Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a49d1d95
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a49d1d95
编写于
11月 19, 2016
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine the original hrnn documentation.
上级
b3dd2d10
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
98 addition
and
244 deletion
+98
-244
doc_cn/algorithm/rnn/hierarchical-rnn.rst
doc_cn/algorithm/rnn/hierarchical-rnn.rst
+0
-179
doc_cn/algorithm/rnn/hrnn_demo.rst
doc_cn/algorithm/rnn/hrnn_demo.rst
+1
-1
doc_cn/algorithm/rnn/hrnn_rnn_api_compare.rst
doc_cn/algorithm/rnn/hrnn_rnn_api_compare.rst
+48
-50
doc_cn/concepts/glossary.rst
doc_cn/concepts/glossary.rst
+34
-0
doc_cn/concepts/use_concepts.rst
doc_cn/concepts/use_concepts.rst
+2
-0
doc_cn/conf.py.in
doc_cn/conf.py.in
+1
-1
paddle/gserver/tests/sequenceGen.py
paddle/gserver/tests/sequenceGen.py
+10
-10
paddle/gserver/tests/sequence_nest_rnn.conf
paddle/gserver/tests/sequence_nest_rnn.conf
+2
-3
未找到文件。
doc_cn/algorithm/rnn/hierarchical-rnn.rst
已删除
100644 → 0
浏览文件 @
b3dd2d10
#################
双层RNN配置与示例
#################
我们在 :code:`paddle/gserver/tests/test_RecurrentGradientMachine` 单测中,通过多组语义相同的单双层RNN配置,讲解如何使用双层RNN。
示例1:双进双出,subseq间无memory
=================================
配置:单层RNN(:code:`sequence_layer_group`)和双层RNN(:code:`sequence_nest_layer_group`),语义完全相同。
读取双层序列的方法
------------------
首先,我们看一下单双层序列的不同数据组织形式(您也可以采用别的组织形式)\:
- 单层序列的数据( :code:`Sequence/tour_train_wdseg`)如下,一共有10个样本。每个样本由两部分组成,一个label(此处都为2)和一个已经分词后的句子。
.. literalinclude:: ../../../paddle/gserver/tests/Sequence/tour_train_wdseg
:language: text
- 双层序列的数据( :code:`Sequence/tour_train_wdseg.nest`)如下,一共有4个样本。样本间用空行分开,代表不同的双层序列,序列数据和上面的完全一样。每个样本的子句数分别为2,3,2,3。
.. literalinclude:: ../../../paddle/gserver/tests/Sequence/tour_train_wdseg.nest
:language: text
其次,我们看一下单双层序列的不同dataprovider(见 :code:`sequenceGen.py` ):
- 单层序列的dataprovider如下:
- word_slot是integer_value_sequence类型,代表单层序列。
- label是integer_value类型,代表一个向量。
.. literalinclude:: ../../../paddle/gserver/tests/sequenceGen.py
:language: python
:lines: 21-39
- 双层序列的dataprovider如下:
- word_slot是integer_value_sub_sequence类型,代表双层序列。
- label是integer_value_sequence类型,代表单层序列,即一个子句一个label。注意:也可以为integer_value类型,代表一个向量,即一个句子一个label。通常根据任务需求进行不同设置。
- 关于dataprovider中input_types的详细用法,参见PyDataProvider2。
.. literalinclude:: ../../../paddle/gserver/tests/sequenceGen.py
:language: python
:lines: 42-71
模型中的配置
------------
首先,我们看一下单层序列的配置(见 :code:`sequence_layer_group.conf`)。注意:batchsize=5表示一次过5句单层序列,因此2个batch就可以完成1个pass。
