Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a02ce58f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a02ce58f
编写于
11月 28, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into revert_vlog
test=develop
上级
30e47bce
12e1719f
变更
62
隐藏空白更改
内联
并排
Showing
62 changed file
with
2647 addition
and
563 deletion
+2647
-563
CMakeLists.txt
CMakeLists.txt
+1
-0
cmake/external/gzstream.cmake
cmake/external/gzstream.cmake
+47
-0
cmake/inference_lib.cmake
cmake/inference_lib.cmake
+1
-2
paddle/fluid/API.spec
paddle/fluid/API.spec
+2
-2
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+2
-1
paddle/fluid/framework/details/all_reduce_deps_pass.cc
paddle/fluid/framework/details/all_reduce_deps_pass.cc
+125
-0
paddle/fluid/framework/details/all_reduce_deps_pass.h
paddle/fluid/framework/details/all_reduce_deps_pass.h
+33
-0
paddle/fluid/framework/details/build_strategy.cc
paddle/fluid/framework/details/build_strategy.cc
+21
-0
paddle/fluid/framework/details/build_strategy.h
paddle/fluid/framework/details/build_strategy.h
+1
-0
paddle/fluid/framework/operator.h
paddle/fluid/framework/operator.h
+1
-1
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+5
-5
paddle/fluid/framework/selected_rows.h
paddle/fluid/framework/selected_rows.h
+18
-3
paddle/fluid/framework/transfer_scope_cache.cc
paddle/fluid/framework/transfer_scope_cache.cc
+24
-14
paddle/fluid/inference/analysis/CMakeLists.txt
paddle/fluid/inference/analysis/CMakeLists.txt
+2
-1
paddle/fluid/inference/analysis/analyzer_tester.cc
paddle/fluid/inference/analysis/analyzer_tester.cc
+2
-1
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+1
-0
paddle/fluid/inference/api/analysis_predictor.h
paddle/fluid/inference/api/analysis_predictor.h
+1
-1
paddle/fluid/inference/api/api_impl.cc
paddle/fluid/inference/api/api_impl.cc
+6
-1
paddle/fluid/inference/api/api_impl.h
paddle/fluid/inference/api/api_impl.h
+3
-0
paddle/fluid/memory/allocation/best_fit_allocator_test.cc
paddle/fluid/memory/allocation/best_fit_allocator_test.cc
+4
-4
paddle/fluid/memory/allocation/best_fit_allocator_test.cu
paddle/fluid/memory/allocation/best_fit_allocator_test.cu
+4
-4
paddle/fluid/memory/detail/system_allocator.cc
paddle/fluid/memory/detail/system_allocator.cc
+4
-0
paddle/fluid/operators/activation_op.cc
paddle/fluid/operators/activation_op.cc
+10
-0
paddle/fluid/operators/activation_op.h
paddle/fluid/operators/activation_op.h
+31
-0
paddle/fluid/operators/bilinear_tensor_product_op.h
paddle/fluid/operators/bilinear_tensor_product_op.h
+30
-31
paddle/fluid/operators/dropout_op.cc
paddle/fluid/operators/dropout_op.cc
+1
-0
paddle/fluid/operators/dropout_op_test.cc
paddle/fluid/operators/dropout_op_test.cc
+2
-0
paddle/fluid/operators/elementwise/elementwise_mul_mkldnn_op.cc
.../fluid/operators/elementwise/elementwise_mul_mkldnn_op.cc
+8
-23
paddle/fluid/operators/hierarchical_sigmoid_op.cc
paddle/fluid/operators/hierarchical_sigmoid_op.cc
+89
-21
paddle/fluid/operators/hierarchical_sigmoid_op.h
paddle/fluid/operators/hierarchical_sigmoid_op.h
+122
-39
paddle/fluid/operators/interpolate_op.cc
