_basic
(
lhs
,
in
);
for
(
int
j
=
1
;
j
<
num
;
++
j
)
{
ori_index
=
index
[
start
+
j
];
FeaturePushValue
&
rhs
=
*
(
FeaturePushValue
*
)(
input
+
size_t
(
ori_index
)
*
grad_value_size
);
merger_
.
merge_one
(
out
,
rhs
);
merger
.
merge_basic
(
lhs
,
rhs
);
}
}
}
__global__
void
merge_gradients_embedx_kernel
(
const
uint32_t
*
offset
,
const
uint32_t
*
fea_num
,
const
uint32_t
*
index
,
const
char
*
input
,
char
*
output
,
int
n
,
size_t
grad_dim
,
size_t
grad_value_size
,
DynamicGradMerger
&
merger
)
{
const
size_t
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
i
<
n
)
{
size_t
value_idx
=
i
/
grad_dim
;
size_t
field_idx
=
i
%
grad_dim
;
uint32_t
start
=
offset
[
value_idx
];
uint32_t
num
=
fea_num
[
value_idx
];
int
ori_index
=
index
[
start
];
FeaturePushValue
&
in
=
*
(
FeaturePushValue
*
)(
input
+
size_t
(
ori_index
)
*
grad_value_size
);
FeaturePushValue
&
lhs
=
*
(
FeaturePushValue
*
)(
output
+
value_idx
*
grad_value_size
);
merger
.
update_embedx
(
lhs
,
in
,
field_idx
);
for
(
int
j
=
1
;
j
<
num
;
++
j
)
{
int
ori_index
=
index
[
start
+
j
];
FeaturePushValue
&
rhs
=
*
(
FeaturePushValue
*
)(
input
+
size_t
(
ori_index
)
*
grad_value_size
);
merger
.
merge_embedx
(
lhs
,
rhs
,
field_idx
);
}
}
}
...
...
@@ -184,6 +262,49 @@ __global__ void dy_mf_fill_dvals_kernel(ValType* d_shard_vals,
}
}
// optimized version
template
<
>
__global__
void
dy_mf_fill_dvals_kernel
<
FeatureValue
,
int
>
(
FeatureValue
*
d_shard_vals
,
FeatureValue
*
d_vals
,
int
*
idx
,
size_t
len
,
size_t
val_size
)
{
const
size_t
i
=
blockIdx
.
x
*
blockDim
.
y
+
threadIdx
.
y
;
const
size_t
k
=
threadIdx
.
x
;
if
(
i
<
len
)
{
uint64_t
new_offset
=
uint64_t
(
idx
[
i
])
*
val_size
;
FeatureValue
*
cur
=
(
FeatureValue
*
)((
char
*
)
d_vals
+
new_offset
);
FeatureValue
&
input
=
*
(
FeatureValue
*
)((
char
*
)
d_shard_vals
+
i
*
val_size
);
char
*
cur_p
=
(
char
*
)
cur
;
char
*
input_p
=
(
char
*
)(
&
input
);
int
len
=
9
+
input
.
mf_dim
+
1
;
if
(
k
==
3
||
k
==
6
||
k
==
7
)
*
(
int
*
)(
cur_p
+
k
*
4
)
=
*
(
int
*
)(
input_p
+
k
*
4
);
else
if
(
k
<
8
)
*
(
float
*
)(
cur_p
+
k
*
4
)
=
*
(
float
*
)(
input_p
+
k
*
4
);
else
if
(
k
==
8
)
{
*
(
uint64_t
*
)(
cur_p
+
k
*
4
)
=
*
(
uint64_t
*
)(
input_p
+
k
*
4
);
}
else
{
int
len_per_thread
=
(
len
-
9
)
/
(
blockDim
.
x
-
9
);
int
remain
=
(
len
-
9
)
%
(
blockDim
.
y
-
9
);
int
real_len
=
len_per_thread
;
if
((
k
-
9
)
<
remain
)
real_len
++
;
int
left
=
-
1
,
right
=
-
1
;
if
((
k
-
9
)
<
remain
)
{
left
=
9
+
(
k
-
9
)
*
(
len_per_thread
+
1
);
right
=
left
+
real_len
;
}
else
{
left
=
9
+
remain
*
(
len_per_thread
+
1
)
+
(
k
-
9
-
remain
)
*
len_per_thread
;
right
=
left
+
real_len
;
}
for
(
int
j
=
left
;
j
<
right
;
j
++
)
*
(
float
*
)(
cur_p
+
(
j
+
1
)
*
4
)
=
*
(
float
*
)(
input_p
+
(
j
+
1
)
*
4
);
}
}
}
// cuda implemention of heter_comm_kernel.h
template
<
typename
T
,
typename
StreamType
>
void
HeterCommKernel
::
fill_idx
(
T
*
idx
,
...
...
@@ -321,9 +442,12 @@ void HeterCommKernel::dy_mf_fill_shard_grads(KeyType* d_shard_keys,
long
long
len
,
size_t
grad_value_size
,
const
StreamType
&
stream
)
{
int
grid_size
=
(
len
-
1
)
/
block_size_
+
1
;
//
int grid_size = (len - 1) / block_size_ + 1;
size_t
c_len
=
(
size_t
)
len
;
dy_mf_fill_shard_grads_kernel
<<<
grid_size
,
block_size_
,
0
,
stream
>>>
(
dim3
block_dims
(
32
,
32
);
const
size_t
grid_size
=
(
len
-
1
)
/
32
+
1
;
dim3
grid_dims
(
grid_size
);
dy_mf_fill_shard_grads_kernel
<<<
grid_dims
,
block_dims
,
0
,
stream
>>>
(
d_shard_keys
,
d_keys
,
d_shard_grads
,
...