.. literalinclude:: ../../../paddle/gserver/tests/sequence_layer_group.conf
:language: python
:lines: 38-63
其次,我们看一下语义相同的双层序列配置(见 :code:`sequence_nest_layer_group.conf` ),并对其详细分析:
- batchsize=2表示一次过2句双层序列。但从上面的数据格式可知,2句双层序列和5句单层序列的数据完全一样。
- data_layer和embedding_layer不关心数据是否是序列格式,因此两个配置在这两层上的输出是一样的。
- lstmemory\:
- 单层序列过了一个mixed_layer和lstmemory_group。
- 双层序列在同样的mixed_layer和lstmemory_group外,直接加了一层group。由于这个外层group里面没有memory,表示subseq间不存在联系,即起到的作用仅仅是把双层seq拆成单层,因此双层序列过完lstmemory的输出和单层的一样。
- last_seq\:
- 单层序列直接取了最后一个元素
- 双层序列首先(last_seq层)取了每个subseq的最后一个元素,将其拼接成一个新的单层序列;接着(expand_layer层)将其扩展成一个新的双层序列,其中第i个subseq中的所有向量均为输入的单层序列中的第i个向量;最后(average_layer层)取了每个subseq的平均值。
- 分析得出:第一个last_seq后,每个subseq的最后一个元素就等于单层序列的最后一个元素,而expand_layer和average_layer后,依然保持每个subseq最后一个元素的值不变(这两层仅是为了展示它们的用法,实际中并不需要)。因此单双层序列的输出是一样旳。
.. literalinclude:: ../../../paddle/gserver/tests/sequence_nest_layer_group.conf
:language: python
:lines: 38-84
示例2:双进双出,subseq间有memory
=================================
配置:单层RNN( :code:`sequence_rnn.conf` ),双层RNN( :code:`sequence_nest_rnn.conf` 和 :code:`sequence_nest_rnn_readonly_memory.conf` ),语义完全相同。
读取双层序列的方法
------------------
我们看一下单双层序列的不同数据组织形式和dataprovider(见 :code:`rnn_data_provider.py`)
.. literalinclude:: ../../../paddle/gserver/tests/rnn_data_provider.py
:language: python
:lines: 20-32
- 单层序列:有两句,分别为[1,3,2,4,5,2]和[0,2,2,5,0,1,2]。
- 双层序列:有两句,分别为[[1,3,2],[4,5,2]](2个子句)和[[0,2],[2,5],[0,1,2]](3个子句)。
- 单双层序列的label都分别是0和1
模型中的配置
------------
我们选取单双层序列配置中的不同部分,来对比分析两者语义相同的原因。
- 单层序列:过了一个很简单的recurrent_group。每一个时间步,当前的输入y和上一个时间步的输出rnn_state做了一个全链接。
.. literalinclude:: ../../../paddle/gserver/tests/sequence_rnn.conf
:language: python
:lines: 36-48
- 双层序列,外层memory是一个元素:
- 内层inner_step的recurrent_group和单层序列的几乎一样。除了boot_layer=outer_mem,表示将外层的outer_mem作为内层memory的初始状态。外层outer_step中,outer_mem是一个子句的最后一个向量,即整个双层group是将前一个子句的最后一个向量,作为下一个子句memory的初始状态。
- 从输入数据上看,单双层序列的句子是一样的,只是双层序列将其又做了子序列划分。因此双层序列的配置中,必须将前一个子句的最后一个元素,作为boot_layer传给下一个子句的memory,才能保证和单层序列的配置中“每一个时间步都用了上一个时间步的输出结果”一致。
.. literalinclude:: ../../../paddle/gserver/tests/sequence_nest_rnn.conf
:language: python
:lines: 39-66
- 双层序列,外层memory是单层序列:
- 由于外层每个时间步返回的是一个子句,这些子句的长度往往不等长。因此当外层有is_seq=True的memory时,内层是**无法直接使用**它的,即内层memory的boot_layer不能链接外层的这个memory。
- 如果内层memory想**间接使用**这个外层memory,只能通过`pooling_layer`、`last_seq`或`first_seq`这三个layer将它先变成一个元素。但这种情况下,外层memory必须有boot_layer,否则在第0个时间步时,由于外层memory没有任何seq信息,因此上述三个layer的前向会报出“**Check failed: input.sequenceStartPositions**”的错误。
示例3:双进双出,输入不等长
