Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a5556d44
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a5556d44
编写于
9月 11, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine attentionlstm infershape
上级
e0436ad8
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
60 addition
and
28 deletion
+60
-28
paddle/fluid/operators/attention_lstm_op.cc
paddle/fluid/operators/attention_lstm_op.cc
+60
-28
未找到文件。
paddle/fluid/operators/attention_lstm_op.cc
浏览文件 @
a5556d44
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#include "paddle/fluid/operators/attention_lstm_op.h"
#include <string>
#include "paddle/fluid/framework/shape_runtime_infer.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/operators/math/fc_compute.h"
...
...
@@ -23,29 +24,60 @@ namespace paddle {
namespace
operators
{
void
AttentionLSTMOp
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"C0"
),
"Input(C0) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LSTMWeight"
),
"Input(LSTMWeight) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LSTMBias"
),
"Input(LSTMBias) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"AttentionWeight"
),
"Input(AttentionWeight) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Hidden"
),
"Output(Hidden) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Cell"
),
"Output(Cell) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"AttentionedX"
),
"Output(AttentionedX) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"AttentionFCOut"
),
"Output(AttentionFCOut) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"LSTMX"
),
"Output(LSTMX) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"LSTMOUT"
),
"Output(LSTMOUT) of AttentionLSTM should not be null."
);
auto
*
runtime_ctx
=
dynamic_cast
<
framework
::
RuntimeInferShapeContext
*>
(
ctx
);
if
(
runtime_ctx
==
nullptr
)
{
LOG
(
FATAL
)
<<
"Should have runtime infer context"
;
}
const
auto
&
ins
=
runtime_ctx
->
OpBase
().
Inputs
();
const
auto
&
outs
=
runtime_ctx
->
OpBase
().
Outputs
();
const
auto
&
scope
=
runtime_ctx
->
InferScope
();
const
auto
ins_end
=
ins
.
end
();
const
auto
outs_end
=
outs
.
end
();
auto
fair_input
=
[
&
](
const
std
::
string
&
name
)
->
bool
{
auto
it
=
ins
.
find
(
name
);
if
(
it
==
ins_end
)
{
return
false
;
}
const
auto
&
in
=
it
->
second
;
if
(
in
.
size
()
!=
1
||
in
[
0
]
==
framework
::
kEmptyVarName
)
{
return
false
;
}
return
scope
.
FindVar
(
in
[
0
])
!=
nullptr
;
};
auto
fair_output
=
[
&
](
const
std
::
string
&
name
)
->
bool
{
auto
it
=
outs
.
find
(
name
);
if
(
it
==
outs_end
)
{
return
false
;
}
const
auto
&
out
=
it
->
second
;
if
(
out
.
size
()
!=
1
||
out
[
0
]
==
framework
::
kEmptyVarName
)
{
return
false
;
}
return
scope
.
FindVar
(
out
[
0
])
!=
nullptr
;
};
PADDLE_ENFORCE
(
fair_input
(
"X"
),
"Assert only one Input(X) of AttentionLSTM."
);
PADDLE_ENFORCE
(
fair_input
(
"C0"
),
"Assert only one Input(C0) of AttentionLSTM."
);
PADDLE_ENFORCE
(
fair_input
(
"LSTMWeight"
),
"Assert only one Input(LSTMWeight) of AttentionLSTM."
);
PADDLE_ENFORCE
(
fair_input
(
"LSTMBias"
),
"Assert only one Input(LSTMBias) of AttentionLSTM."
);
PADDLE_ENFORCE
(
fair_input
(
"AttentionWeight"
),
"Assert only one Input(AttentionWeight) of AttentionLSTM."
);
PADDLE_ENFORCE
(
fair_output
(
"Hidden"
),
"Assert only one Output(Hidden) of AttentionLSTM."
);
PADDLE_ENFORCE
(
fair_output
(
"Cell"
),
"Assert only one Output(Cell) of AttentionLSTM."
);
PADDLE_ENFORCE
(
fair_output
(
"AttentionedX"
),
"Assert only one Output(AttentionedX) of AttentionLSTM."
);
PADDLE_ENFORCE
(
fair_output
(
"AttentionFCOut"
),
"Assert only one Output(AttentionFCOut) of AttentionLSTM."
);
PADDLE_ENFORCE
(
fair_output
(
"LSTMX"
),
"Assert only one Output(LSTMX) of AttentionLSTM."
);
PADDLE_ENFORCE
(
fair_output
(
"LSTMOUT"
),
"Assert only one Output(LSTMOUT) of AttentionLSTM."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
int
M
=
x_dims
[
1
];
...
...
@@ -65,7 +97,7 @@ void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
auto
c_dims
=
ctx
->
GetInputDim
(
"C0"
);
PADDLE_ENFORCE_EQ
(
c_dims
.
size
(),
2
,
"Input(C0)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
c_dims
[
1
],
D
,
"C0 dims should be N x %d."
,
D
);
if
(
ctx
->
HasI
nput
(
"H0"
))
{
if
(
fair_i
nput
(
"H0"
))
{
auto
h_dims
=
ctx
->
GetInputDim
(
"H0"
);
PADDLE_ENFORCE
(
h_dims
==
c_dims
,
"The dimension of Input(H0) and Input(C0) "
...
...
@@ -79,7 +111,7 @@ void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
"AttentionWeight shapes must be (%d + %d) * 1."
,
M
,
D
);
PADDLE_ENFORCE_EQ
(
atten_w_dims
[
1
],
1
,
"AttentionWeight shapes must be (%d + %d) * 1."
,
M
,
D
);
if
(
ctx
->
HasI
nput
(
"AttentionBias"
))
{
if
(
fair_i
nput
(
"AttentionBias"
))
{
auto
atten_b_dims
=
ctx
->
GetInputDim
(
"AttentionBias"
);
PADDLE_ENFORCE_EQ
(
atten_b_dims
.
size
(),
2
,
"Input(AttentionBias)'s rank must be 2."
);
...
...
@@ -89,7 +121,7 @@ void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
"AttentionBias shapes must be 1 * 1."
);
}
if
(
ctx
->
HasI
nput
(
"AttentionScalar"
))
{
if
(
fair_i
nput
(
"AttentionScalar"
))
{
auto
dims
=
ctx
->
GetInputDim
(
"AttentionScalar"
);
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
2
,
"Input(AttentionScalar)'s rank must be 2."
);
...
...
@@ -97,10 +129,10 @@ void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE_EQ
(
dims
[
1
],
1
,
"AttentionScalar shapes must be 1 * 1."
);
}
if
(
ctx
->
HasI
nput
(
"AttentionScalarBias"
))
{
if
(
fair_i
nput
(
"AttentionScalarBias"
))
{
auto
dims
=
ctx
->
GetInputDim
(
"AttentionScalarBias"
);
PADDLE_ENFORCE
(
ctx
->
HasI
nput
(
"AttentionScalar"
),
fair_i
nput
(
"AttentionScalar"
),
"AttentionScalar should not be null when have AttentionScalarBias."
);
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
2
,
"Input(AttentionScalarBias)'s rank must be 2."
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录