Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a5fcc4b5
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a5fcc4b5
编写于
12月 08, 2020
作者:
T
TTerror
提交者:
GitHub
12月 08, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update reduce_sum op on xpu (#29367)
* update reduce_sum op on xpu * update reduce_sum op on xpu * support running on xpu
上级
c7cada85
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
185 addition
and
200 deletion
+185
-200
paddle/fluid/operators/reduce_ops/reduce_sum_op_xpu.cc
paddle/fluid/operators/reduce_ops/reduce_sum_op_xpu.cc
+99
-63
python/paddle/fluid/tests/unittests/xpu/test_reduce_sum_op_xpu.py
...addle/fluid/tests/unittests/xpu/test_reduce_sum_op_xpu.py
+86
-137
未找到文件。
paddle/fluid/operators/reduce_ops/reduce_sum_op_xpu.cc
浏览文件 @
a5fcc4b5
...
...
@@ -16,6 +16,8 @@
#include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h"
#include <memory>
#include <string>
#include "paddle/fluid/platform/xpu_header.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -27,86 +29,120 @@ class ReduceSumXPUKernel : public framework::OpKernel<T> {
platform
::
is_xpu_place
(
context
.
GetPlace
()),
true
,
platform
::
errors
::
Unavailable
(
"This kernel only runs on XPU."
));
bool
reduce_all
=
context
.
Attr
<
bool
>
(
"reduce_all"
);
auto
*
input
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
context
.
Output
<
Tensor
>
(
"Out"
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
context
.
Output
<
Tensor
>
(
"Out"
);
y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
out_dtype
=
context
.
Attr
<
int
>
(
"out_dtype"
);
PADDLE_ENFORCE_EQ
(
out_dtype
==
-
1
,
true
,
platform
::
errors
::
InvalidArgument
(
"XPU only support out_dtype == -1 in reduce_sum op."
));
const
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
y_data
=
y
->
data
<
T
>
();
const
auto
&
input_dim_size
=
x
->
dims
().
size
();
std
::
vector
<
int
>
true_dims
;
for
(
size_t
i
=
0
;
i
<
dims
.
size
();
++
i
)
{
if
(
dims
[
i
]
<
0
)
{
true_dims
.
push_back
(
dims
[
i
]
+
input_dim_size
);
}
else
{
true_dims
.
push_back
(
dims
[
i
]);
}
}
std
::
vector
<
int
>
reduce_dims
;
std
::
vector
<
int
>
xdims
((
input_dim_size
));
for
(
int
i
=
0
;
i
<
input_dim_size
;
++
i
)
{
xdims
[
i
]
=
x
->
dims
()[
i
];
}
if
(
reduce_all
)
{
int
input_len
=
input
->
numel
();
int
r
=
xpu
::
sum
(
dev_ctx
.
x_context
(),
input
->
data
<
T
>
(),
output
->
data
<
T
>
(),
input_len
);
PADDLE_ENFORCE_EQ
(
r
==
xpu
::
Error_t
::
SUCCESS
,
true
,
platform
::
errors
::
External
(
"XPU kernel error!"
));
for
(
int
i
=
0
;
i
<
input_dim_size
;
++
i
)
{
reduce_dims
.
push_back
(
i
);
}
}
else
{
int
ndim
=
input
->
dims
().
size
();
std
::
vector
<
int
>
idims
;
for
(
int
i
=
0
;
i
<
input
->
dims
().
size
();
i
++
)
{
idims
.
push_back
(
input
->
dims
()[
i
]);
std
::
set
<
int
>
dims_set
(
true_dims
.
begin
(),
true_dims
.
end
());
for
(
auto
i
=
0
;
i
<
input_dim_size
;
i
++
)
{
if
(
dims_set
.
find
(
i
)
!=
dims_set
.
end
())
{
if
(
x
->
dims
()[
i
]
!=
1
)
{
reduce_dims
.
push_back
(
i
);
}
}
}
auto
dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
int
rdim
=
dims
.
size
();
int
r
=
xpu
::
reduce
(
dev_ctx
.
x_context
(),
input
->
data
<
T
>
(),
output
->
data
<
T
>
(),
idims
.
data
(),
ndim
,
dims
.
data
(),
rdim
,
xpu
::
REDUCE_SUM
);
PADDLE_ENFORCE_EQ
(
r
==
xpu
::
Error_t
::
SUCCESS
,
true
,
platform
::
errors
::
External
(
"XPU kernel error!"