===========================
.. role:: red
.. raw:: html
<style> .red {color:red} </style>
**输入不等长** 是指recurrent_group的多个输入在各时刻的长度可以不相等, 但需要指定一个和输出长度一致的input,用 :red:`targetInlink` 表示。参考配置:单层RNN(:code:`sequence_rnn_multi_unequalength_inputs.conf`),双层RNN(:code:`sequence_nest_rnn_multi_unequalength_inputs.conf`)
读取双层序列的方法
------------------
我们看一下单双层序列的数据组织形式和dataprovider(见 :code:`rnn_data_provider.py` )
.. literalinclude:: ../../../paddle/gserver/tests/rnn_data_provider.py
:language: python
:lines: 69-97
data2 中有两个样本,每个样本有两个特征, 记fea1, fea2。
- 单层序列:两个样本分别为[[1, 2, 4, 5, 2], [5, 4, 1, 3, 1]] 和 [[0, 2, 2, 5, 0, 1, 2], [1, 5, 4, 2, 3, 6, 1]]
- 双层序列:两个样本分别为
- **样本1**\:[[[1, 2], [4, 5, 2]], [[5, 4, 1], [3, 1]]]。fea1和fea2都分别有2个子句,fea1=[[1, 2], [4, 5, 2]], fea2=[[5, 4, 1], [3, 1]]
- **样本2**\:[[[0, 2], [2, 5], [0, 1, 2]],[[1, 5], [4], [2, 3, 6, 1]]]。fea1和fea2都分别有3个子句, fea1=[[0, 2], [2, 5], [0, 1, 2]], fea2=[[1, 5], [4], [2, 3, 6, 1]]。<br/>
- **注意**\:每个样本中,各特征的子句数目需要相等。这里说的“双进双出,输入不等长”是指fea1在i时刻的输入的长度可以不等于fea2在i时刻的输入的长度。如对于第1个样本,时刻i=2, fea1[2]=[4, 5, 2],fea2[2]=[3, 1],3≠2。
- 单双层序列中,两个样本的label都分别是0和1
模型中的配置
------------
单层RNN( :code:`sequence_rnn_multi_unequalength_inputs.conf`)和双层RNN( :code:`v.conf`)两个模型配置达到的效果完全一样,区别只在于输入为单层还是双层序列,现在我们来看它们内部分别是如何实现的。
- 单层序列\:
- 过了一个简单的recurrent_group。每一个时间步,当前的输入y和上一个时间步的输出rnn_state做了一个全连接,功能与示例2中`sequence_rnn.conf`的`step`函数完全相同。这里,两个输入x1,x2分别通过calrnn返回最后时刻的状态。结果得到的encoder1_rep和encoder2_rep分别是单层序列,最后取encoder1_rep的最后一个时刻和encoder2_rep的所有时刻分别相加得到context。
- 注意到这里recurrent_group输入的每个样本中,fea1和fea2的长度都分别相等,这并非偶然,而是因为recurrent_group要求输入为单层序列时,所有输入的长度都必须相等。
.. literalinclude:: ../../../paddle/gserver/tests/sequence_rnn_multi_unequalength_inputs.conf
:language: python
:lines: 41-58
- 双层序列\:
- 双层RNN中,对输入的两个特征分别求时序上的连续全连接(`inner_step1`和`inner_step2`分别处理fea1和fea2),其功能与示例2中`sequence_nest_rnn.conf`的`outer_step`函数完全相同。不同之处是,此时输入`[SubsequenceInput(emb1), SubsequenceInput(emb2)]`在各时刻并不等长。
- 函数`outer_step`中可以分别处理这两个特征,但我们需要用<font color=red>targetInlink</font>指定recurrent_group的输出的格式(各子句长度)只能和其中一个保持一致,如这里选择了和emb2的长度一致。
- 最后,依然是取encoder1_rep的最后一个时刻和encoder2_rep的所有时刻分别相加得到context。
.. literalinclude:: ../../../paddle/gserver/tests/sequence_nest_rnn_multi_unequalength_inputs.conf
:language: python
:lines: 41-89
示例4:beam_search的生成
========================
TBD
doc_cn/algorithm/rnn/hrnn_demo.rst
浏览文件 @
a49d1d95
.. algo_hrnn_demo:
..
_
algo_hrnn_demo:
#################
双层RNN的使用示例
...
...
doc_cn/algorithm/rnn/hrnn_rnn_api_compare.rst
浏览文件 @
a49d1d95
...
...
