未验证 提交 a410c397 编写于 作者: R Rayman 提交者: GitHub

[triu_indices] add triu_indices_op (#45168)

上级 20d38664
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/nullary.h"
namespace paddle {
namespace operators {
class TriuIndicesOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::proto::VarType::Type(ctx.Attr<int>("dtype")),
ctx.GetPlace());
}
};
class TriuIndicesOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddOutput("out",
"Tensor, the output tensor, with the shape (2,x), x bounded by "
"[0,row*col])");
AddAttr<int>("row",
"int number, the input of triu_indices op"
"which describes the number of row of the matrix")
.SetDefault(0);
AddAttr<int>("col",
"int number, the input of triu_indices op"
"which describes the number of col of the matrix")
.SetDefault(0);
AddAttr<int>(
"offset",
"int number, the input of triu_indices op bounded by [1-rows,cols-1"
"which describes the dignalline index of the upper triangular part of "
"the matrix")
.SetDefault(0);
AddAttr<int>("dtype", "data type ,the input of triu_indices op")
.SetDefault(framework::proto::VarType::INT64);
AddComment(R"DOC(
TriuIndices Operator.
The triu_indices operator returns the indices of the upper triangular part of the matrix
whose rows and cols is known. It is a 2-by-x tensor, where the first row contains row coordinates
of all indices and the second row contains column coordinates. Indices are ordered based on
rows and then columns. The upper triangular part of the matrix is defined as the elements on
and below the diagonal.
The argument offset controls which diagonal to consider, default value is 0.
A positive value includes just as fewer diagonals above the main diagonal,
and similarly a negative value excludes just as fewer diagonals below the main diagonal
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(triu_indices,
TriuIndicesInferShapeFunctor,
PD_INFER_META(phi::TriuIndicesInferMeta));
REGISTER_OPERATOR(
triu_indices,
ops::TriuIndicesOp,
ops::TriuIndicesOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
TriuIndicesInferShapeFunctor);
...@@ -2710,6 +2710,18 @@ ...@@ -2710,6 +2710,18 @@
data_type : x data_type : x
backward : trilinear_interp_grad backward : trilinear_interp_grad
- api : triu_indices
args : (int row, int col, int offset, DataType dtype, Place place={})
output : Tensor(out)
infer_meta :
func : TriuIndicesInferMeta
param : [row, col, offset, dtype]
kernel :
func : triu_indices
param : [row, col, offset, dtype]
data_type : dtype
backend : place
# python API: paddle.nn.initializer.TruncatedNormal # python API: paddle.nn.initializer.TruncatedNormal
- api : truncated_gaussian_random - api : truncated_gaussian_random
args : (int[] shape, float mean, float std, int seed, DataType dtype=DataType::FLOAT32, Place place={}) args : (int[] shape, float mean, float std, int seed, DataType dtype=DataType::FLOAT32, Place place={})
......
...@@ -152,4 +152,33 @@ void TrilIndicesInferMeta( ...@@ -152,4 +152,33 @@ void TrilIndicesInferMeta(
out->set_dims(out_dims); out->set_dims(out_dims);
out->set_dtype(dtype); out->set_dtype(dtype);
} }
void TriuIndicesInferMeta(
int row, int col, int offset, DataType dtype, MetaTensor* out) {
// number of elements in the first row of the tril,bounded by [0, cols]
// use total item number minus bottom rectangle item number to get
// the above rectangle item number
// triu_size = rows * cols - tril_size
// so the `offset` need to be set as `offset-1` in order to include
// the item on the diagonal line
offset = offset - 1;
auto n_first_row =
offset > 0 ? std::min<int64_t>(col, 1 + offset) : row + offset > 0;
// number of elements in the last row of the tril, bounded by [0, cols]
auto n_last_row = std::max<int64_t>(0, std::min<int64_t>(col, row + offset));
// number of rows, bounded by [0, rows]
auto n_row_all = std::max<int64_t>(0, std::min<int64_t>(row, row + offset));
