Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a6a4895a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a6a4895a
编写于
12月 20, 2022
作者:
Y
Yulong Ao
提交者:
GitHub
12月 20, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[0D Tensor] Add tests of 0D Tensor for allgather and allreduce (#49175)
上级
495c1fc0
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
102 addition
and
0 deletion
+102
-0
python/paddle/fluid/tests/unittests/collective/process_group_nccl.py
...le/fluid/tests/unittests/collective/process_group_nccl.py
+102
-0
未找到文件。
python/paddle/fluid/tests/unittests/collective/process_group_nccl.py
浏览文件 @
a6a4895a
...
...
@@ -68,6 +68,24 @@ class TestProcessGroupFp32(unittest.TestCase):
print
(
"test allreduce sum api ok"
)
# test allreduce sum with shape = []
# rank 0
x
=
np
.
random
.
random
([]).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
# rank 1
y
=
np
.
random
.
random
([]).
astype
(
self
.
dtype
)
tensor_y
=
paddle
.
to_tensor
(
y
)
sum_result
=
tensor_x
+
tensor_y
if
pg
.
rank
()
==
0
:
task
=
dist
.
all_reduce
(
tensor_x
)
assert
np
.
array_equal
(
tensor_x
,
sum_result
)
else
:
task
=
dist
.
all_reduce
(
tensor_y
)
assert
np
.
array_equal
(
tensor_y
,
sum_result
)
print
(
"test allreduce sum api with = [] ok"
)
# test allreduce max
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
...
...
@@ -89,6 +107,27 @@ class TestProcessGroupFp32(unittest.TestCase):
print
(
"test allreduce max api ok"
)
# test allreduce max with shape = []
# rank 0
x
=
np
.
random
.
random
([]).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
# rank 1
y
=
np
.
random
.
random
([]).
astype
(
self
.
dtype
)
tensor_y
=
paddle
.
to_tensor
(
y
)
max_result
=
paddle
.
maximum
(
tensor_x
,
tensor_y
)
if
pg
.
rank
()
==
0
:
task
=
dist
.
all_reduce
(
tensor_x
,
dist
.
ReduceOp
.
MAX
,
sync_op
=
False
)
task
.
wait
()
assert
np
.
array_equal
(
tensor_x
,
max_result
)
else
:
task
=
dist
.
all_reduce
(
tensor_y
,
dist
.
ReduceOp
.
MAX
,
sync_op
=
False
)
task
.
wait
()
assert
np
.
array_equal
(
tensor_y
,
max_result
)
print
(
"test allreduce max api with shape = [] ok"
)
# test allreduce min
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
...
...
@@ -110,6 +149,27 @@ class TestProcessGroupFp32(unittest.TestCase):
print
(
"test allreduce min api ok"
)
# test allreduce min with shape = []
# rank 0
x
=
np
.
random
.
random
([]).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
# rank 1
y
=
np
.
random
.
random
([]).
astype
(
self
.
dtype
)
tensor_y
=
paddle
.
to_tensor
(
y
)
min_result
=
paddle
.
minimum
(
tensor_x
,
tensor_y
)
if
pg
.
rank
()
==
0
:
task
=
dist
.
all_reduce
(
tensor_x
,
dist
.
ReduceOp
.
MIN
,
sync_op
=
False
)
task
.
wait
()
assert
np
.
array_equal
(
tensor_x
,
min_result
)
else
:
task
=
dist
.
all_reduce
(
tensor_y
,
dist
.
ReduceOp
.
MIN
,
sync_op
=
False
)
task
.
wait
()
assert
np
.
array_equal
(
tensor_y
,
min_result
)
print
(
"test allreduce min api with shape [] ok"
)
# test allreduce prod
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
...
...
@@ -131,6 +191,27 @@ class TestProcessGroupFp32(unittest.TestCase):
print
(
"test allreduce prod api ok"
)
# test allreduce prod with shape = []
# rank 0
x
=
np
.
random
.
random
([]).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
# rank 1
y
=
np
.
random
.
random
([]).
astype
(
self
.
dtype
)
tensor_y
=
paddle
.
to_tensor
(
y
)
prod_result
=
np
.
multiply
(
x
,
y
)
if
pg
.
rank
()
==
0
:
task
=
dist
.
all_reduce
(
tensor_x
,
dist
.
ReduceOp
.
PROD
,
sync_op
=
False
)
task
.
wait
()
assert
np
.
array_equal
(
tensor_x
,
prod_result
)
else
:
task
=
dist
.
all_reduce
(
tensor_y
,
dist
.
ReduceOp
.
PROD
,
sync_op
=
False
)
task
.
wait
()
assert
np
.
array_equal
(
tensor_y
,
prod_result
)
print
(
"test allreduce prod api with shape = [] ok"
)
# test broadcast
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
...
...
@@ -236,6 +317,27 @@ class TestProcessGroupFp32(unittest.TestCase):
assert
np
.
array_equal
(
tensor_y
,
out_2
)
print
(
"test allgather api2 ok
\n
"
)
# test allgather with shape = []
# rank 0
x
=
np
.
random
.
random
([]).
astype
(
self
.
dtype
)
y
=
np
.
random
.
random
([]).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
tensor_y
=
paddle
.
to_tensor
(
y
)
tensor_out_list
=
[]
if
pg
.
rank
()
==
0
:
task
=
dist
.
all_gather
(
tensor_out_list
,
tensor_x
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
# rank 1
else
:
task
=
dist
.
all_gather
(
tensor_out_list
,
tensor_y
,
sync_op
=
False
)
paddle
.
device
.
cuda
.
synchronize
()
out_1
=
tensor_out_list
[
0
]
out_2
=
tensor_out_list
[
1
]
assert
np
.
array_equal
(
tensor_x
,
out_1
)
assert
np
.
array_equal
(
tensor_y
,
out_2
)
print
(
"test allgather api with shape [] ok
\n
"
)
# test alltoall
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录