Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a7522361
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a7522361
编写于
7月 16, 2018
作者:
L
Luo Tao
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into demo
上级
89e511f4
7040c679
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
112 addition
and
33 deletion
+112
-33
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+1
-1
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
+64
-13
python/paddle/fluid/transpiler/__init__.py
python/paddle/fluid/transpiler/__init__.py
+2
-2
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+45
-17
未找到文件。
python/paddle/fluid/__init__.py
浏览文件 @
a7522361
...
...
@@ -46,7 +46,7 @@ from param_attr import ParamAttr, WeightNormParamAttr
from
data_feeder
import
DataFeeder
from
core
import
LoDTensor
,
LoDTensorArray
,
CPUPlace
,
CUDAPlace
,
CUDAPinnedPlace
,
Scope
from
transpiler
import
DistributeTranspiler
,
InferenceTranspiler
,
\
memory_optimize
,
release_memory
memory_optimize
,
release_memory
,
DistributeTranspilerConfig
from
concurrency
import
(
Go
,
make_channel
,
channel_send
,
channel_recv
,
channel_close
,
Select
)
from
lod_tensor
import
create_lod_tensor
,
create_random_int_lodtensor
...
...
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
浏览文件 @
a7522361
...
...
@@ -27,7 +27,6 @@ class TranspilerTest(unittest.TestCase):
self
.
pserver_eps
=
"127.0.0.1:6174,127.0.0.1:6175"
self
.
pserver1_ep
=
"127.0.0.1:6174"
self
.
pserver2_ep
=
"127.0.0.1:6175"
self
.
slice_var_up
=
True
self
.
sync_mode
=
True
self
.
transpiler
=
None
...
...
@@ -52,27 +51,26 @@ class TranspilerTest(unittest.TestCase):
self
.
origin_prog
=
main
.
clone
()
return
main
def
get_trainer
(
self
):
t
=
self
.
_transpiler_instance
()
def
get_trainer
(
self
,
config
=
None
):
t
=
self
.
_transpiler_instance
(
config
)
return
t
.
get_trainer_program
()
def
get_pserver
(
self
,
ep
):
t
=
self
.
_transpiler_instance
()
def
get_pserver
(
self
,
ep
,
config
=
None
):
t
=
self
.
_transpiler_instance
(
config
)
pserver
=
t
.
get_pserver_program
(
ep
)
startup
=
t
.
get_startup_program
(
ep
,
pserver
)
return
pserver
,
startup
def
_transpiler_instance
(
self
):
def
_transpiler_instance
(
self
,
config
=
None
):
if
not
self
.
transpiler
:
main
=
self
.
get_main_program
()
self
.
transpiler
=
fluid
.
DistributeTranspiler
()
self
.
transpiler
=
fluid
.
DistributeTranspiler
(
config
=
config
)
self
.
transpiler
.
transpile
(
self
.
trainer_id
,
program
=
main
,
pservers
=
self
.
pserver_eps
,
trainers
=
self
.
trainers
,
slice_var_up
=
self
.
slice_var_up
,
sync_mode
=
self
.
sync_mode
)
trainers
=
self
.
trainers
)
return
self
.
transpiler
...
...
@@ -124,14 +122,67 @@ class TestBasicModel(TranspilerTest):
self
.
assertEqual
(
set
(
pserver_params
),
set
(
trainer_params
))
class
TestBasicModelWithLargeBlockSize
(
TranspilerTest
):
def
test_transpiler
(
self
):
config
=
fluid
.
DistributeTranspilerConfig
()
config
.
min_block_size
=
1048576
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
,
config
)
pserver2
,
startup2
=
self
.
get_pserver
(
self
.
pserver2_ep
,
config
)
trainer
=
self
.
get_trainer
(
config
)
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
global_block
().
ops
],
[
'mul'
,
'elementwise_add'
,
'elementwise_sub'
,
'square'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'square_grad'
,
'elementwise_sub_grad'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'send'
,
'send_barrier'
,
'recv'
,
'recv'
,
'fetch_barrier'
])
self
.
assertEqual
(
len
(
pserver
.
blocks
),
2
)
# block0: listen_and_serv
self
.
assertEqual
([
op
.
type
for
op
in
pserver
.
blocks
[
0
].
ops
],
[
"listen_and_serv"
])
# block1~2: optimize pass
self
.
assertEqual
([
op
.
type
for
op
in
pserver
.
blocks
[
1
].
ops
],
[
"sum"
,
"scale"
,
"sgd"
])
# confirm startup program
self
.
assertEqual
([
op
.
type
for
op
in
startup
.
global_block
().
