Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a4c3e038
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a4c3e038
编写于
11月 02, 2021
作者:
J
joanna.wozna.intel
提交者:
GitHub
11月 02, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Correct conv2d int8 mkldnn UT (#36711)
* Refactor conv2d int8 unit test * Correct according to review and add int8 check
上级
e11ecfce
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
86 addition
and
80 deletion
+86
-80
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+19
-0
python/paddle/fluid/tests/unittests/mkldnn/test_conv2d_int8_mkldnn_op.py
...luid/tests/unittests/mkldnn/test_conv2d_int8_mkldnn_op.py
+67
-80
未找到文件。
paddle/fluid/pybind/pybind.cc
浏览文件 @
a4c3e038
...
...
@@ -226,6 +226,23 @@ bool SupportsBfloat16FastPerformance() {
#endif
}
bool
SupportsInt8
()
{
#ifndef PADDLE_WITH_MKLDNN
return
false
;
#else
return
(
platform
::
MayIUse
(
platform
::
cpu_isa_t
::
avx2
)
||
platform
::
MayIUse
(
platform
::
cpu_isa_t
::
avx512f
));
#endif
}
bool
SupportsVNNI
()
{
#ifndef PADDLE_WITH_MKLDNN
return
false
;
#else
return
platform
::
MayIUse
(
platform
::
cpu_isa_t
::
avx512_core_vnni
);
#endif
}
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
...
...
@@ -2121,6 +2138,8 @@ All parameter, weight, gradient are variables in Paddle.
m
.
def
(
"_is_compiled_with_heterps"
,
IsCompiledWithHETERPS
);
m
.
def
(
"supports_bfloat16"
,
SupportsBfloat16
);
m
.
def
(
"supports_bfloat16_fast_performance"
,
SupportsBfloat16FastPerformance
);
m
.
def
(
"supports_int8"
,
SupportsInt8
);
m
.
def
(
"supports_vnni"
,
SupportsVNNI
);
m
.
def
(
"op_supported_infos"
,
OpSupportedInfos
);
m
.
def
(
"is_compiled_with_brpc"
,
IsCompiledWithBrpc
);
m
.
def
(
"is_compiled_with_dist"
,
IsCompiledWithDIST
);
...
...
python/paddle/fluid/tests/unittests/mkldnn/test_conv2d_int8_mkldnn_op.py
浏览文件 @
a4c3e038
...
...
@@ -23,13 +23,12 @@ from paddle.fluid.tests.unittests.test_conv2d_op import conv2d_forward_naive, Te
def
conv2d_forward_refer
(
input
,
filter
,
group
,
conv_param
):
out
,
in_n
,
out_h
,
out_w
,
out_c
=
conv2d_forward_naive
(
input
,
filter
,
group
,
conv_param
)
out
,
_
,
_
,
_
,
_
=
conv2d_forward_naive
(
input
,
filter
,
group
,
conv_param
)
return
out
@
unittest
.
skipIf
(
not
core
.
supports_
bfloat16
(),
"place does not support
BF16 evalu
ation"
)
@
unittest
.
skipIf
(
not
core
.
supports_
int8
(),
"place does not support
int8 comput
ation"
)
class
TestConv2DInt8Op
(
TestConv2DOp
):
def
setUp
(
self
):
self
.
op_type
=
"conv2d"
...
...
@@ -53,73 +52,61 @@ class TestConv2DInt8Op(TestConv2DOp):
'pad'
:
self
.
pad
,
'dilation'
:
self
.
dilations
}
# This implementation of convolution quantization is based on OneDNN documentation
# https://oneapi-src.github.io/oneDNN/dev_guide_int8_computations.html#doxid-dev-guide-int8-computations-1dg-i8-comp-s11
scale_output_shift
=
(
self
.
scale_out
/
(
self
.
scale_in
*
self
.
scale_weights
[
0
]))
filter
=
np
.
random
.
random
(
self
.
filter_size
).
astype
(
self
.
weighttype
)
if
self
.
srctype
==
np
.
