未验证 提交 a635a8a5 编写于 作者: R Ruibiao Chen 提交者: GitHub

Move conv2d_transpose_grad XPU kernel to PHI, test=kunlun (#45466)

上级 81eaa97d
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/conv_transpose_op.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
#include "paddle/phi/kernels/cpu/conv_util.h"
#ifdef PADDLE_WITH_XPU
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class Conv2DTransposeGradXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* input = context.Input<Tensor>("Input");
const Tensor* output_grad =
context.Input<Tensor>(framework::GradVarName("Output"));
Tensor* input_grad =
context.Output<Tensor>(framework::GradVarName("Input"));
Tensor* filter_grad =
context.Output<Tensor>(framework::GradVarName("Filter"));
// The filter and filter_grad will be reshaped in the calculations,
// so here use an assignment operation,
// that avoids modifying the variable in the Scope.
Tensor filter = *context.Input<Tensor>("Filter");
if (!input_grad && !filter_grad) return;
int groups = context.Attr<int>("groups");
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
const std::string data_format = context.Attr<std::string>("data_format");
const std::string padding_algorithm =
context.Attr<std::string>("padding_algorithm");
PADDLE_ENFORCE_EQ(
data_format == "NHWC" || data_format == "NDHWC",
false,
platform::errors::InvalidArgument(
("XPU do support data_format is NCHW in conv grad op.")));
framework::DDim in_data_dims =
phi::slice_ddim(input->dims(), 2, input->dims().size());
framework::DDim filter_data_dims =
phi::slice_ddim(filter.dims(), 2, filter.dims().size());
std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
phi::UpdatePaddingAndDilation(
&paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);
const int batch_size = static_cast<int>(input->dims()[0]);
const int img_yc = static_cast<int>(input->dims()[1]);
const int img_yh = static_cast<int>(input->dims()[2]);
const int img_yw = static_cast<int>(input->dims()[3]);
const int img_xc = static_cast<int>(output_grad->dims()[1]);
const int img_xh = static_cast<int>(output_grad->dims()[2]);
const int img_xw = static_cast<int>(output_grad->dims()[3]);
if (input_grad) {
input_grad->mutable_data<T>(context.GetPlace());
}
if (filter_grad) {
filter_grad->mutable_data<T>(context.GetPlace());
}
auto& dev_ctx = context.template device_context<DeviceContext>();
int r = xpu::conv2d_transpose_grad<float, float, float, int16_t>(
dev_ctx.x_context(),
input->data<T>(),
filter.data<T>(),
output_grad->data<T>(),
input_grad ? input_grad->data<T>() : nullptr,
filter_grad ? filter_grad->data<T>() : nullptr,
batch_size,
img_yc,
img_yh,
img_yw,
img_xc,
img_xh,
img_xw,
ksize,
strides,
paddings,
dilations,
groups,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
true);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "conv2d_transpose_grad");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
conv2d_transpose_grad,
ops::Conv2DTransposeGradXPUKernel<paddle::platform::XPUDeviceContext,
float>);
#endif
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/conv_transpose_grad_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cpu/conv_util.h"
namespace phi {
template <typename T, typename Context>
void Conv2dTransposeGradKernel(const Context& ctx,
const DenseTensor& x,
const DenseTensor& filter,
const DenseTensor& dout,
const std::vector<int>& strides,
const std::vector<int>& paddings,
const std::vector<int>& output_padding,
const std::vector<int>& output_size,
const std::string& padding_algorithm,
int groups,
const std::vector<int>& dilations,
const std::string& data_format,
DenseTensor* dx,
DenseTensor* dfilter) {
// The filter and dfilter will be reshaped in the calculations,
// so here use an assignment operation,
// that avoids modifying the variable in the Scope.
DenseTensor filter_ = filter;
if (!dx && !dfilter) return;
std::vector<int> paddings_ = paddings;
std::vector<int> dilations_ = dilations;
PADDLE_ENFORCE_EQ(
data_format == "NHWC" || data_format == "NDHWC",
false,
errors::InvalidArgument(
("XPU do support data_format is NCHW in conv grad op.")));
DDim in_data_dims = slice_ddim(x.dims(), 2, x.dims().size());
DDim filter_data_dims = slice_ddim(filter_.dims(), 2, filter_.dims().size());
std::vector<int> ksize = vectorize<int>(filter_data_dims);
UpdatePaddingAndDilation(
&paddings_, &dilations_, padding_algorithm, in_data_dims, strides, ksize);
const int batch_size = static_cast<int>(x.dims()[0]);
const int img_yc = static_cast<int>(x.dims()[1]);
const int img_yh = static_cast<int>(x.dims()[2]);
const int img_yw = static_cast<int>(x.dims()[3]);
const int img_xc = static_cast<int>(dout.dims()[1]);
const int img_xh = static_cast<int>(dout.dims()[2]);
const int img_xw = static_cast<int>(dout.dims()[3]);
if (dx) {
ctx.template Alloc<T>(dx);
}
if (dfilter) {
ctx.template Alloc<T>(dfilter);
}
int r = xpu::conv2d_transpose_grad<float, float, float, int16_t>(
ctx.x_context(),
x.data<T>(),
filter_.data<T>(),
dout.data<T>(),
dx ? dx->data<T>() : nullptr,
dfilter ? dfilter->data<T>() : nullptr,
batch_size,
img_yc,
img_yh,
img_yw,
img_xc,
img_xh,
img_xw,
ksize,
strides,
paddings_,
dilations_,
groups,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
true);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "conv2d_transpose_grad");
}
} // namespace phi
PD_REGISTER_KERNEL(conv2d_transpose_grad,
XPU,
ALL_LAYOUT,
phi::Conv2dTransposeGradKernel,
float) {}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册