ops
],
[
"fill_constant"
,
"fill_constant"
,
"fill_constant"
])
# the variable #fc_w will be split into two blocks
fc_w_var
=
startup2
.
global_block
().
var
(
"fc_w"
)
self
.
assertEqual
(
fc_w_var
.
shape
,
(
1000L
,
1000L
))
# all parameters should be optimized on pserver
pserver_params
=
[]
for
prog
in
[
pserver
,
pserver2
]:
for
blk
in
prog
.
blocks
:
for
op
in
blk
.
ops
:
if
"Param"
in
op
.
input_names
:
param_name
=
op
.
input
(
"Param"
)[
0
]
is_block_idx
=
param_name
.
find
(
".block"
)
if
is_block_idx
!=
-
1
:
origin_param_name
=
param_name
[:
is_block_idx
]
else
:
origin_param_name
=
param_name
pserver_params
.
append
(
origin_param_name
)
trainer_params
=
[]
for
op
in
self
.
origin_prog
.
global_block
().
ops
:
if
"Param"
in
op
.
input_names
:
trainer_params
.
append
(
op
.
input
(
"Param"
)[
0
])
self
.
assertEqual
(
set
(
pserver_params
),
set
(
trainer_params
))
class
TestNoSliceVar
(
TranspilerTest
):
def
setUp
(
self
):
super
(
TestNoSliceVar
,
self
).
setUp
()
self
.
slice_var_up
=
False
def
test_transpiler
(
self
):
_
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
_
,
startup2
=
self
.
get_pserver
(
self
.
pserver2_ep
)
config
=
fluid
.
DistributeTranspilerConfig
()
config
.
slice_var_up
=
False
_
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
,
config
)
_
,
startup2
=
self
.
get_pserver
(
self
.
pserver2_ep
,
config
)
if
startup
.
global_block
().
vars
.
has_key
(
"fc_w"
):
fc_w_var
=
startup
.
global_block
().
vars
[
"fc_w"
]
...
...
python/paddle/fluid/transpiler/__init__.py
浏览文件 @
a7522361
...
...
@@ -12,12 +12,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
distribute_transpiler
import
DistributeTranspiler
from
distribute_transpiler
import
DistributeTranspiler
,
DistributeTranspilerConfig
from
inference_transpiler
import
InferenceTranspiler
from
memory_optimization_transpiler
import
memory_optimize
,
release_memory
from
ps_dispatcher
import
HashName
,
RoundRobin
__all__
=
[
"DistributeTranspiler"
,
"InferenceTranspiler"
,
"memory_optimize"
,
"release_memory"
,
"HashName"
,
"RoundRobin"
"release_memory"
,
"HashName"
,
"RoundRobin"
,
"DistributeTranspilerConfig"
]
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
a7522361
...
...
@@ -64,7 +64,7 @@ def same_or_split_var(p_name, var_name):
return
p_name
==
var_name
or
p_name
.
startswith
(
var_name
+
".block"
)
def
slice_variable
(
var_list
,
slice_count
,
min_block_size
=
8192
):
def
slice_variable
(
var_list
,
slice_count
,
min_block_size
):
"""
We may need to split dense tensor to one or more blocks and put
them equally onto parameter server. One block is a sub-tensor
...
...
@@ -110,6 +110,22 @@ def slice_variable(var_list, slice_count, min_block_size=8192):
return
blocks
class
DistributeTranspilerConfig
(
object
):
"""
slice_var_up (bool): Do Tensor slice for pservers, default is True.
split_method (PSDispatcher): RoundRobin or HashName can be used
try to choose the best method to balance loads for pservers.
min_block_size (int): Minimum splitted element number in block.
According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
We can use bandwidth effiently when data size is larger than 2MB.If you
want to change it, please be sure you see the slice_variable function.
"""
slice_var_up
=
True
split_method
=
None
min_block_size
=
8192
class
DistributeTranspiler
(
object
):
"""
**DistributeTranspiler**
...
...
@@ -146,13 +162,23 @@ class DistributeTranspiler(object):
trainer_program = t.get_trainer_program()
"""
def
__init__
(
self
,
config
=
None
):
if
config
is
not
None
:
self
.
config
=
config
else
:
self
.
config
=
DistributeTranspilerConfig
()
if
self
.
config
.
split_method
is
None
:
self
.
config
.
split_method
=
RoundRobin
assert
(
self
.
config
.
min_block_size
>=
8192
)
assert
(
self
.
config
.
split_method
.