));
}
if
(
reduce_dims
.
size
()
==
0
)
{
int
r
=
xpu
::
copy
<
T
>
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
x
->
numel
()
*
sizeof
(
T
));
PADDLE_ENFORCE_EQ
(
r
==
xpu
::
Error_t
::
SUCCESS
,
true
,
platform
::
errors
::
External
(
"XPU copy in reduce_sum op return "
"wrong value[%d %s]."
,
r
,
XPUAPIErrorMsg
[
r
]));
}
else
{
int
r
=
xpu
::
reduce_sum
<
T
>
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
xdims
,
reduce_dims
);
PADDLE_ENFORCE_EQ
(
r
==
xpu
::
Error_t
::
SUCCESS
,
true
,
platform
::
errors
::
External
(
"XPU reduce_sum in reduce_sum op return"
" wrong value[%d %s]."
,
r
,
XPUAPIErrorMsg
[
r
]));
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
ReduceSumGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
dims
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
bool
reduce_all
=
context
.
Attr
<
bool
>
(
"reduce_all"
);
auto
*
input0
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
input2
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
output
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
auto
*
input2_d
=
input2
->
data
<
T
>
();
auto
*
output_d
=
output
->
data
<
T
>
();
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
out
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
x_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
int
in_dtype
=
context
.
Attr
<
int
>
(
"in_dtype"
);
PADDLE_ENFORCE_EQ
(
in_dtype
==
-
1
,
true
,
platform
::
errors
::
InvalidArgument
(
"XPU only support in_dtype == -1 in reduce_sum_grad op."
));
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
0
;
std
::
vector
<
int
>
idims
;
int
reduce_dim
=
0
;
if
(
reduce_all
)
{
idims
.
push_back
(
input0
->
numel
());
idims
.
push_back
(
1
);
idims
.
push_back
(
1
);
r
=
xpu
::
reduce_grad
(
dev_ctx
.
x_context
(),
input2_d
,
output_d
,
idims
.
data
(),
idims
.
size
(),
&
reduce_dim
,
1
,
xpu
::
REDUCE_SUM
);
PADDLE_ENFORCE_EQ
(
r
==
xpu
::
Error_t
::
SUCCESS
,
true
,
platform
::
errors
::
External
(
"XPU kernel error!"
));
}
else
if
(
dims
.
size
()
==
1
)
{
// handle reduce by one dimension
int
reduce_dim_index
=
dims
[
0
];
if
(
reduce_dim_index
<
0
)
{
reduce_dim_index
+=
input0
->
dims
().
size
();
}
auto
&
input_dim
=
input0
->
dims
();
int
before_dim
=
1
;
for
(
int
i
=
0
;
i
<
reduce_dim_index
;
++
i
)
{
before_dim
*=
input_dim
[
i
];
x_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
auto
*
out_data
=
out
->
data
<
T
>
();
auto
*
x_grad_data
=
x_grad
->
data
<
T
>
();
const
auto
&
input_dim_size
=
x
->
dims
().
size
();
std
::
vector
<
int
>
true_dims
;
for
(
size_t
i
=
0
;
i
<
dims
.
size
();
++
i
)
{
if
(
dims
[
i
]
<
0
)
{
true_dims
.
push_back
(
dims
[
i
]
+
input_dim_size
);
}
else
{
true_dims
.
push_back
(
dims
[
i
]);
}
int
reduce_dim
=
input_dim
[
reduce_dim_index
];
int
after_dim
=
1
;
for
(
int
i
=
reduce_dim_index
+
1
;
i
<
input_dim
.
