Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a0e3a175
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2310
Star
20933
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a0e3a175
编写于
8月 31, 2022
作者:
X
xiongkun
提交者:
GitHub
8月 31, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[XPU] transfer concat kernel (#45463)
* transfer concat kernel * test=kunlun * test=kunlun * test=kunlun * test=kunlun
上级
cfd5d40f
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
216 addition
and
235 deletion
+216
-235
paddle/fluid/operators/concat_op_xpu.cc
paddle/fluid/operators/concat_op_xpu.cc
+0
-235
paddle/phi/kernels/xpu/concat_grad_kernel.cc
paddle/phi/kernels/xpu/concat_grad_kernel.cc
+105
-0
paddle/phi/kernels/xpu/concat_kernel.cc
paddle/phi/kernels/xpu/concat_kernel.cc
+111
-0
未找到文件。
paddle/fluid/operators/concat_op_xpu.cc
已删除
100644 → 0
浏览文件 @
cfd5d40f
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/operators/concat_op.h"
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
#include "paddle/phi/core/lod_utils.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
ConcatXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
ins
=
ctx
.
MultiInput
<
framework
::
LoDTensor
>
(
"X"
);
framework
::
LoDTensor
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
PADDLE_ENFORCE_NE
(
ins
[
0
],
nullptr
,
platform
::
errors
::
InvalidArgument
(
"The input should not be null."
));
PADDLE_ENFORCE_NE
(
ctx
.
HasInput
(
"AxisTensor"
),
true
,
platform
::
errors
::
InvalidArgument
(
"XPU donot surpport AxisTensor for now"
));
axis
=
ComputeAxis
(
static_cast
<
int64_t
>
(
axis
),
static_cast
<
int64_t
>
(
ins
[
0
]
->
dims
().
size
()));
PADDLE_ENFORCE_GE
(
axis
,
0
,
platform
::
errors
::
InvalidArgument
(
"concat: axis should be larger than or "
"equal to 0, but received axis is %d."
,
axis
));
PADDLE_ENFORCE_LT
(
axis
,
ins
[
0
]
->
dims
().
size
(),
platform
::
errors
::
InvalidArgument
(
"concat: axis should be less than ins[0]->dims()!"
"But received axis is %d, while ins[0]->dims()"
"size is %d."
,
axis
,
ins
[
0
]
->
dims
().
size
()));
// If axis is 0, the lod of the output is not the same as inputs.
if
(
axis
==
0
&&
ins
[
0
]
->
lod
().
size
()
>
0
)
{
size_t
lod_size_0
=
ins
[
0
]
->
lod
().
size
();
size_t
lod_size
=
lod_size_0
;
for
(
size_t
i
=
1
;
i
<
ins
.
size
();
++
i
)
{
if
(
ins
[
i
]
->
lod
().
size
()
>
0
)
{
PADDLE_ENFORCE_EQ
(
ins
[
i
]
->
lod
().
size
(),
lod_size_0
,
platform
::
errors
::
Unimplemented
(
"The lod level of all input LoDTensors should be same. "
"Maybe different lod level of input LoDTensors can concat,"
"it is not supported currently. The lod level of %dth input "
"is %d and first input is %d."
,
i
,
ins
[
i
]
->
lod
().
size
(),
lod_size_0
));
}
else
{
lod_size
=
0
;
break
;
}
}
if
(
lod_size
)
{
auto
*
out_lod
=
out
->
mutable_lod
();
for
(
size_t
i
=
1
;
i
<
ins
.
size
();
++
i
)
{
auto
in_lod
=
phi
::
ConvertToLengthBasedLoD
(
ins
[
i
]
->
lod
());
phi
::
AppendLoD
(
out_lod
,
in_lod
);
}
}
}
auto
place
=
ctx
.
