Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a0b53376
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a0b53376
编写于
12月 31, 2019
作者:
A
Aurelius84
提交者:
Tao Luo
12月 31, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
increase data shape in topk_avg_pooling unittest (#22010)
上级
86c40e20
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
35 addition
and
9 deletion
+35
-9
python/paddle/fluid/tests/unittests/sequence/test_sequence_topk_avg_pooling.py
...ests/unittests/sequence/test_sequence_topk_avg_pooling.py
+35
-9
未找到文件。
python/paddle/fluid/tests/unittests/sequence/test_sequence_topk_avg_pooling.py
浏览文件 @
a0b53376
...
@@ -32,18 +32,19 @@ class TestSequenceTopkAvgPoolingOp(OpTest):
...
@@ -32,18 +32,19 @@ class TestSequenceTopkAvgPoolingOp(OpTest):
self
.
op_type
=
"sequence_topk_avg_pooling"
self
.
op_type
=
"sequence_topk_avg_pooling"
def
set_data
(
self
):
def
set_data
(
self
):
topks
=
[
2
]
topks
=
[
1
,
3
,
5
]
channel_num
=
3
channel_num
=
3
dim
=
10
dim
=
10
row
=
[
2
,
4
]
row
=
[
30
,
45
]
col
=
[
3
,
2
]
col
=
[
25
,
36
]
self
.
init_data
(
topks
,
channel_num
,
row
,
col
,
dim
)
self
.
init_data
(
topks
,
channel_num
,
row
,
col
,
dim
)
self
.
init_data
(
topks
,
channel_num
,
row
,
col
,
dim
)
def
init_data
(
self
,
topks
,
channel_num
,
row
,
col
,
dim
=
10
):
def
init_data
(
self
,
topks
,
channel_num
,
row
,
col
,
dim
=
10
):
self
.
attrs
=
{
"topks"
:
topks
,
"channel_num"
:
channel_num
}
self
.
attrs
=
{
"topks"
:
topks
,
"channel_num"
:
channel_num
}
feature
=
[
row
[
i
]
*
col
[
i
]
for
i
in
range
(
len
(
row
))]
feature
=
[
row
[
i
]
*
col
[
i
]
for
i
in
range
(
len
(
row
))]
numel
=
sum
(
feature
)
*
channel_num
numel
=
sum
(
feature
)
*
channel_num
x_data
=
np
.
random
.
random
((
numel
,
)
).
astype
(
'float32'
)
x_data
=
np
.
arange
(
numel
).
astype
(
'float32'
)
x_lod
=
[[
x
*
channel_num
for
x
in
feature
]]
x_lod
=
[[
x
*
channel_num
for
x
in
feature
]]
row_data
=
np
.
random
.
random
((
sum
(
row
),
dim
)).
astype
(
'float32'
)
row_data
=
np
.
random
.
random
((
sum
(
row
),
dim
)).
astype
(
'float32'
)
col_data
=
np
.
random
.
random
((
sum
(
col
),
dim
)).
astype
(
'float32'
)
col_data
=
np
.
random
.
random
((
sum
(
col
),
dim
)).
astype
(
'float32'
)
...
@@ -53,6 +54,30 @@ class TestSequenceTopkAvgPoolingOp(OpTest):
...
@@ -53,6 +54,30 @@ class TestSequenceTopkAvgPoolingOp(OpTest):
'COLUMN'
:
(
col_data
,
[
col
])
'COLUMN'
:
(
col_data
,
[
col
])
}
}
def
calc_gradient
(
self
,
pos_data
,
topks
,
channel_num
,
row
,
col
):
max_k
=
topks
[
-
1
]
pos_data
=
pos_data
.
flatten
()
in_numel
=
sum
([
row
[
i
]
*
col
[
i
]
for
i
in
range
(
len
(
row
))])
*
channel_num
out_numel
=
sum
(
row
)
*
len
(
topks
)
*
channel_num
gradient
=
np
.
zeros
(
shape
=
(
in_numel
),
dtype
=
"float32"
)
dout_val
=
1.