__bases__
[
0
]
==
PSDispatcher
)
def
transpile
(
self
,
trainer_id
,
program
=
None
,
pservers
=
"127.0.0.1:6174"
,
trainers
=
1
,
slice_var_up
=
True
,
split_method
=
RoundRobin
,
sync_mode
=
True
):
"""
Run the transpiler.
...
...
@@ -165,12 +191,8 @@ class DistributeTranspiler(object):
pservers (str): comma separated ip:port string for the pserver
list.
trainers (int): number of trainers in the distributed job.
slice_var_up (bool): Do Tensor slice for pservers, default is True.
split_method (PSDispatcher): RoundRobin or HashName can be used
try to choose the best method to balance loads for pservers.
sync_mode (bool): Do sync training or not, default is True.
"""
assert
(
split_method
.
__bases__
[
0
]
==
PSDispatcher
)
if
program
is
None
:
program
=
default_main_program
()
self
.
origin_program
=
program
...
...
@@ -181,11 +203,11 @@ class DistributeTranspiler(object):
self
.
pserver_endpoints
=
pserver_endpoints
self
.
optimize_ops
,
self
.
params_grads
=
self
.
_get_optimize_pass
()
ps_dispatcher
=
split_method
(
self
.
pserver_endpoints
)
ps_dispatcher
=
s
elf
.
config
.
s
plit_method
(
self
.
pserver_endpoints
)
self
.
has_distributed_lookup_table
=
self
.
_has_distributed_lookup_table
()
# split and create vars, then put splited vars in dicts for later use.
self
.
_init_splited_vars
(
slice_var_up
)
self
.
_init_splited_vars
()
# step 3.1: insert send op to send gradient vars to parameter servers
ps_dispatcher
.
reset
()
...
...
@@ -197,14 +219,14 @@ class DistributeTranspiler(object):
# fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
# shuffle the map will avoid the uneven distribution above
grad_var_mapping_items
=
self
.
grad_var_mapping
.
items
()
if
not
slice_var_up
:
if
not
s
elf
.
config
.
s
lice_var_up
:
random
.
seed
(
self
.
trainer_num
)
random
.
shuffle
(
grad_var_mapping_items
)
for
orig_varname
,
splited_vars
in
grad_var_mapping_items
:
eplist
=
ps_dispatcher
.
dispatch
(
splited_vars
)
if
not
slice_var_up
:
if
not
s
elf
.
config
.
s
lice_var_up
:
assert
(
len
(
splited_vars
)
==
1
)
if
len
(
splited_vars
)
==
1
:
...
...
@@ -627,7 +649,7 @@ class DistributeTranspiler(object):
]
return
param_list
,
grad_list
def
_init_splited_vars
(
self
,
slice_var_up
):
def
_init_splited_vars
(
self
):
# update these mappings for further transpile:
# 1. param_var_mapping: param var name -> [splited params vars]
# 2. grad_var_mapping: grad var name -> [splited grads vars]
...
...
@@ -651,17 +673,22 @@ class DistributeTranspiler(object):
param_list
,
grad_list
=
self
.
_update_dist_lookup_table_vars
(
param_list
,
grad_list
,
self
.
params_grads
)
if
slice_var_up
:
if
s
elf
.
config
.
s
lice_var_up
:
# when we slice var up into blocks, we will slice the var according to
# pserver services' count. A pserver may have two or more listening ports.
grad_blocks
=
slice_variable
(
grad_list
,
len
(
self
.
pserver_endpoints
))
grad_blocks
=
slice_variable
(
grad_list
,
len
(
self
.
pserver_endpoints
),
self
.
config
.
min_block_size
)
param_blocks
=
slice_variable
(
param_list
,
len
(
self
.
pserver_endpoints
))
len
(
self
.
pserver_endpoints
),
self
.
config
.
min_block_size
)
else
:
# when we do NOT slice var up into blocks, we will always slice params
# grads into one block.
grad_blocks
=
slice_variable
(
grad_list
,
1
)
param_blocks
=
slice_variable
(
param_list
,
1
)
grad_blocks
=
slice_variable
(
grad_list
,
1
,
self
.
config
.
min_block_size
)
param_blocks
=
slice_variable
(
param_list
,
1
,
self
.
config
.
min_block_size
)
assert
(
len
(
grad_blocks
)
==
len
(
param_blocks
))
# origin_varname -> [splited_var]
...
...
@@ -1001,6 +1028,7 @@ class DistributeTranspiler(object):
shape
=
splited_shape
)
# flattend splited var
var_mapping
[
varname
].
append
(
var
)
program
.
global_block
().
sync_with_cpp
()
return
var_mapping
def
create_splited_vars
(
self
,
source_var
,
block
,
tag
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录