auto n_row_trapezoid = (n_last_row - n_first_row + 1);
// calculate # of elements in the top trapezoid
auto tril_size = (n_first_row + n_last_row) * n_row_trapezoid >> 1;
// calculate # of elements in the bottom rectangle if there is any
auto diff_row = n_row_all - n_row_trapezoid;
if (diff_row > 0) {
tril_size += diff_row * col;
}
std::vector<int64_t> tmp = {2, row * col - tril_size};
auto out_dims = phi::make_ddim(tmp);
out->set_dims(out_dims);
out->set_dtype(dtype);
}
} // namespace phi } // namespace phi
...@@ -74,4 +74,7 @@ void UniformRandomInferMeta(const IntArray& shape, ...@@ -74,4 +74,7 @@ void UniformRandomInferMeta(const IntArray& shape,
void TrilIndicesInferMeta( void TrilIndicesInferMeta(
int rows, int cols, int offset, DataType dtype, MetaTensor* out); int rows, int cols, int offset, DataType dtype, MetaTensor* out);
void TriuIndicesInferMeta(
int row, int col, int offset, DataType dtype, MetaTensor* out);
} // namespace phi } // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/triu_indices_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void TriuIndicesKernel(const Context& dev_ctx,
int row,
int col,
int offset,
DataType dtype,
DenseTensor* out) {
T* out_data = dev_ctx.template Alloc<T>(out);
const auto& out_dims = out->dims();
int64_t triu_size = out_dims[1];
int64_t i = 0;
T c = std::max<int64_t>(0, offset), r = 0;
while (i < triu_size) {
out_data[i] = r;
out_data[triu_size + i++] = c;
// move to the next column and check if (r, c) is still in bound
c += 1;
if (c >= col) {
r += 1;
// not typing std::max with scalar_t as it could be an unsigned type
// NOTE: not necessary to check if c is less than col or overflows here,
// because i and triu_size act as a guard.
c = std::max<int64_t>(0, r + offset);
}
}
}
} // namespace phi
PD_REGISTER_KERNEL(
triu_indices, CPU, ALL_LAYOUT, phi::TriuIndicesKernel, int, int64_t) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/triu_indices_kernel.h"
#include <algorithm>
#include <tuple>
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T>
__device__ inline int resolve_root_int(int b, int cX4, int x, int32_t sign) {
int64_t bXb_cX4 = b * b - cX4;
double sr = ::sqrt(static_cast<double>(bXb_cX4));
T res = ::__double2ll_rd((-b + sign * sr) / 2);
if (bXb_cX4 != static_cast<int>(sr * sr)) {
int llsr = ::__double2ll_rd(sr);
int diff = ::__double2ll_ru(
::sqrt(::fabs(static_cast<double>(bXb_cX4 - llsr * llsr))));
auto l = res > diff ? res - diff : 0;
auto r = res + diff + 1;
x <<= 1;
while (l + 1 < r) {
auto m = (l + r) >> 1;
if (sign * (b + m) * m > x) {
r = m;
} else {
l = m;
}
}
res = l;
}
return res;
}
template <typename T>
__device__ inline void get_coordinate_in_triu_trapezoid(int f,
int x,
T* row,
T* col) {
f <<= 1; // all statements use 2f, so only calculate it once here.
auto b = -1 - f;
auto cX4 = x << 3; // 4 * c = 4 * (2x) = 8x;
*row = resolve_root_int<T>(b, cX4, x, -1);
*col = (x - (((f - *row + 1) * *row) >> 1)) + *row;
}
template <typename T>
__global__ void triu_indices_kernel(T* out_data,
int col_offset,
int m_first_row,
int col,
int rectangle_size,
int triu_size) {
int linear_index = blockIdx.x * blockDim.x + threadIdx.x;
if (linear_index < triu_size) {
T r, c;
if (linear_index < rectangle_size) {
// the coordinate is within the top rectangle
r = linear_index / col;
c = linear_index % col;
} else {
// the coordinate falls in the bottom trapezoid
get_coordinate_in_triu_trapezoid<T>(
m_first_row, linear_index - rectangle_size, &r, &c);
r += rectangle_size / col;
}
c += col_offset;
out_data[linear_index] = r;
out_data[linear_index + triu_size] = c;
}
}
template <typename T, typename Context>
void TriuIndicesKernel(const Context& dev_ctx,
int row,
int col,
int offset,
DataType dtype,
DenseTensor* out) {
T* out_data = dev_ctx.template Alloc<T>(out);
auto out_dims = out->dims();
int triu_size = out_dims[1];