@@ -4,101 +4,99 @@
单双层RNN API对比介绍
#####################
这篇教程主要介绍了
:ref:`glossary_双层RNN` 的API接口。本文中的以 :ref:`glossary_paddle` 的 :ref:`glossary_双层RNN` 单元测试为示例,用多对效果完全相同的、分别使用单、双层RNN作为网络配置的模型,来讲解如何使用 :ref:`glossary_双层RNN` 。本文中所有的例子,都只是介绍 :ref:`glossary_双层RNN` 的API接口,并不是使用 :ref:`glossary_双层RNN` 解决实际的问题。如果想要了解 :ref:`glossary_双层RNN` 在具体问题中的使用,请参考 :ref:`algo_hrnn_demo` 。文章中示例所使用的单元测试文件是 `test_RecurrentGradientMachine.cpp <https://github.com/reyoung/Paddle/blob/develop/paddle/gserver/tests/test_RecurrentGradientMachine.cpp>`_
。
这篇教程主要介绍了
\ :ref:`glossary_双层RNN`\ 的API接口。本文中的以\ :ref:`glossary_paddle`\ 的\ :ref:`glossary_双层RNN`\ 单元测试为示例,用多对效果完全相同的、分别使用单、双层RNN作为网络配置的模型,来讲解如何使用\ :ref:`glossary_双层RNN`\ 。本文中所有的例子,都只是介绍\ :ref:`glossary_双层RNN`\ 的API接口,并不是使用\ :ref:`glossary_双层RNN`\ 解决实际的问题。如果想要了解\ :ref:`glossary_双层RNN`\ 在具体问题中的使用,请参考\ :ref:`algo_hrnn_demo`\ 。文章中示例所使用的单元测试文件是\ `test_RecurrentGradientMachine.cpp <https://github.com/reyoung/Paddle/blob/develop/paddle/gserver/tests/test_RecurrentGradientMachine.cpp>`_\
。
示例1:双层RNN,子序列间无Memory
================================
在\ :ref:`glossary_双层RNN`\ 中的经典情况是将内层的每一个\ :ref:`glossary_Sequence`\ 数据,分别进行序列操作。并且内层的序列操作之间是独立没有依赖的,即不需要使用\ :ref:`glossary_Memory`\ 的。
在本问题中,单层\ :ref:`glossary_RNN`\ 和\ :ref:`glossary_双层RNN`\ 的网络配置,都是将每一句分好词后的句子,使用\ :ref:`glossary_lstm`\ 作为\ :ref:`glossary_encoder`\ ,压缩成一个向量。区别是\ :ref:`glossary_RNN`\ 使用两层序列模型,将多句话看成一个整体,同时使用\ :ref:`glossary_encoder`\ 压缩,二者语意上完全一致。这组语意相同的示例配置如下
配置:单层RNN(:code:`sequence_layer_group`)和双层RNN(:code:`sequence_nest_layer_group`),语义完全相同。
* 单层 \:ref:`glossary_RNN`\: `sequence_layer_group.conf <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/gserver/tests/sequence_layer_group.conf>`_
* :ref:`glossary_双层RNN`\: `sequence_nest_layer_group.conf <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/gserver/tests/sequence_nest_layer_group.conf>`_
读取双层序列的方法
------------------
首先,我们看一下单双层序列的不同数据组织形式(您也可以采用别的组织形式)\:
读取双层序列数据
----------------
首先,本示例中使用的原始数据如下\:
-
单层序列的数据( :code:`Sequence/tour_train_wdseg`)如下,一共有10个样本。每个样本由两部分组成,一个label(此处都为2)和一个已经分词后的句子
。
-
本里中的原始数据一共有10个\ :ref:`glossary_sample`\ 。每个\ :ref:`glossary_sample`\ 由两部分组成,一个label(此处都为2)和一个已经分词后的句子。这个数据也被单层\ :ref:`glossary_RNN`\ 网络直接使用
。
.. literalinclude:: ../../../paddle/gserver/tests/Sequence/tour_train_wdseg
:language: text
- 双层序列
的数据( :code:`Sequence/tour_train_wdseg.nest`)如下,一共有4个样本。样本间用空行分开,代表不同的双层序列,序列数据和上面的完全一样。每个样本的子句数分别为2,3,2,3
。
- 双层序列
数据一共有4个\ :ref:`glossary_sample`\ 。 每个样本间用空行分开,整体数据和原始数据完全一样。而对于双层序列的\ :ref:`glossary_lstm`\ 来说,第一条数据同时\ :ref:`glossary_encode` 两条数据成两个向量。这四条数据同时处理的句子为\ :code:`[2, 3, 2, 3]`\
。
