Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a47d92d8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a47d92d8
编写于
8月 31, 2020
作者:
Y
yaoxuefeng
提交者:
GitHub
8月 31, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fleet add save with whitelist test=develop (#23376)
上级
f7fb4c22
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
124 addition
and
0 deletion
+124
-0
paddle/fluid/framework/fleet/fleet_wrapper.cc
paddle/fluid/framework/fleet/fleet_wrapper.cc
+35
-0
paddle/fluid/framework/fleet/fleet_wrapper.h
paddle/fluid/framework/fleet/fleet_wrapper.h
+5
-0
paddle/fluid/pybind/fleet_wrapper_py.cc
paddle/fluid/pybind/fleet_wrapper_py.cc
+4
-0
python/paddle/fluid/incubate/fleet/parameter_server/pslib/__init__.py
...e/fluid/incubate/fleet/parameter_server/pslib/__init__.py
+80
-0
未找到文件。
paddle/fluid/framework/fleet/fleet_wrapper.cc
浏览文件 @
a47d92d8
...
...
@@ -1170,6 +1170,21 @@ void FleetWrapper::LoadModelOneTable(const uint64_t table_id,
#endif
}
void
FleetWrapper
::
LoadWithWhitelist
(
const
uint64_t
table_id
,
const
std
::
string
&
path
,
const
int
mode
)
{
#ifdef PADDLE_WITH_PSLIB
auto
ret
=
pslib_ptr_
->
_worker_ptr
->
load_with_whitelist
(
table_id
,
path
,
std
::
to_string
(
mode
));
ret
.
wait
();
if
(
ret
.
get
()
!=
0
)
{
LOG
(
ERROR
)
<<
"load model of table id: "
<<
table_id
<<
", from path: "
<<
path
<<
" failed"
;
}
#else
VLOG
(
0
)
<<
"FleetWrapper::LoadWhitelist does nothing when no pslib"
;
#endif
}
void
FleetWrapper
::
SaveModel
(
const
std
::
string
&
path
,
const
int
mode
)
{
#ifdef PADDLE_WITH_PSLIB
auto
ret
=
pslib_ptr_
->
_worker_ptr
->
save
(
path
,
std
::
to_string
(
mode
));
...
...
@@ -1285,6 +1300,26 @@ int32_t FleetWrapper::SaveCache(int table_id, const std::string& path,
#endif
}
int32_t
FleetWrapper
::
SaveWithWhitelist
(
int
table_id
,
const
std
::
string
&
path
,
const
int
mode
,
const
std
::
string
&
whitelist_path
)
{
#ifdef PADDLE_WITH_PSLIB
auto
ret
=
pslib_ptr_
->
_worker_ptr
->
save_with_whitelist
(
table_id
,
path
,
std
::
to_string
(
mode
),
whitelist_path
);
ret
.
wait
();
int32_t
feasign_cnt
=
ret
.
get
();
if
(
feasign_cnt
==
-
1
)
{
LOG
(
ERROR
)
<<
"table save cache failed"
;
sleep
(
sleep_seconds_before_fail_exit_
);
exit
(
-
1
);
}
return
feasign_cnt
;
#else
VLOG
(
0
)
<<
"FleetWrapper::SaveCache does nothing when no pslib"
;
return
-
1
;
#endif
}
void
FleetWrapper
::
ShrinkSparseTable
(
int
table_id
)
{
#ifdef PADDLE_WITH_PSLIB
auto
ret
=
pslib_ptr_
->
_worker_ptr
->
shrink
(
table_id
);
...
...
paddle/fluid/framework/fleet/fleet_wrapper.h
浏览文件 @
a47d92d8
...
...
@@ -273,6 +273,11 @@ class FleetWrapper {
// save cache model
// cache model can speed up online predict
int32_t
SaveCache
(
int
table_id
,
const
std
::
string
&
path
,
const
int
mode
);
// save sparse table filtered by user-defined whitelist
int32_t
SaveWithWhitelist
(
int
table_id
,
const
std
::
string
&
path
,
const
int
mode
,
const
std
::
string
&
whitelist_path
);
void
LoadWithWhitelist
(
const
uint64_t
table_id
,
const
std
::
string
&
path
,
const
int
mode
);
// copy feasign key/value from src_table_id to dest_table_id
int32_t
CopyTable
(
const
uint64_t
src_table_id
,
const
uint64_t
dest_table_id
);
// copy feasign key/value from src_table_id to dest_table_id
...
...
paddle/fluid/pybind/fleet_wrapper_py.cc
浏览文件 @
a47d92d8
...
...
