未验证 提交 a096c58e 编写于 作者: H hedaoyuan 提交者: GitHub

Merge pull request #7034 from hedaoyuan/convolution

GemmConvMobileFunction(optimized for mobile)
......@@ -126,14 +126,165 @@ public:
inputData += inputChannels * inputHeight * inputWidth;
outputData += outputChannels * outputHeight * outputWidth;
}
}
};
#ifdef PADDLE_MOBILE_INFERENCE
if (Device == DEVICE_TYPE_CPU) {
memory_.reset();
/*
* \brief Forward calculation of convolution, optimized for mobile.
*/
template <DeviceType Device>
class GemmConvMobileFunction : public ConvFunctionBase {
public:
void init(const FuncConfig& config) override {
ConvFunctionBase::init(config);
}
void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
const TensorShape& input = inputs[0].shape();
const TensorShape& filter = inputs[1].shape();
const TensorShape& output = outputs[0].shape();
checkShape(input, filter, output);
}
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
CHECK_EQ(numInputs_, inputs.size());
CHECK_EQ(numOutputs_, outputs.size());
check(inputs, outputs);
// TODO(hedaoyuan): Need to define some index macros,
// to avoid useing 0 and 1.
const TensorShape& input = inputs[0].shape();
const TensorShape& filter = inputs[1].shape();
const TensorShape& output = outputs[0].shape();
real beta;
if (outputs[0].getArgType() == ADD_TO) {
beta = 1.0;
} else {
beta = 0.0;
}
#endif
size_t batchSize = input[0];
size_t inputChannels = input[1];
size_t inputHeight = input[2];
size_t inputWidth = input[3];
size_t filterHeight = getFilterHeight(filter);
size_t filterWidth = getFilterWidth(filter);
size_t outputChannels = output[1];
size_t outputHeight = output[2];
size_t outputWidth = output[3];
real* inputData = inputs[0].data<real>();
real* filterData = inputs[1].data<real>();
real* outputData = outputs[0].data<real>();
bool needIm2col = isNeedIm2col(filter);
TensorShape imShape =
TensorShape({inputChannels / groups_, inputHeight, inputWidth});
TensorShape colShape;
real* colData = NULL;
size_t colHeight = inputChannels / groups_ * filterHeight * filterWidth;
size_t colWidth = outputHeight * outputWidth;
// Max col matrix height 256, Max col matrix width 1024
size_t stepColHeight = std::min(colHeight, static_cast<size_t>(256));
size_t stepColWidth = std::min(colWidth, static_cast<size_t>(2048));
if (needIm2col) {
colShape = TensorShape({inputChannels / groups_,
filterHeight,
filterWidth,
outputHeight,
outputWidth});
resizeBuffer<Device>(stepColHeight * stepColWidth * sizeof(real));
colData = reinterpret_cast<real*>(memory_->getBuf());
}
Im2ColMobileFunctor<real> im2col;
size_t inputOffset = imShape.getElements();
size_t outputOffset =
(outputChannels / groups_) * outputHeight * outputWidth;
size_t filterOffset = filter.getElements() / groups_;
int nStride = colWidth;
int kStride = colHeight;
for (size_t i = 0; i < batchSize; i++) {
for (size_t g = 0; g < groups_; g++) {
if (needIm2col) {
real beta_ = beta;
for (size_t colHeightStart = 0; colHeightStart < colHeight;
colHeightStart += stepColHeight) {
for (size_t colWidthStart = 0; colWidthStart < colWidth;
colWidthStart += stepColWidth) {
int N = std::min(colWidth - colWidthStart, stepColWidth);
int K = std::min(colHeight - colHeightStart, stepColHeight);
// im2col
im2col(inputData + g * inputOffset,
imShape,
colData,
colShape,
strideH(),
strideW(),
paddingH(),
paddingW(),
dilationH(),
dilationW(),
colHeightStart,
K,
colWidthStart,
N);
// gemm
int M = outputChannels / groups_;
BlasGemm<Device, real>::compute(
false,
false,
M,
N,
K,
1.0f,
filterData + g * filterOffset + colHeightStart,
kStride,
colData,
N,
beta_,
outputData + g * outputOffset + colWidthStart,
nStride);
}
beta_ = 1.0;
}
} else {
int M = outputChannels / groups_;
int N = outputHeight * outputWidth;
int K = inputChannels / groups_ * filterHeight * filterWidth;
BlasGemm<Device, real>::compute(false,
false,
M,
N,
K,
1.0f,
filterData + g * filterOffset,
K,
inputData + g * inputOffset,
N,
beta,
outputData + g * outputOffset,
N);
}
}
inputData += inputChannels * inputHeight * inputWidth;
outputData += outputChannels * outputHeight * outputWidth;
}
memory_.reset();
}
};
#endif
/*
* \brief Backward input calculation of convolution.
