未验证 提交 a400b76d 编写于 作者: 1 123malin 提交者: GitHub

Roll cuda kernel (#29655)

* test=develop, optimize roll_op_cuda_kernel
上级 e7ac74c8
......@@ -13,6 +13,7 @@
// limitations under the License.
#include "paddle/fluid/operators/roll_op.h"
#include <memory>
#include <vector>
......
......@@ -12,16 +12,170 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/roll_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
namespace paddle {
namespace operators {
using platform::PADDLE_CUDA_NUM_THREADS;
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename T>
__global__ void roll_cuda_kernel(const T* input, T* output, int64_t N,
int64_t* shifts, int64_t* strides,
int64_t* sizes, int64_t nums) {
int64_t idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx >= N) {
return;
}
int64_t output_idx = idx;
int64_t dim_idx, dim_idx_shift;
for (int64_t i = 0; i < nums; i++) {
dim_idx = idx % (strides[i] * sizes[i]) / strides[i];
dim_idx_shift = (dim_idx + shifts[i]) % sizes[i];
output_idx = output_idx + (dim_idx_shift - dim_idx) * strides[i];
}
output[output_idx] = input[idx];
}
template <typename DeviceContext, typename T>
class RollCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Input<LoDTensor>("X");
auto* out = context.Output<LoDTensor>("Out");
std::vector<int64_t> shifts = context.Attr<std::vector<int64_t>>("shifts");
std::vector<int64_t> dims = context.Attr<std::vector<int64_t>>("axis");
auto* in_data = in->data<T>();
auto* out_data = out->mutable_data<T>(context.GetPlace());
int64_t numel = in->numel();
auto stream =
context.template device_context<platform::CUDADeviceContext>().stream();
size_t nums = shifts.size();
auto input_dim = in->dims();
auto stride_dim = framework::stride(input_dim);
int64_t dim, size;
size_t gpu_memory_size_ = sizeof(int64_t) * nums;
std::vector<int64_t> strides, sizes;
strides.resize(nums);
sizes.resize(nums);
paddle::memory::AllocationPtr shifts_gpu =
memory::Alloc(context.GetPlace(), gpu_memory_size_);
paddle::memory::AllocationPtr strides_gpu =
memory::Alloc(context.GetPlace(), gpu_memory_size_);
paddle::memory::AllocationPtr sizes_gpu =
memory::Alloc(context.GetPlace(), gpu_memory_size_);
for (size_t i = 0; i < nums; i++) {
dim = dims[i] >= 0 ? dims[i] : dims[i] + input_dim.size();
size = input_dim[dim];
shifts[i] = (shifts[i] % size + size) % size;
strides[i] = stride_dim[dim];
sizes[i] = size;
}
paddle::memory::Copy(
BOOST_GET_CONST(platform::CUDAPlace, shifts_gpu->place()),
shifts_gpu->ptr(), platform::CPUPlace(), shifts.data(),
gpu_memory_size_, stream);
paddle::memory::Copy(
BOOST_GET_CONST(platform::CUDAPlace, strides_gpu->place()),
strides_gpu->ptr(), platform::CPUPlace(), strides.data(),
gpu_memory_size_, stream);
paddle::memory::Copy(
BOOST_GET_CONST(platform::CUDAPlace, sizes_gpu->place()),
sizes_gpu->ptr(), platform::CPUPlace(), sizes.data(), gpu_memory_size_,
stream);
int64_t* shifts_ptr = reinterpret_cast<int64_t*>(shifts_gpu->ptr());
int64_t* strides_ptr = reinterpret_cast<int64_t*>(strides_gpu->ptr());
int64_t* sizes_ptr = reinterpret_cast<int64_t*>(sizes_gpu->ptr());
roll_cuda_kernel<<<(numel + PADDLE_CUDA_NUM_THREADS - 1) /
PADDLE_CUDA_NUM_THREADS,
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
in_data, out_data, numel, shifts_ptr, strides_ptr, sizes_ptr, nums);
}
};
template <typename DeviceContext, typename T>
class RollGradCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Input<LoDTensor>(framework::GradVarName("Out"));
auto* out = context.Output<LoDTensor>(framework::GradVarName("X"));
std::vector<int64_t> shifts = context.Attr<std::vector<int64_t>>("shifts");
std::vector<int64_t> dims = context.Attr<std::vector<int64_t>>("axis");
auto* in_data = in->data<T>();
auto* out_data = out->mutable_data<T>(context.GetPlace());
int64_t numel = in->numel();
auto stream =
context.template device_context<platform::CUDADeviceContext>().stream();
size_t nums = shifts.size();
auto input_dim = in->dims();
auto stride_dim = framework::stride(input_dim);
int64_t dim, size;
size_t gpu_memory_size_ = sizeof(int64_t) * nums;
std::vector<int64_t> strides, sizes;
strides.resize(nums);
sizes.resize(nums);
paddle::memory::AllocationPtr shifts_gpu =
memory::Alloc(context.GetPlace(), gpu_memory_size_);
paddle::memory::AllocationPtr strides_gpu =
memory::Alloc(context.GetPlace(), gpu_memory_size_);
paddle::memory::AllocationPtr sizes_gpu =
memory::Alloc(context.GetPlace(), gpu_memory_size_);
for (size_t i = 0; i < nums; i++) {
dim = dims[i] >= 0 ? dims[i] : dims[i] + input_dim.size();
size = input_dim[dim];
shifts[i] = ((0 - shifts[i]) % size + size) % size;
strides[i] = stride_dim[dim];
sizes[i] = size;
}
paddle::memory::Copy(
BOOST_GET_CONST(platform::CUDAPlace, shifts_gpu->place()),
shifts_gpu->ptr(), platform::CPUPlace(), shifts.data(),
gpu_memory_size_, stream);
paddle::memory::Copy(
BOOST_GET_CONST(platform::CUDAPlace, strides_gpu->place()),
strides_gpu->ptr(), platform::CPUPlace(), strides.data(),
gpu_memory_size_, stream);
paddle::memory::Copy(
BOOST_GET_CONST(platform::CUDAPlace, sizes_gpu->place()),
sizes_gpu->ptr(), platform::CPUPlace(), sizes.data(), gpu_memory_size_,
stream);
int64_t* shifts_ptr = reinterpret_cast<int64_t*>(shifts_gpu->ptr());
int64_t* strides_ptr = reinterpret_cast<int64_t*>(strides_gpu->ptr());
int64_t* sizes_ptr = reinterpret_cast<int64_t*>(sizes_gpu->ptr());
roll_cuda_kernel<<<(numel + PADDLE_CUDA_NUM_THREADS - 1) /
PADDLE_CUDA_NUM_THREADS,
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
in_data, out_data, numel, shifts_ptr, strides_ptr, sizes_ptr, nums);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
roll, ops::RollKernel<paddle::platform::CUDADeviceContext, float>,
ops::RollKernel<paddle::platform::CUDADeviceContext, double>,
ops::RollKernel<paddle::platform::CUDADeviceContext, int>,
ops::RollKernel<paddle::platform::CUDADeviceContext, int64_t>);
roll, ops::RollCUDAKernel<paddle::platform::CUDADeviceContext, float>,
ops::RollCUDAKernel<paddle::platform::CUDADeviceContext, double>,
ops::RollCUDAKernel<paddle::platform::CUDADeviceContext, int>,
ops::RollCUDAKernel<paddle::platform::CUDADeviceContext, int64_t>);
REGISTER_OP_CUDA_KERNEL(
roll_grad, ops::RollGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::RollGradKernel<paddle::platform::CUDADeviceContext, double>,
ops::RollGradKernel<paddle::platform::CUDADeviceContext, int>,
ops::RollGradKernel<paddle::platform::CUDADeviceContext, int64_t>);
roll_grad,
ops::RollGradCUDAKernel<paddle::platform::CUDADeviceContext, float>,
ops::RollGradCUDAKernel<paddle::platform::CUDADeviceContext, double>,
ops::RollGradCUDAKernel<paddle::platform::CUDADeviceContext, int>,
ops::RollGradCUDAKernel<paddle::platform::CUDADeviceContext, int64_t>);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册