未验证 提交 a167a143 编写于 作者: C chentianyu03 提交者: GitHub

import llvm::ArrayRef and add test (#39802)

上级 42eb56e2
...@@ -4,3 +4,4 @@ if(WITH_TESTING) ...@@ -4,3 +4,4 @@ if(WITH_TESTING)
cc_library(paddle_gtest_main SRCS paddle_gtest_main.cc DEPS init device_context memory gtest gflags) cc_library(paddle_gtest_main SRCS paddle_gtest_main.cc DEPS init device_context memory gtest gflags)
endif() endif()
cc_test(small_vector_test SRCS small_vector_test.cc DEPS gtest gflags) cc_test(small_vector_test SRCS small_vector_test.cc DEPS gtest gflags)
cc_test(array_ref_test SRCS array_ref_test.cc DEPS gtest gflags)
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/utils/array_ref.h"
#include <cstdlib>
#include <ctime>
#include "glog/logging.h"
#include "gtest/gtest.h"
TEST(array_ref, array_ref) {
paddle::ArrayRef<int> a;
CHECK_EQ(a.size(), size_t(0));
CHECK_EQ(a.data(), static_cast<int*>(nullptr));
paddle::ArrayRef<int> b(paddle::none);
CHECK_EQ(b.size(), size_t(0));
CHECK_EQ(b.data(), static_cast<int*>(nullptr));
int v = 1;
paddle::ArrayRef<int> c(v);
CHECK_EQ(c.size(), size_t(1));
CHECK_EQ(c.data(), &v);
CHECK_EQ(c.equals(paddle::makeArrayRef(v)), true);
int v1[5] = {1, 2, 3, 4, 5};
paddle::ArrayRef<int> d(v1, 5);
CHECK_EQ(d.size(), size_t(5));
CHECK_EQ(d.data(), v1);
CHECK_EQ(d.equals(paddle::makeArrayRef(v1, 5)), true);
paddle::ArrayRef<int> e(&v1[0], &v1[4]);
CHECK_EQ(e.size(), size_t(4));
CHECK_EQ(e.data(), v1);
CHECK_EQ(e.equals(paddle::makeArrayRef(&v1[0], &v1[4])), true);
paddle::SmallVector<int, 3> small_vector{1, 2, 3};
paddle::ArrayRef<int> f(small_vector);
CHECK_EQ(f.size(), size_t(3));
CHECK_EQ(f.data(), small_vector.data());
CHECK_EQ(f.equals(paddle::makeArrayRef(small_vector)), true);
std::vector<int> vector{1, 2, 3};
paddle::ArrayRef<int> g(vector);
CHECK_EQ(g.size(), size_t(3));
CHECK_EQ(g.data(), vector.data());
CHECK_EQ(g.equals(paddle::makeArrayRef(vector)), true);
std::initializer_list<int> list = {1, 2, 3};
paddle::ArrayRef<int> h(list);
CHECK_EQ(h.size(), size_t(3));
CHECK_EQ(h.data(), list.begin());
paddle::ArrayRef<int> i(h);
CHECK_EQ(i.size(), size_t(3));
CHECK_EQ(i.data(), list.begin());
CHECK_EQ(i.equals(h), true);
CHECK_EQ(i.equals(paddle::makeArrayRef(h)), true);
auto slice = i.slice(1, 2);
CHECK_EQ(slice.size(), size_t(2));
CHECK_EQ(slice[0], 2);
CHECK_EQ(slice[1], 3);
auto drop = i.drop_front(2);
CHECK_EQ(drop.size(), size_t(1));
CHECK_EQ(drop[0], 3);
paddle::ArrayRef<int> nums = {1, 2, 3, 4, 5, 6, 7, 8};
auto front = nums.take_front(3);
CHECK_EQ(front.size(), size_t(3));
for (size_t i = 0; i < 3; ++i) {
CHECK_EQ(front[i], nums[i]);
}
auto back = nums.take_back(3);
CHECK_EQ(back.size(), size_t(3));
for (size_t i = 0; i < 3; ++i) {
CHECK_EQ(back[i], nums[i + 5]);
}
}
// This file copy from llvm/ADT/ArrayRef.h, version: 12.0.0
// Modified the following points
// 1. remove hash_value functions
// 2. replace with the llvm::NoneType with paddle::none_t
// 3. remove drop_while, drop_until, take_while, take_until methods
//===- ArrayRef.h - Array Reference Wrapper ---------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef PADDLE_UTILS_ARRAY_REF_H_
#define PADDLE_UTILS_ARRAY_REF_H_
#include <algorithm>
#include <array>
#include <cassert>
#include <cstddef>
#include <initializer_list>
#include <iterator>
#include <memory>
#include <type_traits>
#include <vector>
#include "paddle/utils/none.h"
#include "paddle/utils/small_vector.h"
namespace paddle {
/// ArrayRef - Represent a constant reference to an array (0 or more elements
/// consecutively in memory), i.e. a start pointer and a length. It allows
/// various APIs to take consecutive elements easily and conveniently.