GetPlace
();
out
->
mutable_data
<
T
>
(
place
);
std
::
vector
<
std
::
vector
<
int
>>
xdims_list
;
std
::
vector
<
const
XPUType
*>
ptrs
;
for
(
unsigned
int
i
=
0
;
i
<
ins
.
size
();
++
i
)
{
if
(
ins
[
i
]
&&
ins
[
i
]
->
numel
()
>
0
)
{
ptrs
.
push_back
(
reinterpret_cast
<
const
XPUType
*>
(
ins
[
i
]
->
data
<
T
>
()));
int
size
=
ins
[
i
]
->
dims
().
size
();
std
::
vector
<
int
>
tmp_dims
(
size
);
for
(
int
j
=
0
;
j
<
size
;
++
j
)
{
tmp_dims
[
j
]
=
ins
[
i
]
->
dims
()[
j
];
}
xdims_list
.
push_back
(
tmp_dims
);
}
}
PADDLE_ENFORCE_GT
(
xdims_list
.
size
(),
0
,
platform
::
errors
::
InvalidArgument
(
"No tensor need concat"
));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
concat
<
XPUType
>
(
dev_ctx
.
x_context
(),
ptrs
,
reinterpret_cast
<
XPUType
*>
(
out
->
data
<
T
>
()),
xdims_list
,
axis
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU concat kernel return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
ConcatGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
out_grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
ins
=
ctx
.
MultiInput
<
framework
::
LoDTensor
>
(
"X"
);
auto
out_var_names
=
ctx
.
OutputNames
(
framework
::
GradVarName
(
"X"
));
auto
outs
=
ctx
.
MultiOutput
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
{
auto
dx
=
outs
;
auto
x
=
ins
;
for
(
size_t
i
=
0
;
i
<
dx
.
size
();
++
i
)
{
if
(
dx
[
i
]
!=
nullptr
)
{
dx
[
i
]
->
set_lod
(
x
[
i
]
->
lod
());
}
}
}
PADDLE_ENFORCE_NE
(
ins
[
0
],
nullptr
,
platform
::
errors
::
InvalidArgument
(
"The input should not be null."
));
auto
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
if
(
ctx
.
HasInput
(
"AxisTensor"
))
{
auto
*
axis_tensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"AxisTensor"
);
axis
=
GetDataFromTensor
<
int
>
(
axis_tensor
)[
0
];
}
axis
=
ComputeAxis
(
static_cast
<
int64_t
>
(
axis
),
static_cast
<
int64_t
>
(
ins
[
0
]
->
dims
().
size
()));
// get output tensor that the name is not kEmptyVarName
std
::
vector
<
XPUType
*>
ptrs
(
outs
.
size
());
for
(
size_t
j
=
0
;
j
<
outs
.
size
();
++
j
)
{
if
(
out_var_names
[
j
]
!=
framework
::
kEmptyVarName
&&
outs
[
j
]
->
numel
()
!=
0UL
)
{
outs
[
j
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
ptrs
[
j
]
=
reinterpret_cast
<
XPUType
*>
(
outs
[
j
]
->
data
<
T
>
());
}
else
{
ptrs
[
j
]
=
nullptr
;
}
}
PADDLE_ENFORCE_GE
(
axis
,
0
,
platform
::
errors
::
InvalidArgument
(
"concat_grad: axis should be larger than or "
"equal to 0, but received axis is %d."
,
axis
));
PADDLE_ENFORCE_LT
(
axis
,
out_grad
->
dims
().
size
(),
platform
::
errors
::
InvalidArgument
(
"concat_grad: axis should be less than ins[0]->dims()!"
"But received axis is %d, while ins[0]->dims()"
"size is %d."
,
axis
,
out_grad
->
dims
().
size
()));
auto
input_dims
=
ins
[
0
]
->
dims
();
std
::
vector
<
int
>
split_list
(
ins
.
size
());
std
::
vector
<
int
>
xdims_list
(
input_dims
.
size
());
int
total_length
=
0
;
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
++
i
)
{
split_list
[
i
]
=
ins
[
i
]
->
dims
()[
axis
];
total_length
+=
ins
[
i
]
->
dims
()[
axis
];
}
for
(
int
i
=
0
;
i
<
input_dims
.
size
();
++
i
)
{
if
(
i
==
axis
)
{
continue
;
}
xdims_list
[
i
]
=
input_dims
[
i
];
}
xdims_list
[
axis
]
=
total_length
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
split
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
out_grad
->
data
<
T
>
()),
ptrs
,
xdims_list
,
split_list
,
axis
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API return wrong value[%d], please check whether "
"Baidu Kunlun Card is properly installed."