// auto tensor = empty_cuda({2, triu_size}, dtype_opt, layout_opt,
// device_opt, pin_memory_opt);
if (triu_size > 0) {
// # of triu elements in the first row
auto m_first_row = offset > 0 ? std::max<int>(col - offset, 0)
: // upper bounded by col
col;
// size of the top rectangle
int rectangle_size = 0;
if (offset < 0) {
rectangle_size = std::min<int>(row, -offset) * col;
}
// using gpu_launch_config to get grid_size and block_size
auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, triu_size);
triu_indices_kernel<T><<<config.block_per_grid.x,
config.thread_per_block.x,
0,
dev_ctx.stream()>>>(out_data,
std::max<int>(0, offset),
m_first_row,
col,
rectangle_size,
triu_size);
}
}
} // namespace phi
PD_REGISTER_KERNEL(
triu_indices, GPU, ALL_LAYOUT, phi::TriuIndicesKernel, int, int64_t) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void TriuIndicesKernel(const Context& dev_ctx,
int row,
int col,
int offset,
DataType dtype,
DenseTensor* out);
} // namespace phi
...@@ -110,6 +110,7 @@ from .tensor.creation import assign # noqa: F401 ...@@ -110,6 +110,7 @@ from .tensor.creation import assign # noqa: F401
from .tensor.creation import complex # noqa: F401 from .tensor.creation import complex # noqa: F401
from .tensor.creation import clone # noqa: F401 from .tensor.creation import clone # noqa: F401
from .tensor.creation import tril_indices #noqa: F401 from .tensor.creation import tril_indices #noqa: F401
from .tensor.creation import triu_indices #noqa: F401
from .tensor.linalg import matmul # noqa: F401 from .tensor.linalg import matmul # noqa: F401
from .tensor.linalg import dot # noqa: F401 from .tensor.linalg import dot # noqa: F401
from .tensor.linalg import norm # noqa: F401 from .tensor.linalg import norm # noqa: F401
...@@ -654,4 +655,5 @@ __all__ = [ # noqa ...@@ -654,4 +655,5 @@ __all__ = [ # noqa
'heaviside', 'heaviside',
'tril_indices', 'tril_indices',
'sgn', 'sgn',
'triu_indices',
] ]
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
from paddle.fluid.framework import _test_eager_guard
class TestTriuIndicesOp(OpTest):
def setUp(self):
self.op_type = "triu_indices"
self.inputs = {}
self.init_config()
self.outputs = {'out': self.target}
def test_check_output(self):
paddle.enable_static()
self.check_output()
def init_config(self):
self.attrs = {'row': 4, 'col': 4, 'offset': -1}
self.target = np.triu_indices(self.attrs['row'], self.attrs['offset'],
self.attrs['col'])
self.target = np.array(self.target)
class TestTriuIndicesOpCase1(TestTriuIndicesOp):
def init_config(self):
self.attrs = {'row': 0, 'col': 0, 'offset': 0}
self.target = np.triu_indices(0, 0, 0)
self.target = np.array(self.target)
class TestTriuIndicesOpCase2(TestTriuIndicesOp):
def init_config(self):
self.attrs = {'row': 4, 'col': 4, 'offset': 2}
self.target = np.triu_indices(self.attrs['row'], self.attrs['offset'],
self.attrs['col'])
self.target = np.array(self.target)
class TestTriuIndicesAPICaseStatic(unittest.TestCase):
def test_static(self):
if fluid.core.is_compiled_with_cuda():
place = paddle.fluid.CUDAPlace(0)
else:
place = paddle.CPUPlace()
with paddle.static.program_guard(paddle.static.Program(),
paddle.static.Program()):
data = paddle.triu_indices(4, 4, -1)
exe = paddle.static.Executor(place)
result = exe.run(feed={}, fetch_list=[data])
expected_result = np.triu_indices(4, -1, 4)
np.testing.assert_array_equal(result[0], expected_result)
class TestTriuIndicesAPICaseDygraph(unittest.TestCase):
def test_dygraph(self):
if fluid.core.is_compiled_with_cuda():
place = paddle.fluid.CUDAPlace(0)
else:
place = paddle.CPUPlace()
with fluid.dygraph.base.guard(place=place):
out = paddle.triu_indices(4, 4, 2)
expected_result = np.triu_indices(4, 2, 4)
np.testing.assert_array_equal(out, expected_result)
def test_dygraph_eager(self):
with _test_eager_guard():
self.test_dygraph()
class TestTriuIndicesAPICaseError(unittest.TestCase):
def test_case_error(self):