size
();
++
i
)
{
after_dim
*=
input_dim
[
i
];
}
std
::
vector
<
int
>
ydims
(
input_dim_size
);
std
::
vector
<
int
>
xdims
((
input_dim_size
));
std
::
set
<
int
>
dims_set
(
true_dims
.
begin
(),
true_dims
.
end
());
for
(
auto
i
=
0
;
i
<
input_dim_size
;
i
++
)
{
xdims
[
i
]
=
x
->
dims
()[
i
];
if
(
dims_set
.
find
(
i
)
!=
dims_set
.
end
()
||
reduce_all
)
{
ydims
[
i
]
=
1
;
}
else
{
ydims
[
i
]
=
x
->
dims
()[
i
];
}
idims
.
push_back
(
before_dim
);
idims
.
push_back
(
input_dim
[
reduce_dim_index
]);
idims
.
push_back
(
after_dim
);
reduce_dim
=
1
;
r
=
xpu
::
reduce_grad
(
dev_ctx
.
x_context
(),
input2_d
,
output_d
,
idims
.
data
(),
idims
.
size
(),
&
reduce_dim
,
1
,
xpu
::
REDUCE_SUM
);
PADDLE_ENFORCE_EQ
(
r
==
xpu
::
Error_t
::
SUCCESS
,
true
,
platform
::
errors
::
External
(
"XPU kernel error!"
));
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"unsupport reduce sum grad"
));
}
int
r
=
xpu
::
broadcast
<
T
>
(
dev_ctx
.
x_context
(),
out_data
,
x_grad_data
,
ydims
,
xdims
);
PADDLE_ENFORCE_EQ
(
r
==
xpu
::
Error_t
::
SUCCESS
,
true
,
platform
::
errors
::
External
(
"XPU broadcast in reduce_sum_grad op return"
" wrong value[%d %s]."
,
r
,
XPUAPIErrorMsg
[
r
]));
}
};
...
...
python/paddle/fluid/tests/unittests/xpu/test_reduce_sum_op_xpu.py
浏览文件 @
a5fcc4b5
...
...
@@ -18,7 +18,8 @@ import unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
,
skip_check_grad_ci
from
op_test_xpu
import
OpTest
,
XPUOpTest
from
op_test
import
skip_check_grad_ci
import
paddle
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
...
...
@@ -26,180 +27,128 @@ from paddle.fluid import compiler, Program, program_guard
from
paddle.fluid.framework
import
convert_np_dtype_to_dtype_
class
Test
SumOp
(
OpTest
):
class
Test
XPUReduceSumOp
(
XPU
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float64"
)}
self
.
attrs
=
{
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
0
)}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
check_grad_
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestSumOp5D
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
1
,
2
,
5
,
6
,
10
)).
astype
(
"float64"
)
self
.
init_op_type
()
self
.
initTestCase
()
self
.
use_xpu
=
True
self
.
use_mkldnn
=
False
self
.
attrs
=
{
'dim'
:
self
.
axis
,
'keep_dim'
:
self
.
keep_dim
,
'reduce_all'
:
self
.
reduce_all
}
self
.
attrs
=
{
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
0
)}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)}
if
self
.
attrs
[
'reduce_all'
]:
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
()}
else
:
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
self
.
axis
,
keepdims
=
self
.
attrs
[
'keep_dim'
])
}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestSumOp6D
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
1
,
1
,
2
,
5
,
6
,
10
)).
astype
(
"float64"
)
}
self
.
attrs
=
{
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
0
)}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_
output_with_place
(
place
)
self
.
check_
grad_with_place
(
place
,
[
'X'
],
'Out'
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
def
init_op_type
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
use_mkldnn
=
False
self
.
keep_dim
=
False
self
.
reduce_all
=
False
def
initTestCase
(
self
):
self
.
shape
=
(
5
,
6
,
10
)
self
.
axis
=
(
0
,
)
class
TestSumOp8D
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
1
,
3
,
1
,
2
,
1
,
4
,
3
,
10
)).