,
r
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
concat
,
ops
::
ConcatXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
ConcatXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
concat_grad
,
ops
::
ConcatGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
ConcatGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
#endif
paddle/phi/kernels/xpu/concat_grad_kernel.cc
0 → 100644
浏览文件 @
a0e3a175
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/concat_grad_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/axis_utils.h"
#include "paddle/phi/kernels/funcs/concat_funcs.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ConcatGradKernel
(
const
Context
&
dev_ctx
,
const
std
::
vector
<
const
DenseTensor
*>&
x
,
const
DenseTensor
&
out_grad
,
const
Scalar
&
axis_scalar
,
std
::
vector
<
DenseTensor
*>
x_grad
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
auto
outs
=
x_grad
;
{
auto
dx
=
outs
;
for
(
size_t
i
=
0
;
i
<
dx
.
size
();
++
i
)
{
if
(
dx
[
i
]
!=
nullptr
)
{
dx
[
i
]
->
set_lod
(
x
[
i
]
->
lod
());
}
}
}
PADDLE_ENFORCE_NE
(
x
[
0
],
nullptr
,
phi
::
errors
::
InvalidArgument
(
"The input should not be null."
));
auto
axis
=
axis_scalar
.
to
<
int
>
();
axis
=
phi
::
funcs
::
ComputeAxis
(
static_cast
<
int64_t
>
(
axis
),
static_cast
<
int64_t
>
(
x
[
0
]
->
dims
().
size
()));
// get output tensor that the name is not kEmptyVarName
std
::
vector
<
XPUType
*>
ptrs
(
outs
.
size
());
for
(
size_t
j
=
0
;
j
<
outs
.
size
();
++
j
)
{
if
(
outs
[
j
]
&&
outs
[
j
]
->
numel
()
!=
0UL
)
{
dev_ctx
.
template
Alloc
<
T
>(
outs
[
j
]);
ptrs
[
j
]
=
reinterpret_cast
<
XPUType
*>
(
outs
[
j
]
->
data
<
T
>
());
}
else
{
ptrs
[
j
]
=
nullptr
;
}
}
PADDLE_ENFORCE_GE
(
axis
,
0
,
phi
::
errors
::
InvalidArgument
(
"concat_grad: axis should be larger than or "
"equal to 0, but received axis is %d."
,
axis
));
PADDLE_ENFORCE_LT
(
axis
,
out_grad
.
dims
().
size
(),
phi
::
errors
::
InvalidArgument
(
"concat_grad: axis should be less than x[0]->dims()!"
"But received axis is %d, while x[0]->dims()"
"size is %d."
,
axis
,
out_grad
.
dims
().
size
()));
auto
input_dims
=
x
[
0
]
->
dims
();
std
::
vector
<
int
>
split_list
(
x
.
size
());
std
::
vector
<
int
>
xdims_list
(
input_dims
.
size
());
int
total_length
=
0
;
for
(
size_t
i
=
0
;
i
<
x
.
size
();
++
i
)
{
split_list
[
i
]
=
x
[
i
]
->
dims
()[
axis
];
total_length
+=
x
[
i
]
->
dims
()[
axis
];
}
for
(
int
i
=
0
;
i
<
input_dims
.
size
();
++
i
)
{
if
(
i
==
axis
)
{
continue
;
}
xdims_list
[
i
]
=
input_dims
[
i
];
}
xdims_list
[
axis
]
=
total_length
;
int
r
=
xpu
::
split
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
out_grad
.
data
<
T
>
()),
ptrs
,
xdims_list
,
split_list
,
axis
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"concat_grad"
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
concat_grad
,
XPU
,
ALL_LAYOUT
,
phi
::
ConcatGradKernel
,
float
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/xpu/concat_kernel.cc
0 → 100644
浏览文件 @
a0e3a175
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/concat_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/lod_utils.h"
#include "paddle/phi/kernels/funcs/axis_utils.h"
#include "paddle/phi/kernels/funcs/concat_funcs.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ConcatKernel
(
const
Context
&
dev_ctx
,
const
std
::
vector
<
const
DenseTensor
*>&
x
,
const
Scalar
&
axis_scalar
,
DenseTensor
*
out
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
int64_t
axis
=
axis_scalar
.
to
<
int64_t
>
();
PADDLE_ENFORCE_NE
(
x
[
0
],
nullptr
,
phi
::
errors
::
InvalidArgument
(
"The input should not be null."