uint8
:
input
=
np
.
random
.
randint
(
0
,
10
,
# When the Intel AVX2 or Intel AVX512 Instruction Set is used
# the reorder additionally scales the weights by 0.5
# to overcome the potential overflow issue. If the processor supports VNNI instructions,
# modification of the weights is not necessary.
avx_scale
=
0.5
if
not
core
.
supports_vnni
(
)
and
self
.
srctype
==
np
.
int8
else
1.
filter_int
=
np
.
round
(
filter
*
self
.
scale_weights
[
0
]
*
avx_scale
).
astype
(
np
.
int32
)
scale_output_shift
=
scale_output_shift
/
avx_scale
def
conv2d_forward_refer_helper
(
input_
):
return
conv2d_forward_refer
(
input_
.
astype
(
np
.
int32
),
filter_int
,
self
.
groups
,
conv2d_param
).
astype
(
np
.
float32
)
*
scale_output_shift
def
residual_helper
(
init_low
,
init_high
,
output_
):
input_residual_
=
np
.
random
.
randint
(
init_low
,
init_high
,
self
.
input_residual_size
).
astype
(
self
.
srctype
)
return
(
output_
+
input_residual_
*
(
self
.
scale_out
/
self
.
scale_in_eltwise
)),
input_residual_
if
self
.
srctype
==
np
.
int8
:
init_low
,
init_high
=
(
-
5
,
5
)
input
=
np
.
random
.
randint
(
init_low
,
init_high
,
self
.
input_size
).
astype
(
self
.
srctype
)
input_shift
=
(
np
.
ones
(
self
.
input_size
)
*
128
).
astype
(
np
.
uint8
)
output1
=
conv2d_forward_refer_helper
(
np
.
round
(
input
+
input_shift
).
astype
(
np
.
int32
))
output2
=
conv2d_forward_refer_helper
(
np
.
round
(
input_shift
).
astype
(
np
.
int32
))
output
=
output1
-
output2
else
:
input
=
np
.
random
.
randint
(
-
5
,
5
,
init_low
,
init_high
=
(
0
,
10
)
input
=
np
.
random
.
randint
(
init_low
,
init_high
,
self
.
input_size
).
astype
(
self
.
srctype
)
input_shift
=
(
np
.
ones
(
self
.
input_size
)
*
128
).
astype
(
np
.
uint8
)
output
=
conv2d_forward_refer_helper
(
input
)
if
self
.
srctype
==
np
.
int8
:
filter_int
=
np
.
round
(
filter
*
self
.
scale_weights
[
0
]
*
0.5
).
astype
(
np
.
int32
)
scale_output_shift
=
self
.
scale_out
/
(
self
.
scale_in
*
self
.
scale_weights
[
0
]
*
0.5
)
output1
=
conv2d_forward_refer
(
np
.
round
((
input
.
astype
(
np
.
int32
)
+
input_shift
)
*
self
.
scale_in
).
astype
(
np
.
int32
),
filter_int
,
self
.
groups
,
conv2d_param
).
astype
(
np
.
float32
)
*
scale_output_shift
output2
=
conv2d_forward_refer
(
np
.
round
((
input_shift
)
*
self
.
scale_in
).
astype
(
np
.
int32
),
filter_int
,
self
.
groups
,
conv2d_param
).
astype
(
np
.
float32
)
*
scale_output_shift
if
self
.
fuse_residual
:
input_residual
=
np
.
random
.
randint
(
-
5
,
5
,
self
.
input_residual_size
).
astype
(
self
.
srctype
)
output_tmp
=
np
.
round
(
output1
-
output2
+
input_residual
.
astype
(
self
.
srctype
)
*
(
self
.
scale_out
/
self
.
scale_in_eltwise
))
if
self
.
fuse_activation
==
"relu"
:
output
=
np
.
maximum
(
output_tmp
,
0
).
astype
(
self
.
dsttype
)
else
:
output
=
output_tmp
.
astype
(
self
.
dsttype
)
else
:
if
self
.
fuse_activation
==
"relu"
:
output
=
np
.