.. literalinclude:: ../../../paddle/gserver/tests/Sequence/tour_train_wdseg.nest
:language: text
其次,我们看一下单双层序列的不同dataprovider(见 :code:`sequenceGen.py` ):
- 单层序列的dataprovider如下:
- word_slot是integer_value_sequence类型,代表单层序列。
- label是integer_value类型,代表一个向量。
其次,对于两种不同的输入数据类型,不同\ :ref:`glossary_DataProvider`\ 对比如下(`sequenceGen.py <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/gserver/tests/sequenceGen.py>`_)\:
.. literalinclude:: ../../../paddle/gserver/tests/sequenceGen.py
:language: python
:lines: 21-39
:linenos:
-
双层序列的dataprovider
如下:
- word_slot是integer_value_sub_sequence类型,代表双层序列
。
-
label是integer_value_sequence类型,代表单层序列,即一个子句一个label。注意:也可以为integer_value类型,代表一个向量,即一个句子一个label。通常根据任务需求进行不同设置
。
-
关于dataprovider中input_types的详细用法,参见PyDataProvider2
。
-
这是普通的单层\ :ref:`glossary_Sequence`\ 的\ :ref:`glossary_DataProvider`\ 代码,其说明
如下:
* :ref:`glossary_DataProvider`\ 共返回两个数据,分别是words和label。即上述代码中的第19行
。
-
words是原始数据中的每一句话,所对应的词表index数组。它是integer_value_sequence类型的,即整数数组。words即为这个数据中的单层\ :ref:`glossary_Sequence`\
。
-
label是原始数据中对于每一句话的分类标签,它是integer_value类型的
。
.. literalinclude:: ../../../paddle/gserver/tests/sequenceGen.py
:language: python
:lines: 42-71
:linenos:
模型中的配置
------------
- 这是对于同样的数据,本示例中双层\ :ref:`glossary_Sequence`\ 的\ :ref:`glossary_DataProvider`\ 代码,其说明如下:
- :ref:`glossary_DataProvider`\ 共返回两组数据,分别是sentences和labels。即在双层序列的原始数据中,每一组内的所有句子和labels
- sentences是双层\ :ref:`glossary_Sequence`\ 的数据。他内部包括了每组数据中的所有句子,又使用句子中每一个单词的词表index表示每一个句子,故为双层\ :ref:`glossary_Sequence`\ 。类型为 integer_value_sub_sequence 。
- labels是每组内每一个句子的标签,故而是一个单层\ :ref:`glossary_Sequence`\ 。
:ref:`glossary_trainer_config`\ 的模型配置
------------------------------------------
首先,我们看一下单层
序列的配置(见 :code:`sequence_layer_group.conf`)。注意:batchsize=5表示一次过5句单层序列,因此2个batch就可以完成1个pass
。
首先,我们看一下单层
\ :ref:`glossary_RNN`\ 的配置。代码中9-15行即为单层RNN序列的使用代码。这里使用了\ :ref:`glossary_paddle`\ 预定义好的\ :ref:`glossary_RNN`\ 处理函数。在这个函数中,\ :ref:`glossary_RNN`\ 对于每一个\ :ref:`glossary_timestep`\ 通过了一个\ :ref:`glossary_lstm`\ 网络
。
.. literalinclude:: ../../../paddle/gserver/tests/sequence_layer_group.conf
:language: python
:lines: 38-63
:linenos:
:emphasize-lines: 9-15
其次,我们看一下语义相同的
双层序列配置(见 :code:`sequence_nest_layer_group.conf` ),并对其详细分析:
其次,我们看一下语义相同的
\ :ref:`glossary_双层RNN`\ 的网络配置。
- batchsize=2表示一次过2句双层序列。但从上面的数据格式可知,2句双层序列和5句单层序列的数据完全一样。
- data_layer和embedding_layer不关心数据是否是序列格式,因此两个配置在这两层上的输出是一样的。
- lstmemory\:
* :ref:`glossary_paddle`\ 中的许多layer并不在意输入是否是\ :ref:`glossary_Sequence`\ ,例如\ :code:`embedding_layer`\ 。在这些layer中,所有的操作都是针对每一个\ :ref:`glossary_timestep`\ 来进行的。
- 单层序列过了一个mixed_layer和lstmemory_group。