def test_num_rows_type_check():
out1 = paddle.triu_indices(1.0, 1, 2)
self.assertRaises(TypeError, test_num_rows_type_check)
def test_num_columns_type_check():
out2 = paddle.triu_indices(4, -1, 2)
self.assertRaises(TypeError, test_num_columns_type_check)
def test_num_offset_type_check():
out3 = paddle.triu_indices(4, 4, 2.0)
self.assertRaises(TypeError, test_num_offset_type_check)
class TestTriuIndicesAPICaseDefault(unittest.TestCase):
def test_default_CPU(self):
paddle.enable_static()
with paddle.static.program_guard(paddle.static.Program(),
paddle.static.Program()):
data = paddle.triu_indices(4, None, 2)
exe = paddle.static.Executor(paddle.CPUPlace())
result = exe.run(feed={}, fetch_list=[data])
expected_result = np.triu_indices(4, 2)
np.testing.assert_array_equal(result[0], expected_result)
with fluid.dygraph.base.guard(paddle.CPUPlace()):
out = paddle.triu_indices(4, None, 2)
expected_result = np.triu_indices(4, 2)
np.testing.assert_array_equal(out, expected_result)
if __name__ == "__main__":
unittest.main()
...@@ -1917,3 +1917,88 @@ def tril_indices(row, col, offset=0, dtype='int64'): ...@@ -1917,3 +1917,88 @@ def tril_indices(row, col, offset=0, dtype='int64'):
'dtype': dtype 'dtype': dtype
}) })
return out return out
def triu_indices(row, col=None, offset=0, dtype='int64'):
"""
Return the indices of the upper triangular part of the 2-D matrix
whose row and col is known. Indices are ordered based on row and then columns.
The upper triangular part of the matrix is defined as the elements on
and above the diagonal.
Args:
row (int): The input x which is a int number describe the number of row of the matrix.
col (int, optional): The input x which is a int number describe the number of col of the matrix.
default value for col is None, then it will be set equal to row, indicting a square matix.
offset (int, optional): The offset to consider, default value is 0.
- If offset = 0, all elements on and above the main diagonal are retained.
- If offset > 0, include just as few diagonals above the main diagonal.
- If offset < 0, excludes just as few diagonals below the main diagonal.
dtype (str|np.dtype|paddle.dtype, optional): the data type of the output tensor,
can be int32, int64, default value is int64.
Returns:
Tensor: Results of the indices of upper triangular part of a row * col matrix,
where the first row contains row coordinates of and the second row contains column coordinates.
Examples:
.. code-block:: python
import paddle
# example 1, default offset value
data1 = paddle.triu_indices(4,4,0)
print(data1)
# [[0, 0, 0, 0, 1, 1, 1, 2, 2, 3],
# [0, 1, 2, 3, 1, 2, 3, 2, 3, 3]]
# example 2, positive offset value
data2 = paddle.triu_indices(4,4,2)
print(data2)
# [[0, 0, 1],
# [2, 3, 3]]
# example 3, negative offset value
data3 = paddle.triu_indices(4,4,-1)
print(data3)
# [[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3],
# [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 2, 3]]
"""
if not isinstance(row, int) or row < 0:
raise TypeError("row should be a non-negative int")
if col is not None:
if not isinstance(col, int) or col < 0:
raise TypeError("col should be a non-negative int")
else:
col = row
if not isinstance(offset, int):
raise TypeError("offset should be a int")
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
if in_dygraph_mode():
out = _C_ops.final_state_triu_indices(row, col, offset, dtype,
_current_expected_place())
return out
if _in_legacy_dygraph():
out = _C_ops.triu_indices('row', row, 'col', col, 'offset', offset,
"dtype", dtype)
return out
else:
helper = LayerHelper("triu_indices", **locals())
out = helper.create_variable_for_type_inference(dtype=dtype)
helper.append_op(type='triu_indices',
inputs={},
outputs={'out': [out]},
attrs={
'row': row,
'col': col,
'offset': offset,
'dtype': dtype
})
return out
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册