maximum
(
np
.
round
(
output1
-
output2
),
0
).
astype
(
self
.
dsttype
)
else
:
output
=
np
.
round
(
output1
-
output2
).
astype
(
self
.
dsttype
)
if
self
.
fuse_residual
:
output
,
input_residual
=
residual_helper
(
init_low
,
init_high
,
output
)
else
:
filter_int
=
np
.
round
(
filter
*
self
.
scale_weights
[
0
]).
astype
(
np
.
int32
)
scale_output_shift
=
self
.
scale_out
/
(
self
.
scale_in
*
self
.
scale_weights
[
0
])
output1
=
conv2d_forward_refer
(
input
.
astype
(
np
.
int32
),
filter_int
,
self
.
groups
,
conv2d_param
).
astype
(
np
.
float32
)
output1_tmp
=
np
.
round
(
output1
*
(
self
.
scale_out
/
(
self
.
scale_in
*
self
.
scale_weights
[
0
])))
if
self
.
fuse_residual
:
input_residual
=
np
.
random
.
randint
(
0
,
10
,
self
.
input_residual_size
).
astype
(
self
.
srctype
)
output_tmp_res
=
np
.
round
(
output1
*
(
self
.
scale_out
/
(
self
.
scale_in
*
self
.
scale_weights
[
0
]))
+
input_residual
.
astype
(
np
.
int32
)
*
(
self
.
scale_out
/
self
.
scale_in_eltwise
))
if
self
.
fuse_activation
==
"relu"
:
output
=
np
.
maximum
(
output_tmp_res
,
0
).
astype
(
self
.
dsttype
)
else
:
output
=
output_tmp_res
.
astype
(
self
.
dsttype
)
else
:
if
self
.
fuse_activation
==
"relu"
:
output
=
np
.
maximum
(
output1_tmp
,
0
).
astype
(
self
.
dsttype
)
else
:
output
=
output1_tmp
.
astype
(
self
.
dsttype
)
output
=
np
.
round
(
output
)
if
self
.
fuse_activation
==
"relu"
:
output
=
np
.
maximum
(
output
,
0
)
output
=
output
.
astype
(
self
.
dsttype
)
self
.
inputs
=
{
'Input'
:
...
...
@@ -169,7 +156,7 @@ class TestConv2DInt8Op(TestConv2DOp):
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
input_residual_size
=
[
1
,
2
,
3
,
3
]
self
.
filter_size
=
[
2
,
f_c
,
3
,
3
]
self
.
scale_in
=
1.0
self
.
scale_in
=
0.95
self
.
scale_out
=
0.5
self
.
scale_weights
=
[
10.0
]
self
.
scale_in_eltwise
=
0.6
...
...
@@ -185,7 +172,7 @@ class TestConv2DInt8Op(TestConv2DOp):
self
.
fuse_residual
=
True
#--------------------test conv2d u8 in and u8 out with residual fuse--------------------
#
--------------------test conv2d u8 in and u8 out with residual fuse--------------------
class
TestConv2D
(
TestConv2DInt8Op
):
...
...
@@ -197,7 +184,7 @@ class TestConv2D(TestConv2DInt8Op):
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
self
.
scale_in
=
1.0
self
.
scale_in
=
0.95
self
.
scale_out
=
0.5
self
.
scale_weights
=
[
10.0
]
self
.
scale_in_eltwise
=
0.6
...
...
@@ -224,7 +211,7 @@ class TestWithStride(TestConv2DInt8Op):
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
self
.
scale_in
=
1.0
self
.
scale_in
=
0.95
self
.
scale_out
=
0.8
self
.
scale_weights
=
[
10.0
]
self
.
scale_in_eltwise
=
0.5
...
...
@@ -240,7 +227,7 @@ class TestWithDilations(TestConv2DInt8Op):
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
self
.
scale_in
=
1.0
self
.
scale_in
=
0.95
self
.
scale_out
=
0.8
self
.
scale_weights
=
[
10.0
]
self
.
scale_in_eltwise
=
0.5
...