astype
(
"float64"
)
}
self
.
attrs
=
{
'dim'
:
(
0
,
3
),
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
(
0
,
3
))}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
(
):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
class
TestSumOp5D
(
TestXPUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
1
,
2
,
5
,
6
,
1
0
)
self
.
axis
=
(
0
,
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestSumOp6D
(
TestXPUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
1
,
1
,
2
,
5
,
6
,
10
)
self
.
axis
=
(
0
,
)
class
Test1DReduce
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
120
).
astype
(
"float64"
)}
self
.
attrs
=
{
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
0
)}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
(
):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
class
TestSumOp8D
(
TestXPUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
1
,
3
,
1
,
2
,
1
,
4
,
3
,
1
0
)
self
.
axis
=
(
0
,
3
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
Test1DReduce
(
TestXPUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
120
self
.
axis
=
(
0
,
)
class
Test2DReduce0
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
attrs
=
{
'dim'
:
[
0
],
'use_xpu'
:
True
}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
20
,
10
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
0
)}
class
Test2DReduce0
(
TestXPUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
20
,
10
)
self
.
axis
=
(
0
,
)
class
Test2DReduce1
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
attrs
=
{
'dim'
:
[
1
],
'use_xpu'
:
True
}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
20
,
10
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
Test2DReduce1
(
TestXPUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
20
,
10
)
self
.
axis
=
(
1
,
)
class
Test3DReduce0
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
attrs
=
{
'dim'
:
[
1
],
'use_xpu'
:
True
}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
7
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
Test3DReduce0
(
TestXPUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
5
,
6
,
7
)
self
.
axis
=
(
1
,
)
class
Test3DReduce1
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
attrs
=
{
'dim'
:
[
2
],
'use_xpu'
:
True
}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
7
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
Test3DReduce1
(
TestXPUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
5
,
6
,
7
)
self
.
axis
=
(
2
,
)
class
Test3DReduce2
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
attrs
=
{
'dim'
:
[
-
2
],
'use_xpu'
:
True
}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
7
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
Test3DReduce2
(
TestXPUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
5
,
6
,
7
)
self
.
axis
=
(
-
2
,
)
class
Test3DReduce3
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
attrs
=
{
'dim'
:
[
1
,
2
],
'use_xpu'
:
True
}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
7
)).
astype
(
"float64"
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
class
Test3DReduce3
(
TestXPUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
5
,
6
,
7
)
self
.
axis
=
(
1
,
2
)
class
TestKeepDimReduce
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float64"
)}
self
.
attrs
=
{
'dim'
:
[
1
],
'keep_dim'
:
True
,
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]),
keepdims
=
self
.
attrs
[
'keep_dim'
])
}
class
TestKeepDimReduce
(
TestXPUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
5
,
6
,
10
)
self
.
axis
=
(
1
,
)
self
.
keep_dim
=
True
class
TestKeepDim8DReduce
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
2
,
5
,
3
,
2
,
2
,
3
,
4
,
2
)).
astype
(
"float64"
)
}
self
.
attrs
=
{
'dim'
:
(
3
,
4
,
5
),
'keep_dim'
:
True
,
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]),
keepdims
=
self
.
attrs
[
'keep_dim'
])
}
class
TestKeepDim8DReduce
(
TestXPUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
2
,
5
,
3
,
2
,
2
,
3
,
4
,
2
)
self
.
axis
=
(
3
,
4
,
5
)
self
.
keep_dim
=
True
class
TestReduceAll
(
Test1DReduce
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
2
,
10
)).
astype
(
"float64"
)}
self
.
a
ttrs
=
{
'reduce_all'
:
True
,
'use_xpu'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
sum
()}
class
TestReduceAll
(
TestXPUReduceSumOp
):
def
initTestCase
(
self
):
self
.
shape
=
(
5
,
6
,
2
,
10
)
self
.
a
xis
=
(
0
,
)
self
.
reduce_all
=
True
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录