));
axis
=
phi
::
funcs
::
ComputeAxis
(
axis
,
x
[
0
]
->
dims
().
size
());
PADDLE_ENFORCE_GE
(
axis
,
0
,
phi
::
errors
::
InvalidArgument
(
"concat: axis should be larger than or "
"equal to 0, but received axis is %d."
,
axis
));
PADDLE_ENFORCE_LT
(
axis
,
x
[
0
]
->
dims
().
size
(),
phi
::
errors
::
InvalidArgument
(
"concat: axis should be less than x[0]->dims()!"
"But received axis is %d, while x[0]->dims()"
"size is %d."
,
axis
,
x
[
0
]
->
dims
().
size
()));
// If axis is 0, the lod of the output is not the same as inputs.
if
(
axis
==
0
&&
x
[
0
]
->
lod
().
size
()
>
0
)
{
size_t
lod_size_0
=
x
[
0
]
->
lod
().
size
();
size_t
lod_size
=
lod_size_0
;
for
(
size_t
i
=
1
;
i
<
x
.
size
();
++
i
)
{
if
(
x
[
i
]
->
lod
().
size
()
>
0
)
{
PADDLE_ENFORCE_EQ
(
x
[
i
]
->
lod
().
size
(),
lod_size_0
,
phi
::
errors
::
Unimplemented
(
"The lod level of all input LoDTensors should be same. "
"Maybe different lod level of input LoDTensors can concat,"
"it is not supported currently. The lod level of %dth input "
"is %d and first input is %d."
,
i
,
x
[
i
]
->
lod
().
size
(),
lod_size_0
));
}
else
{
lod_size
=
0
;
break
;
}
}
if
(
lod_size
)
{
auto
*
out_lod
=
out
->
mutable_lod
();
for
(
size_t
i
=
1
;
i
<
x
.
size
();
++
i
)
{
auto
in_lod
=
phi
::
ConvertToLengthBasedLoD
(
x
[
i
]
->
lod
());
phi
::
AppendLoD
(
out_lod
,
in_lod
);
}
}
}
dev_ctx
.
template
Alloc
<
T
>(
out
);
std
::
vector
<
std
::
vector
<
int
>>
xdims_list
;
std
::
vector
<
const
XPUType
*>
ptrs
;
for
(
unsigned
int
i
=
0
;
i
<
x
.
size
();
++
i
)
{
if
(
x
[
i
]
&&
x
[
i
]
->
numel
()
>
0
)
{
ptrs
.
push_back
(
reinterpret_cast
<
const
XPUType
*>
(
x
[
i
]
->
data
<
T
>
()));
int
size
=
x
[
i
]
->
dims
().
size
();
std
::
vector
<
int
>
tmp_dims
(
size
);
for
(
int
j
=
0
;
j
<
size
;
++
j
)
{
tmp_dims
[
j
]
=
x
[
i
]
->
dims
()[
j
];
}
xdims_list
.
push_back
(
tmp_dims
);
}
}
PADDLE_ENFORCE_GT
(
xdims_list
.
size
(),
0
,
phi
::
errors
::
InvalidArgument
(
"No tensor need concat"
));
int
r
=
xpu
::
concat
<
XPUType
>
(
dev_ctx
.
x_context
(),
ptrs
,
reinterpret_cast
<
XPUType
*>
(
out
->
data
<
T
>
()),
xdims_list
,
axis
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"concat"
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
concat
,
XPU
,
ALL_LAYOUT
,
phi
::
ConcatKernel
,
float
,
phi
::
dtype
::
float16
)
{}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录