///
/// This class does not own the underlying data, it is expected to be used in
/// situations where the data resides in some other buffer, whose lifetime
/// extends past that of the ArrayRef. For this reason, it is not in general
/// safe to store an ArrayRef.
///
/// This is intended to be trivially copyable, so it should be passed by
/// value.
template <typename T>
class ArrayRef {
public:
using iterator = const T *;
using const_iterator = const T *;
using size_type = size_t;
using reverse_iterator = std::reverse_iterator<iterator>;
private:
/// The start of the array, in an external buffer.
const T *Data = nullptr;
/// The number of elements.
size_type Length = 0;
public:
/// @name Constructors
/// @{
/// Construct an empty ArrayRef.
/*implicit*/ ArrayRef() = default;
/// Construct an empty ArrayRef from None.
/*implicit*/ ArrayRef(none_t) {}
/// Construct an ArrayRef from a single element.
/*implicit*/ ArrayRef(const T &OneElt) : Data(&OneElt), Length(1) {}
/// Construct an ArrayRef from a pointer and length.
/*implicit*/ ArrayRef(const T *data, size_t length)
: Data(data), Length(length) {}
/// Construct an ArrayRef from a range.
ArrayRef(const T *begin, const T *end) : Data(begin), Length(end - begin) {}
/// Construct an ArrayRef from a SmallVector. This is templated in order to
/// avoid instantiating SmallVectorTemplateCommon<T> whenever we
/// copy-construct an ArrayRef.
template <typename U>
/*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec)
: Data(Vec.data()), Length(Vec.size()) {}
/// Construct an ArrayRef from a std::vector.
template <typename A>
/*implicit*/ ArrayRef(const std::vector<T, A> &Vec)
: Data(Vec.data()), Length(Vec.size()) {}
/// Construct an ArrayRef from a std::array
template <size_t N>
/*implicit*/ constexpr ArrayRef(const std::array<T, N> &Arr)
: Data(Arr.data()), Length(N) {}
/// Construct an ArrayRef from a C array.
template <size_t N>
/*implicit*/ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {}
/// Construct an ArrayRef from a std::initializer_list.
/*implicit*/ ArrayRef(const std::initializer_list<T> &Vec)
: Data(Vec.begin() == Vec.end() ? (T *)nullptr : Vec.begin()),
Length(Vec.size()) {}
/// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to
/// ensure that only ArrayRefs of pointers can be converted.
template <typename U>
ArrayRef(const ArrayRef<U *> &A,
std::enable_if_t<std::is_convertible<U *const *, T const *>::value>
* = nullptr)
: Data(A.data()), Length(A.size()) {}
/// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is
/// templated in order to avoid instantiating SmallVectorTemplateCommon<T>
/// whenever we copy-construct an ArrayRef.
template <typename U, typename DummyT>
/*implicit*/ ArrayRef(
const SmallVectorTemplateCommon<U *, DummyT> &Vec,
std::enable_if_t<std::is_convertible<U *const *, T const *>::value> * =
nullptr)
: Data(Vec.data()), Length(Vec.size()) {}
/// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE
/// to ensure that only vectors of pointers can be converted.
template <typename U, typename A>
ArrayRef(
const std::vector<U *, A> &Vec,
std::enable_if_t<std::is_convertible<U *const *, T const *>::value> * = 0)
: Data(Vec.data()), Length(Vec.size()) {}
/// @}
/// @name Simple Operations
/// @{
iterator begin() const { return Data; }
iterator end() const { return Data + Length; }
reverse_iterator rbegin() const { return reverse_iterator(end()); }
reverse_iterator rend() const { return reverse_iterator(begin()); }
/// empty - Check if the array is empty.
bool empty() const { return Length == 0; }
const T *data() const { return Data; }
/// size - Get the array size.
size_t size() const { return Length; }
/// front - Get the first element.
const T &front() const {
assert(!empty());
return Data[0];
}
/// back - Get the last element.
const T &back() const {
assert(!empty());
return Data[Length - 1];
}
// copy - Allocate copy in Allocator and return ArrayRef<T> to it.
template <typename Allocator>
ArrayRef<T> copy(Allocator &A) {
T *Buff = A.template Allocate<T>(Length);
std::uninitialized_copy(begin(), end(), Buff);
return ArrayRef<T>(Buff, Length);
}
/// equals - Check for element-wise equality.
bool equals(ArrayRef RHS) const {
if (Length != RHS.Length) return false;
return std::equal(begin(), end(), RHS.begin());
}
/// slice(n, m) - Chop off the first N elements of the array, and keep M
/// elements in the array.