paddle/fluid/operators/interpolate_op.cc
+18
-9
paddle/fluid/operators/interpolate_op.cu
paddle/fluid/operators/interpolate_op.cu
+8
-2
paddle/fluid/operators/math/matrix_bit_code.cc
paddle/fluid/operators/math/matrix_bit_code.cc
+65
-30
paddle/fluid/operators/math/matrix_bit_code.h
paddle/fluid/operators/math/matrix_bit_code.h
+119
-12
paddle/fluid/operators/math/sampler.cc
paddle/fluid/operators/math/sampler.cc
+9
-54
paddle/fluid/operators/math/sampler.h
paddle/fluid/operators/math/sampler.h
+9
-4
paddle/fluid/operators/math/sequence_pooling.cu
paddle/fluid/operators/math/sequence_pooling.cu
+1
-2
paddle/fluid/operators/nce_op.cc
paddle/fluid/operators/nce_op.cc
+58
-10
paddle/fluid/operators/nce_op.h
paddle/fluid/operators/nce_op.h
+139
-43
paddle/fluid/operators/reader/CMakeLists.txt
paddle/fluid/operators/reader/CMakeLists.txt
+6
-0
paddle/fluid/operators/reader/create_ctr_reader_op.cc
paddle/fluid/operators/reader/create_ctr_reader_op.cc
+79
-0
paddle/fluid/operators/reader/ctr_reader.cc
paddle/fluid/operators/reader/ctr_reader.cc
+238
-0
paddle/fluid/operators/reader/ctr_reader.h
paddle/fluid/operators/reader/ctr_reader.h
+133
-0
paddle/fluid/operators/reader/ctr_reader_test.cc
paddle/fluid/operators/reader/ctr_reader_test.cc
+155
-0
paddle/fluid/platform/float16.h
paddle/fluid/platform/float16.h
+5
-0
paddle/fluid/platform/gpu_info.cc
paddle/fluid/platform/gpu_info.cc
+2
-2
paddle/fluid/platform/mkldnn_helper.h
paddle/fluid/platform/mkldnn_helper.h
+17
-0
paddle/fluid/pybind/protobuf.cc
paddle/fluid/pybind/protobuf.cc
+9
-1
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+6
-0
paddle/legacy/cuda/src/hl_cuda_device.cc
paddle/legacy/cuda/src/hl_cuda_device.cc
+1
-1
paddle/scripts/paddle_build.sh
paddle/scripts/paddle_build.sh
+15
-12
python/paddle/fluid/contrib/reader/ctr_reader.py
python/paddle/fluid/contrib/reader/ctr_reader.py
+123
-0
python/paddle/fluid/io.py
python/paddle/fluid/io.py
+8
-3
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+201
-54
python/paddle/fluid/parallel_executor.py
python/paddle/fluid/parallel_executor.py
+2
-7
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+5
-3
python/paddle/fluid/tests/unittests/test_activation_op.py
python/paddle/fluid/tests/unittests/test_activation_op.py
+19
-1
python/paddle/fluid/tests/unittests/test_bilinear_interp_op.py
...n/paddle/fluid/tests/unittests/test_bilinear_interp_op.py
+17
-148
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
+251
-5
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+19
-0
python/paddle/fluid/tests/unittests/test_nce.py
python/paddle/fluid/tests/unittests/test_nce.py
+112
-6
python/paddle/fluid/tests/unittests/test_nearest_interp_op.py
...on/paddle/fluid/tests/unittests/test_nearest_interp_op.py
+197
-0
未找到文件。
CMakeLists.txt
浏览文件 @
a02ce58f
...
...
@@ -214,6 +214,7 @@ if (NOT WIN32)
# there is no official support of warpctc, nccl, cupti in windows
include
(
external/warpctc
)
# download, build, install warpctc
include
(
cupti
)
include
(
external/gzstream
)
endif
(
NOT WIN32
)
if
(
WITH_DISTRIBUTE
)
...