...
@@ -255,7 +242,7 @@ class TestWith1x1(TestConv2DInt8Op):
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
1
,
1
]
self
.
scale_in
=
1.0
self
.
scale_in
=
0.95
self
.
scale_out
=
0.5
self
.
scale_weights
=
[
12.0
]
self
.
scale_in_eltwise
=
0.5
...
...
@@ -270,7 +257,7 @@ class TestWithInput1x1Filter1x1(TestConv2DInt8Op):
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
1
,
1
]
self
.
scale_in
=
1.0
self
.
scale_in
=
0.95
self
.
scale_out
=
0.5
self
.
scale_weights
=
[
10.0
]
self
.
scale_in_eltwise
=
0.8
...
...
@@ -290,32 +277,32 @@ def init_data_type_with_fusion(self, input_dt, fuse_activation, fuse_residual):
def
create_test_int8_class
(
parent
):
#--------------------test conv2d s8 in and u8 out--------------------
#
--------------------test conv2d s8 in and u8 out--------------------
class
TestS8U8Case
(
parent
):
def
init_data_type
(
self
):
init_data_type_with_fusion
(
self
,
np
.
int8
,
"relu"
,
False
)
#--------------------test conv2d s8 in and s8 out--------------------
#
--------------------test conv2d s8 in and s8 out--------------------
class
TestS8S8Case
(
parent
):
def
init_data_type
(
self
):
init_data_type_with_fusion
(
self
,
np
.
int8
,
""
,
False
)
#--------------------test conv2d u8 in and s8 out--------------------
#
--------------------test conv2d u8 in and s8 out--------------------
class
TestU8S8Case
(
parent
):
def
init_data_type
(
self
):
init_data_type_with_fusion
(
self
,
np
.
uint8
,
""
,
False
)
#--------------------test conv2d u8 in and u8 out without residual fuse--------------------
#
--------------------test conv2d u8 in and u8 out without residual fuse--------------------
class
TestU8U8Case
(
parent
):
def
init_data_type
(
self
):
init_data_type_with_fusion
(
self
,
np
.
uint8
,
"relu"
,
False
)
#--------------------test conv2d s8 in and s8 out with residual fuse--------------------
#
--------------------test conv2d s8 in and s8 out with residual fuse--------------------
class
TestS8S8ResCase
(
parent
):
def
init_data_type
(
self
):
init_data_type_with_fusion
(
self
,
np
.
int8
,
""
,
True
)
#--------------------test conv2d u8 in and s8 out with residual fuse--------------------
#
--------------------test conv2d u8 in and s8 out with residual fuse--------------------
class
TestU8S8ResCase
(
parent
):
def
init_data_type
(
self
):
init_data_type_with_fusion
(
self
,
np
.
uint8
,
""
,
True
)
...
...
@@ -333,9 +320,9 @@ def create_test_int8_class(parent):
TestS8S8Case
.
__name__
=
cls_name_s8s8
TestU8S8Case
.
__name__
=
cls_name_u8s8
TestU8U8Case
.
__name__
=
cls_name_u8u8
TestS8S8ResCase
.
__name__
=
cls_name_s8s8_re_1
TestU8S8ResCase
.
__name__
=
cls_name_u8s8_re_1
globals
()[
cls_name_s8u8
]
=
TestS8U8Case
globals
()[
cls_name_s8s8
]
=
TestS8S8Case
globals
()[
cls_name_u8s8
]
=
TestU8S8Case
...
...
@@ -344,7 +331,7 @@ def create_test_int8_class(parent):
globals
()[
cls_name_u8s8_re_1
]
=
TestU8S8ResCase
if
os
.
name
!=
'nt'
:
#--------------------test conv2d s8 in and u8 out with residual fuse--------------------
#
--------------------test conv2d s8 in and u8 out with residual fuse--------------------
class
TestS8U8ResCase
(
parent
):
def
init_data_type
(
self
):
init_data_type_with_fusion
(
self
,
np
.
int8
,
"relu"
,
True
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录