ArrayRef<T> slice(size_t N, size_t M) const {
assert(N + M <= size() && "Invalid specifier");
return ArrayRef<T>(data() + N, M);
}
/// slice(n) - Chop off the first N elements of the array.
ArrayRef<T> slice(size_t N) const { return slice(N, size() - N); }
/// Drop the first \p N elements of the array.
ArrayRef<T> drop_front(size_t N = 1) const {
assert(size() >= N && "Dropping more elements than exist");
return slice(N, size() - N);
}
/// Drop the last \p N elements of the array.
ArrayRef<T> drop_back(size_t N = 1) const {
assert(size() >= N && "Dropping more elements than exist");
return slice(0, size() - N);
}
/// Return a copy of *this with only the first \p N elements.
ArrayRef<T> take_front(size_t N = 1) const {
if (N >= size()) return *this;
return drop_back(size() - N);
}
/// Return a copy of *this with only the last \p N elements.
ArrayRef<T> take_back(size_t N = 1) const {
if (N >= size()) return *this;
return drop_front(size() - N);
}
/// @}
/// @name Operator Overloads
/// @{
const T &operator[](size_t Index) const {
assert(Index < Length && "Invalid index!");
return Data[Index];
}
/// Disallow accidental assignment from a temporary.
///
/// The declaration here is extra complicated so that "arrayRef = {}"
/// continues to select the move assignment operator.
template <typename U>
std::enable_if_t<std::is_same<U, T>::value, ArrayRef<T>> &operator=(
U &&Temporary) = delete;
/// Disallow accidental assignment from a temporary.
///
/// The declaration here is extra complicated so that "arrayRef = {}"
/// continues to select the move assignment operator.
template <typename U>
std::enable_if_t<std::is_same<U, T>::value, ArrayRef<T>> &operator=(
std::initializer_list<U>) = delete;
/// @}
/// @name Expensive Operations
/// @{
std::vector<T> vec() const { return std::vector<T>(Data, Data + Length); }
/// @}
/// @name Conversion operators
/// @{
operator std::vector<T>() const {
return std::vector<T>(Data, Data + Length);
}
/// @}
};
/// @name ArrayRef Convenience constructors
/// @{
/// Construct an ArrayRef from a single element.
template <typename T>
ArrayRef<T> makeArrayRef(const T &OneElt) {
return OneElt;
}
/// Construct an ArrayRef from a pointer and length.
template <typename T>
ArrayRef<T> makeArrayRef(const T *data, size_t length) {
return ArrayRef<T>(data, length);
}
/// Construct an ArrayRef from a range.
template <typename T>
ArrayRef<T> makeArrayRef(const T *begin, const T *end) {
return ArrayRef<T>(begin, end);
}
/// Construct an ArrayRef from a SmallVector.
template <typename T>
ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) {
return Vec;
}
/// Construct an ArrayRef from a SmallVector.
template <typename T, unsigned N>
ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) {
return Vec;
}
/// Construct an ArrayRef from a std::vector.
template <typename T>
ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) {
return Vec;
}
/// Construct an ArrayRef from a std::array.
template <typename T, std::size_t N>
ArrayRef<T> makeArrayRef(const std::array<T, N> &Arr) {
return Arr;
}
/// Construct an ArrayRef from an ArrayRef (no-op) (const)
template <typename T>
ArrayRef<T> makeArrayRef(const ArrayRef<T> &Vec) {
return Vec;
}
/// Construct an ArrayRef from an ArrayRef (no-op)
template <typename T>
ArrayRef<T> &makeArrayRef(ArrayRef<T> &Vec) {
return Vec;
}
/// Construct an ArrayRef from a C array.
template <typename T, size_t N>
ArrayRef<T> makeArrayRef(const T (&Arr)[N]) {
return ArrayRef<T>(Arr);
}
/// @}
/// @name ArrayRef Comparison Operators
/// @{
template <typename T>
inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) {
return LHS.equals(RHS);
}
template <typename T>
inline bool operator==(SmallVectorImpl<T> &LHS, ArrayRef<T> RHS) {
return ArrayRef<T>(LHS).equals(RHS);
}
template <typename T>
inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) {
return !(LHS == RHS);
}
template <typename T>
inline bool operator!=(SmallVectorImpl<T> &LHS, ArrayRef<T> RHS) {
return !(LHS == RHS);
}
} // end namespace paddle
#endif // PADDLE_UTILS_ARRAY_REF_H_
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册