*/
......@@ -348,7 +499,11 @@ public:
}
};
#ifdef PADDLE_MOBILE_INFERENCE
REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvMobileFunction);
#else
REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvFunction);
#endif
REGISTER_TYPED_FUNC(GemmConvGradInput, CPU, GemmConvGradInputFunction);
REGISTER_TYPED_FUNC(GemmConvGradFilter, CPU, GemmConvGradFilterFunction);
#ifdef PADDLE_WITH_CUDA
......
......@@ -98,4 +98,54 @@ public:
int dilationWidth = 1);
};
template <class T>
class Im2ColMobileFunctor {
public:
void operator()(const T* imData,
const TensorShape& imShape,
T* colData,
const TensorShape& colShape,
int strideHeight,
int strideWidth,
int paddingHeight,
int paddingWidth,
int dilationHeight,
int dilationWidth,
int colHeightStart,
int colHeightSize,
int colWidthStart,
int colWidthSize) {
int inputHeight = imShape[1];
int inputWidth = imShape[2];
int filterHeight = colShape[1];
int filterWidth = colShape[2];
int outputWidth = colShape[4];
for (int colh = 0; colh < colHeightSize; colh++) {
int wOffset = (colHeightStart + colh) % filterWidth;
int hOffset = ((colHeightStart + colh) / filterWidth) % filterHeight;
int c_im = (colHeightStart + colh) / filterWidth / filterHeight;
for (int colw = 0; colw < colWidthSize; colw++) {
int h = (colWidthStart + colw) / outputWidth;
int w = (colWidthStart + colw) % outputWidth;
int imRowIdx = h * strideHeight + hOffset * dilationHeight;
int imColIdx = w * strideWidth + wOffset * dilationWidth;
if ((imRowIdx - paddingHeight) < 0 ||
(imRowIdx - paddingHeight) >= inputHeight ||
(imColIdx - paddingWidth) < 0 ||
(imColIdx - paddingWidth) >= inputWidth) {
colData[colh * colWidthSize + colw] = static_cast<T>(0);
} else {
imRowIdx += c_im * inputHeight - paddingHeight;
imColIdx -= paddingWidth;
colData[colh * colWidthSize + colw] =
imData[imRowIdx * inputWidth + imColIdx];
}
}
}
}
};
} // namespace paddle
......@@ -138,4 +138,86 @@ TEST(Im2ColFunctor, GPU) { TestIm2ColFunctor<DEVICE_TYPE_GPU, float>(); }
#endif
template <class T>
void TestIm2ColMobileFunctor() {
for (size_t channels : {32}) {
for (size_t inputHeight : {33, 100}) {
for (size_t inputWidth : {32, 96}) {
for (size_t filterHeight : {5}) {
for (size_t filterWidth : {7}) {
for (size_t stride : {2}) {
for (size_t padding : {1}) {
for (size_t dilation : {1, 3}) {
size_t filterSizeH = (filterHeight - 1) * dilation + 1;
size_t filterSizeW = (filterWidth - 1) * dilation + 1;
if (inputHeight + 2 * padding < filterSizeH ||
inputWidth + 2 * padding < filterSizeW)
break;
if (padding >= filterSizeH || padding >= filterSizeW) break;
size_t outputHeight =
(inputHeight - filterSizeH + 2 * padding) / stride + 1;
size_t outputWidth =
(inputWidth - filterSizeW + 2 * padding) / stride + 1;
TensorShape imShape =
TensorShape({channels, inputHeight, inputWidth});
TensorShape colShape1 = TensorShape({channels,
filterHeight,
filterWidth,
outputHeight,
outputWidth});
size_t height = channels * filterHeight * filterWidth;
size_t width = outputHeight * outputWidth;
VectorPtr input1 =
Vector::create(imShape.getElements(), false);
VectorPtr input2 =
Vector::create(imShape.getElements(), false);
MatrixPtr output1 =
Matrix::create(height, width, false, false);
MatrixPtr output2 =
Matrix::create(height, width, false, false);
input1->uniform(0.001, 1);
input2->copyFrom(*input1);
Im2ColFunctor<kCFO, DEVICE_TYPE_CPU, T> im2Col1;
Im2ColMobileFunctor<T> im2Col2;
im2Col1(input1->getData(),
imShape,
output1->getData(),
colShape1,
stride,
stride,
padding,
padding,
dilation,
dilation);
im2Col2(input2->getData(),
imShape,
output2->getData(),
colShape1,
stride,
stride,
padding,
padding,
dilation,
dilation,
0,
height,
0,
width);
autotest::TensorCheckEqual(*output1, *output2);
}
}
}
}
}
}
}
}
}
TEST(Im2ColFunctor, Mobile) { TestIm2ColMobileFunctor<float>(); }
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册