...
cmake/external/gzstream.cmake
0 → 100644
浏览文件 @
a02ce58f
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
IF
(
MOBILE_INFERENCE
)
return
()
ENDIF
()
include
(
ExternalProject
)
# NOTE: gzstream is needed when linking with ctr reader.
SET
(
GZSTREAM_SOURCES_DIR
${
THIRD_PARTY_PATH
}
/gzstream
)
SET
(
GZSTREAM_INSTALL_DIR
${
THIRD_PARTY_PATH
}
/install/gzstream
)
SET
(
GZSTREAM_INCLUDE_DIR
"
${
GZSTREAM_INSTALL_DIR
}
/include/"
CACHE PATH
"gzstream include directory."
FORCE
)
ExternalProject_Add
(
extern_gzstream
GIT_REPOSITORY
"https://github.com/jacquesqiao/gzstream.git"
GIT_TAG
""
PREFIX
${
GZSTREAM_SOURCES_DIR
}
UPDATE_COMMAND
""
CONFIGURE_COMMAND
""
BUILD_IN_SOURCE 1
BUILD_COMMAND make -j8
INSTALL_COMMAND mkdir -p
${
GZSTREAM_INSTALL_DIR
}
/lib/ && mkdir -p
${
GZSTREAM_INSTALL_DIR
}
/include/
&& cp
${
GZSTREAM_SOURCES_DIR
}
/src/extern_gzstream/libgzstream.a
${
GZSTREAM_INSTALL_DIR
}
/lib
&& cp -r
${
GZSTREAM_SOURCES_DIR
}
/src/extern_gzstream/gzstream.h
${
GZSTREAM_INSTALL_DIR
}
/include
)
ADD_LIBRARY
(
gzstream STATIC IMPORTED GLOBAL
)
SET_PROPERTY
(
TARGET gzstream PROPERTY IMPORTED_LOCATION
"
${
GZSTREAM_INSTALL_DIR
}
/lib/libgzstream.a"
)
include_directories
(
${
GZSTREAM_INCLUDE_DIR
}
)
ADD_DEPENDENCIES
(
gzstream extern_gzstream zlib
)
cmake/inference_lib.cmake
浏览文件 @
a02ce58f
...
...
@@ -186,8 +186,7 @@ set(module "inference")
copy
(
inference_lib DEPS
${
inference_deps
}
SRCS
${
src_dir
}
/
${
module
}
/*.h
${
PADDLE_BINARY_DIR
}
/paddle/fluid/inference/libpaddle_fluid.*
${
src_dir
}
/
${
module
}
/api/paddle_*.h
${
PADDLE_BINARY_DIR
}
/paddle/fluid/inference/api/paddle_inference_pass.h
DSTS
${
dst_dir
}
/
${
module
}
${
dst_dir
}
/
${
module
}
${
dst_dir
}
/
${
module
}
${
dst_dir
}
/
${
module
}
DSTS
${
dst_dir
}
/
${
module
}
${
dst_dir
}
/
${
module
}
${
dst_dir
}
/
${
module
}
)
set
(
module
"platform"
)
...
...
paddle/fluid/API.spec
浏览文件 @
a02ce58f
...
...
@@ -97,8 +97,8 @@ paddle.fluid.layers.warpctc ArgSpec(args=['input', 'label', 'blank', 'norm_by_ti
paddle.fluid.layers.sequence_reshape ArgSpec(args=['input', 'new_dim'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.transpose ArgSpec(args=['x', 'perm', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.im2sequence ArgSpec(args=['input', 'filter_size', 'stride', 'padding', 'input_image_size', 'out_stride', 'name'], varargs=None, keywords=None, defaults=(1, 1, 0, None, 1, None))
paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'name', 'sampler', 'custom_dist', 'seed'
], varargs=None, keywords=None, defaults=(None, None, None, None, None, 'uniform', None, 0
))
paddle.fluid.layers.hsigmoid ArgSpec(args=['input', 'label', 'num_classes', 'param_attr', 'bias_attr', 'name'
], varargs=None, keywords=None, defaults=(None, None, Non
e))
paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'name', 'sampler', 'custom_dist', 'seed'
, 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, 'uniform', None, 0, False
))
paddle.fluid.layers.hsigmoid ArgSpec(args=['input', 'label', 'num_classes', 'param_attr', 'bias_attr', 'name'
, 'path_table', 'path_code', 'is_custom', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, False, Fals
e))
paddle.fluid.layers.beam_search ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 'scores', 'beam_size', 'end_id', 'level', 'name'], varargs=None, keywords=None, defaults=(0, None))
paddle.fluid.layers.row_conv ArgSpec(args=['input', 'future_context_size', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.multiplex ArgSpec(args=['inputs', 'index'], varargs=None, keywords=None, defaults=None)
...