...
@@ -340,12 +464,26 @@ void HeterCommKernel::merge_gradient(const uint32_t* offset,
const
char
*
input
,
char
*
output
,
int
n
,
size_t
grad_dim
,
size_t
grad_value_size
,
DynamicGradMerger
&
merger_
,
const
StreamType
&
stream
)
{
int
grid_size
=
(
n
-
1
)
/
block_size_
+
1
;
merge_gradients_kernel
<<<
grid_size
,
block_size_
,
0
,
stream
>>>
(
merge_gradients_
basic_
kernel
<<<
grid_size
,
block_size_
,
0
,
stream
>>>
(
offset
,
fea_num
,
index
,
input
,
output
,
n
,
grad_value_size
,
merger_
);
if
(
grad_dim
>
0
)
{
int
grid_size2
=
(
n
*
grad_dim
-
1
)
/
block_size_
+
1
;
merge_gradients_embedx_kernel
<<<
grid_size2
,
block_size_
,
0
,
stream
>>>
(
offset
,
fea_num
,
index
,
input
,
output
,
n
*
grad_dim
,
grad_dim
,
grad_value_size
,
merger_
);
}
}
template
<
typename
ValType
,
typename
T
,
typename
StreamType
>
...
...
@@ -355,9 +493,12 @@ void HeterCommKernel::dy_mf_fill_dvals(ValType* d_shard_vals,
long
long
len
,
size_t
val_size
,
const
StreamType
&
stream
)
{
int
grid_size
=
(
len
-
1
)
/
block_size_
+
1
;
//
int grid_size = (len - 1) / block_size_ + 1;
size_t
c_len
=
(
size_t
)
len
;
dy_mf_fill_dvals_kernel
<<<
grid_size
,
block_size_
,
0
,
stream
>>>
(
dim3
block_dims
(
32
,
32
);
const
size_t
grid_size_
=
(
len
-
1
)
/
32
+
1
;
dim3
grid_dims
(
grid_size_
);
dy_mf_fill_dvals_kernel
<<<
grid_dims
,
block_dims
,
0
,
stream
>>>
(
d_shard_vals
,
d_vals
,
idx
,
c_len
,
val_size
);
}
...
...
@@ -487,6 +628,7 @@ template void HeterCommKernel::merge_gradient<cudaStream_t>(
const
char
*
input
,
char
*
output
,
int
n
,
size_t
grad_dim
,
size_t
grad_value_size
,
DynamicGradMerger
&
merger_
,
const
cudaStream_t
&
stream
);
...
...
paddle/fluid/framework/fleet/heter_ps/heter_comm_kernel.h
浏览文件 @
a7a4843c
...
...
@@ -42,23 +42,41 @@ struct DynamicGradMerger {
}
template
<
typename
T
>
__device__
__forceinline__
void
update_
one
(
T
&
output
,
const
T
&
input
)
{
__device__
__forceinline__
void
update_
basic
(
T
&
output
,
const
T
&
input
)
{
output
.
slot
=
input
.
slot
;
output
.
show
=
input
.
show
;
output
.
clk
=
input
.
clk
;
output
.
mf_dim
=
input
.
mf_dim
;
output
.
lr_g
=
input
.
lr_g
;
for
(
int
i
=
0
;
i
<
output
.
mf_dim
;
++
i
)
{
output
.
mf_g
[
i
]
=
input
.
mf_g
[
i
];
}
//
for (int i = 0; i < output.mf_dim; ++i) {
//
output.mf_g[i] = input.mf_g[i];
//
}
}
template
<
typename
T
>
__device__
__forceinline__
void
merge_
one
(
T
&
output
,
const
T
&
input
)
{
__device__
__forceinline__
void
merge_
basic
(
T
&
output
,
const
T
&
input
)
{
output
.
show
+=
input
.
show
;
output
.
clk
+=
input
.
clk
;
output
.
lr_g
+=
input
.
lr_g
;
for
(
int
i
=
0
;
i
<
input
.
mf_dim
;
++
i
)
{
output
.
mf_g
[
i
]
+=
input
.
mf_g
[
i
];
// for (int i = 0; i < input.mf_dim; ++i) {
// output.mf_g[i] += input.mf_g[i];
//}
}
template
<
typename
T
>
__device__
__forceinline__
void
update_embedx
(
T
&
output
,
const
T
&
input
,
size_t
embedx_id
)
{
if
(
embedx_id
<
output
.
mf_dim
)
{
output
.
mf_g
[
embedx_id
]
=
input
.
mf_g
[
embedx_id
];
}
}
template
<
typename
T
>
__device__
__forceinline__
void
merge_embedx
(
T
&
output
,
const
T
&
input
,
size_t
embedx_id
)
{
if
(
embedx_id
<
output
.
mf_dim
)
{
output
.
mf_g
[
embedx_id
]
+=
input
.
mf_g
[
embedx_id
];
}
}
};
...
...
@@ -165,6 +183,7 @@ class HeterCommKernel {
const
char
*
input
,
char
*
output
,
int
n
,
size_t
grad_dim
,
size_t
grad_value_size
,
DynamicGradMerger
&
merger_
,
const
StreamType
&
stream
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录