@@ -57,7 +57,11 @@ void BindFleetWrapper(py::module* m) {
.
def
(
"get_cache_threshold"
,
&
framework
::
FleetWrapper
::
GetCacheThreshold
)
.
def
(
"cache_shuffle"
,
&
framework
::
FleetWrapper
::
CacheShuffle
)
.
def
(
"save_cache"
,
&
framework
::
FleetWrapper
::
SaveCache
)
.
def
(
"save_model_with_whitelist"
,
&
framework
::
FleetWrapper
::
SaveWithWhitelist
)
.
def
(
"load_model"
,
&
framework
::
FleetWrapper
::
LoadModel
)
.
def
(
"load_table_with_whitelist"
,
&
framework
::
FleetWrapper
::
LoadWithWhitelist
)
.
def
(
"clear_model"
,
&
framework
::
FleetWrapper
::
ClearModel
)
.
def
(
"clear_one_table"
,
&
framework
::
FleetWrapper
::
ClearOneTable
)
.
def
(
"stop_server"
,
&
framework
::
FleetWrapper
::
StopServer
)
...
...
python/paddle/fluid/incubate/fleet/parameter_server/pslib/__init__.py
浏览文件 @
a47d92d8
...
...
@@ -348,6 +348,41 @@ class PSLib(Fleet):
self
.
_fleet_ptr
.
save_model
(
dirname
,
mode
)
self
.
_role_maker
.
_barrier_worker
()
def
save_model_with_whitelist
(
self
,
executor
,
dirname
,
whitelist_path
,
main_program
=
None
,
**
kwargs
):
"""
save whitelist, mode is consistent with fleet.save_persistables,
when using fleet, it will save sparse and dense feature
Args:
executor(Executor): fluid executor
dirname(str): save path. It can be hdfs/afs path or local path
main_program(Program): fluid program, default None
kwargs: use define property, current support following
mode(int): 0 means save all pserver model,
1 means save delta pserver model (save diff),
2 means save xbox base,
3 means save batch model.
Example:
.. code-block:: python
fleet.save_persistables(dirname="/you/path/to/model", mode = 0)
"""
mode
=
kwargs
.
get
(
"mode"
,
0
)
table_id
=
kwargs
.
get
(
"table_id"
,
0
)
self
.
_fleet_ptr
.
client_flush
()
self
.
_role_maker
.
_barrier_worker
()
if
self
.
_role_maker
.
is_first_worker
():
self
.
_fleet_ptr
.
save_model_with_whitelist
(
table_id
,
dirname
,
mode
,
whitelist_path
)
self
.
_role_maker
.
_barrier_worker
()
def
save_cache_model
(
self
,
executor
,
dirname
,
main_program
=
None
,
**
kwargs
):
"""
save sparse cache table,
...
...
@@ -480,6 +515,51 @@ class PSLib(Fleet):
self
.
_fleet_ptr
.
clear_model
()
self
.
_role_maker
.
_barrier_worker
()
def
load_pslib_whitelist
(
self
,
table_id
,
model_path
,
**
kwargs
):
"""
load pslib model for one table with whitelist
Args:
table_id(int): load table id
model_path(str): load model path, can be local or hdfs/afs path
kwargs(dict): user defined params, currently support following:
only for load pslib model for one table:
mode(int): load model mode. 0 is for load whole model, 1 is
for load delta model (load diff), default is 0.
only for load params from paddle model:
scope(Scope): Scope object
model_proto_file(str): path of program desc proto binary
file, can be local or hdfs/afs file
var_names(list): var name list
load_combine(bool): load from a file or split param files
default False.
Examples:
.. code-block:: python
# load pslib model for one table
fleet.load_one_table(0, "hdfs:/my_fleet_model/20190714/0/")
fleet.load_one_table(1, "hdfs:/xx/xxx", mode = 0)
# load params from paddle model
fleet.load_one_table(2, "hdfs:/my_paddle_model/",
scope = my_scope,
model_proto_file = "./my_program.bin",
load_combine = False)
# below is how to save proto binary file
with open("my_program.bin", "wb") as fout:
my_program = fluid.default_main_program()
fout.write(my_program.desc.serialize_to_string())
"""
self
.
_role_maker
.
_barrier_worker
()
mode
=
kwargs
.
get
(
"mode"
,
0
)
if
self
.
_role_maker
.
is_first_worker
():
self
.
_fleet_ptr
.
load_table_with_whitelist
(
table_id
,
model_path
,
mode
)
self
.
_role_maker
.
_barrier_worker
()
def
load_one_table
(
self
,
table_id
,
model_path
,
**
kwargs
):
"""
load pslib model for one table or load params from paddle model
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录