- 双层序列在同样的mixed_layer和lstmemory_group外,直接加了一层group。由于这个外层group里面没有memory,表示subseq间不存在联系,即起到的作用仅仅是把双层seq拆成单层,因此双层序列过完lstmemory的输出和单层的一样。
* 在该配置中,7-26行将双层\ :ref:`glossary_Sequence`\ 数据,先变换成单层\ :ref:`glossary_Sequence`\ 数据,在对每一个单层\ :ref:`glossary_Sequence`\ 进行处理。
- last_seq\:
* 使用\ :code:`recurrent_group`\ 这个函数进行变换,在变换时需要将输入序列传入。由于我们想要的变换是双层\ :ref:`glossary_Sequence`\ => 单层\ :ref:`glossary_Sequence`\ ,所以我们需要将输入数据标记成\ :code:`SubsequenceInput`\ 。
* 在本例中,我们将原始数据的每一组,通过\ :code:`recurrent_group`\ 进行拆解,拆解成的每一句话再通过一个\ :ref:`glossary_lstm`\ 网络。这和单层\ :ref:`glossary_RNN`\ 的配置是等价的。
* 与单层\ :ref:`glossary_RNN`\ 的配置类似,我们只需要知道使用\ :ref:`glossary_lstm` :ref:`glossary_encode`\ 成的最后一个向量。所以对\ :code:`recurrent_group`\ 进行了\ :code:`last_seq`\ 操作。但是,和单层\ :ref:`glossary_RNN`\ 有区别的地方是,我们是对每一个子序列取最后一个元素。于是我们设置\ :code:`agg_level=AggregateLevel.EACH_SEQUENCE`\ 。
- 单层序列直接取了最后一个元素
- 双层序列首先(last_seq层)取了每个subseq的最后一个元素,将其拼接成一个新的单层序列;接着(expand_layer层)将其扩展成一个新的双层序列,其中第i个subseq中的所有向量均为输入的单层序列中的第i个向量;最后(average_layer层)取了每个subseq的平均值。
- 分析得出:第一个last_seq后,每个subseq的最后一个元素就等于单层序列的最后一个元素,而expand_layer和average_layer后,依然保持每个subseq最后一个元素的值不变(这两层仅是为了展示它们的用法,实际中并不需要)。因此单双层序列的输出是一样旳。
* 至此,\ :code:`lstm_last`\ 便和单层\ :ref:`glossary_RNN`\ 的配置中的\ :code:`lstm_last`\ 具有相同的结果了。
.. literalinclude:: ../../../paddle/gserver/tests/sequence_nest_layer_group.conf
:language: python
:lines: 38-84
示例2:双进双出,subseq间有memory
=================================
:lines: 38-64
:linenos:
:emphasize-lines: 7-26
配置:单层RNN( :code:`sequence_rnn.conf` ),双层RNN( :code:`sequence_nest_rnn.conf` 和 :code:`sequence_nest_rnn_readonly_memory.conf` ),语义完全相同。
读取双层序列的方法
------------------
示例2::ref:`glossary_双层RNN`,子序列间有\ :ref:`glossary_Memory`
==================================================================
我们看一下单双层序列的不同数据组织形式和dataprovider(见 :code:`rnn_data_provider.py`)
本示例中,意图使用单层\ :ref:`glossary_RNN`\ 和\ :ref:`glossary_双层RNN`\ 同时实现一个完全等价的全连接\ :ref:`glossary_RNN`\ 。对于单层\ :ref:`glossary_RNN`\ ,输入数据为一个完整的\ :ref:`glossary_Sequence`\ ,例如\ :code:`[4, 5, 2, 0, 9, 8, 1, 4]`\ 。而对于\ :ref:`glossary_双层RNN`\ ,输入数据为在单层\ :ref:`glossary_RNN`\ 数据里面,任意将一些数据组合成双层\ :ref:`glossary_Sequence`\ ,例如\ :code:`[ [4, 5, 2], [0, 9], [8, 1, 4]]`。
.. literalinclude:: ../../../paddle/gserver/tests/rnn_data_provider.py
:language: python
:lines: 20-32
- 单层序列:有两句,分别为[1,3,2,4,5,2]和[0,2,2,5,0,1,2]。
- 双层序列:有两句,分别为[[1,3,2],[4,5,2]](2个子句)和[[0,2],[2,5],[0,1,2]](3个子句)。
- 单双层序列的label都分别是0和1
模型中的配置
------------
:ref:`glossary_trainer_config`\ 的模型配置
------------------------------------------
我们选取单双层序列配置中的不同部分,来对比分析两者语义相同的原因。
...
...
doc_cn/concepts/glossary.rst
浏览文件 @
a49d1d95
...
...