/
out_numel
pos_offset
,
in_offset
=
0
,
0
for
bs_idx
in
range
(
len
(
row
)):
# batch
row_size
=
row
[
bs_idx
]
col_size
=
col
[
bs_idx
]
for
ch
in
range
(
channel_num
):
# channel
for
row_idx
in
range
(
row_size
):
# row
in_idx
=
in_offset
+
row_idx
*
col_size
pos_idx
=
pos_offset
+
row_idx
*
max_k
for
k_idx
in
range
(
len
(
topks
)):
for
k
in
range
(
topks
[
k_idx
]):
if
pos_data
[
pos_idx
+
k
]
!=
-
1
:
gradient
[
in_idx
+
pos_data
[
pos_idx
+
k
]]
+=
dout_val
/
topks
[
k_idx
]
in_offset
+=
row_size
*
col_size
pos_offset
+=
row_size
*
max_k
return
gradient
def
compute
(
self
):
def
compute
(
self
):
topks
=
self
.
attrs
[
'topks'
]
topks
=
self
.
attrs
[
'topks'
]
max_k
=
topks
[
-
1
]
max_k
=
topks
[
-
1
]
...
@@ -70,7 +95,6 @@ class TestSequenceTopkAvgPoolingOp(OpTest):
...
@@ -70,7 +95,6 @@ class TestSequenceTopkAvgPoolingOp(OpTest):
self
.
assertTrue
(
self
.
assertTrue
(
x_len
==
channel_num
*
row_lod
[
0
][
idx
]
*
col_lod
[
0
][
idx
],
x_len
==
channel_num
*
row_lod
[
0
][
idx
]
*
col_lod
[
0
][
idx
],
"x_len: %s can't mod channel_num: %s"
%
(
x_len
,
channel_num
))
"x_len: %s can't mod channel_num: %s"
%
(
x_len
,
channel_num
))
# feature = x_len / channel_num
out_tmp
=
np
.
zeros
((
0
,
),
dtype
=
x_data
.
dtype
)
out_tmp
=
np
.
zeros
((
0
,
),
dtype
=
x_data
.
dtype
)
pos_tmp
=
np
.
zeros
((
0
,
),
dtype
=
'int32'
)
pos_tmp
=
np
.
zeros
((
0
,
),
dtype
=
'int32'
)
for
ch
in
range
(
channel_num
):
for
ch
in
range
(
channel_num
):
...
@@ -94,6 +118,8 @@ class TestSequenceTopkAvgPoolingOp(OpTest):
...
@@ -94,6 +118,8 @@ class TestSequenceTopkAvgPoolingOp(OpTest):
pos
=
np
.
hstack
((
pos
,
pos_tmp
.
flatten
()))
pos
=
np
.
hstack
((
pos
,
pos_tmp
.
flatten
()))
self
.
outputs
=
{
'Out'
:
(
out
.
astype
(
'float32'
),
out_lod
),
'pos'
:
pos
}
self
.
outputs
=
{
'Out'
:
(
out
.
astype
(
'float32'
),
out_lod
),
'pos'
:
pos
}
self
.
gradient
=
self
.
calc_gradient
(
pos
,
topks
,
channel_num
,
row_lod
[
0
],
col_lod
[
0
])
def
get_topk
(
self
,
x
,
topk
):
def
get_topk
(
self
,
x
,
topk
):
real_topk
=
topk
if
topk
<
len
(
x
)
else
len
(
x
)
real_topk
=
topk
if
topk
<
len
(
x
)
else
len
(
x
)
...
@@ -118,16 +144,16 @@ class TestSequenceTopkAvgPoolingOp(OpTest):
...
@@ -118,16 +144,16 @@ class TestSequenceTopkAvgPoolingOp(OpTest):
self
.
check_output
()
self
.
check_output
()
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
self
.
check_grad
([
'X'
],
'Out'
,
user_defined_grads
=
[
self
.
gradient
]
)
class
TestSequenceTopkAvgPoolingOpCase1
(
TestSequenceTopkAvgPoolingOp
):
class
TestSequenceTopkAvgPoolingOpCase1
(
TestSequenceTopkAvgPoolingOp
):
def
set_data
(
self
):
def
set_data
(
self
):
topks
=
[
2
,
3
]
topks
=
[
2
,
3
]
channel_num
=
3
channel_num
=
5
dim
=
10
dim
=
10
row
=
[
3
]
row
=
[
3
6
]
col
=
[
4
]
col
=
[
4
8
]
self
.
init_data
(
topks
,
channel_num
,
row
,
col
,
dim
)
self
.
init_data
(
topks
,
channel_num
,
row
,
col
,
dim
)
def
test_api
(
self
):
def
test_api
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录