@@ -11,6 +11,33 @@ PaddlePaddle
TBD
.. _glossary_encode:
encode
------
参考\ :ref:`glossary_encoder`\ 。
.. _glossary_encoder:
encoder
-------
TBD
.. _glossary_sample:
样本
----
TBD Sample的概念
.. _glossary_lstm:
LSTM
----
TBD
.. _glossary_memory:
...
...
@@ -27,6 +54,13 @@ Memory是 :ref:`glossary_paddle` 实现 :ref:`glossary_RNN` 时候使用的一
使用这种方式,:ref:`glossary_paddle` 可以比较简单的判断哪些输出是应该跨越时间步的,哪些不是。
.. _glossary_timestep:
时间步
------
参考 :ref:`_glossary_Sequence` 。
.. _glossary_Sequence:
时间序列
...
...
doc_cn/concepts/use_concepts.rst
浏览文件 @
a49d1d95
...
...
@@ -32,6 +32,7 @@ PaddlePaddle进程内嵌了一个 :code:`python` 解释器。 这个 :code:`pyth
所以,PaddlePaddle单机训练进程,:code:`paddle train` , 对于用户的主要接口语言为 python。 主要需要用户配置的两个文件为 :code:`DataProvider` 和训练文件 :code:`TrainerConfig` 。
.. _glossary_DataProvider:
DataProvider
============
...
...
@@ -42,6 +43,7 @@ DataProvider是 :code:`paddle train` 的数据提供器。 它负责将用户的
为了方便用户使用自己的数据格式, PaddlePaddle 提供了 `PyDataProvider`_ 来处理数据。 并且在这个Provider中,PaddlePaddle的 C++ 部分接管了如何shuffle,处理 batch,GPU/CPU通信,双缓冲,异步读取等问题。 用户可以参考 `PyDataProvider`_ 的相关文档,继续深入了解 DataProvider 的使用。
.. _glossary_trainer_config:
训练文件
========
...
...
doc_cn/conf.py.in
浏览文件 @
a49d1d95
...
...
@@ -69,7 +69,7 @@ master_doc = 'index'
#
# This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases.
language =
None
language =
'zh_CN'
# There are two options for replacing |today|: either, you set today to some
# non-false value, then it is used:
...
...
paddle/gserver/tests/sequenceGen.py
浏览文件 @
a49d1d95
...
...
@@ -33,10 +33,10 @@ def process(settings, file_name):
label
,
comment
=
line
.
strip
().
split
(
'
\t
'
)
label
=
int
(
''
.
join
(
label
.
split
()))
words
=
comment
.
split
()
word
_slot
=
[
word
s
=
[
settings
.
word_dict
[
w
]
for
w
in
words
if
w
in
settings
.
word_dict
]
yield
word
_slot
,
label
yield
word
s
,
label
## for hierarchical sequence network
...
...
@@ -52,20 +52,20 @@ def hook2(settings, dict_file, **kwargs):
@
provider
(
init_hook
=
hook2
,
should_shuffle
=
False
)
def
process2
(
settings
,
file_name
):
with
open
(
file_name
)
as
fdata
:
label
_list
=
[]
word_slot_list
=
[]
label
s
=
[]
sentences
=
[]
for
line
in
fdata
:
if
(
len
(
line
))
>
1
:
label
,
comment
=
line
.
strip
().
split
(
'
\t
'
)
label
=
int
(
''
.
join
(
label
.
split
()))
words
=
comment
.
split
()
word
_slot
=
[
word
s
=
[
settings
.
word_dict
[
w
]
for
w
in
words
if
w
in
settings
.
word_dict
]
label
_list
.
append
(
label
)
word_slot_list
.
append
(
word_slot
)
label
s
.
append
(
label
)
sentences
.
append
(
words
)
else
:
yield
word_slot_list
,
label_list
label
_list
=
[]
word_slot_list
=
[]
yield
sentences
,
labels
label
s
=
[]
sentences
=
[]
paddle/gserver/tests/sequence_nest_rnn.conf
浏览文件 @
a49d1d95
...
...
@@ -55,9 +55,8 @@ def outer_step(x):
input
=
x
)
last
=
last_seq
(
input
=
inner_rnn_output
,
name
=
"outer_rnn_state"
)
# "return last" should also work. But currently RecurrentGradientMachine
# does not handle it, and will report error: In hierachical RNN, all out
# links should be from sequences now.
# "return last" won't work, because recurrent_group only support the input
# sequence type is same as return sequence type.
return
inner_rnn_output
out
=
recurrent_group
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录