...
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
a02ce58f
...
...
@@ -39,11 +39,12 @@ if (WITH_GPU)
endif
()
cc_library
(
sequential_execution_pass SRCS sequential_execution_pass.cc DEPS graph graph_helper pass
)
cc_library
(
all_reduce_deps_pass SRCS all_reduce_deps_pass.cc DEPS graph graph_helper pass
)
cc_library
(
multi_devices_graph_pass SRCS multi_devices_graph_pass.cc DEPS multi_devices_helper computation_op_handle
scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle fused_broadcast_op_handle
)
set
(
SSA_GRAPH_EXECUTOR_DEPS graph framework_proto sequential_execution_pass modify_op_lock_and_record_event_pass
)
set
(
SSA_GRAPH_EXECUTOR_DEPS graph framework_proto sequential_execution_pass modify_op_lock_and_record_event_pass
all_reduce_deps_pass
)
if
(
WITH_GPU
)
list
(
APPEND SSA_GRAPH_EXECUTOR_DEPS reference_count_pass
)
endif
()
...
...
paddle/fluid/framework/details/all_reduce_deps_pass.cc
0 → 100644
浏览文件 @
a02ce58f
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/details/all_reduce_deps_pass.h"
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/op_graph_view.h"
#include "paddle/fluid/framework/details/var_handle.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/op_proto_maker.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
static
constexpr
char
kAllOpDescs
[]
=
"all_op_descs"
;
VarHandle
*
GetValidInput
(
const
OpHandleBase
*
a
)
{
for
(
auto
p
:
a
->
Inputs
())
{
VarHandle
*
b
=
dynamic_cast
<
VarHandle
*>
(
p
);
if
(
b
)
{
return
b
;
}
}
return
nullptr
;
}
std
::
unique_ptr
<
ir
::
Graph
>
AllReduceDepsPass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
auto
graph_ops
=
ir
::
FilterByNodeWrapper
<
OpHandleBase
>
(
*
graph
);
// get vars order
int
order
=
0
;
std
::
unordered_map
<
std
::
string
,
int
>
vars
;
// TODO(gongwb): use graph topology sort to find the order of operators.
// Note that must assert topology sort is stable
auto
&
ops
=
Get
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
);
for
(
auto
*
op_desc
:
ops
)
{
auto
outputs
=
op_desc
->
Outputs
();
for
(
auto
&
o_it
:
outputs
)
{
for
(
auto
&
v
:
o_it
.
second
)
{
// values
vars
[
v
]
=
order
;
}
}
order
++
;
}
std
::
vector
<
OpHandleBase
*>
dist_ops
;
// get allreduce ops.
for
(
auto
&
op
:
graph_ops
)
{
// FIXME(gongwb):add broad cast.
if
(
op
->
Name
()
==
"all_reduce"
||
op
->
Name
()
==
"reduce"
)
{
dist_ops
.
push_back
(
op
);
}
}
VLOG
(
10
)
<<
"dist_ops size:"
<<
dist_ops
.
size
()
<<
std
::
endl
;
std
::
sort
(
dist_ops
.
begin
(),
dist_ops
.
end
(),
[
&
](
OpHandleBase
*
op1
,
OpHandleBase
*
op2
)
{
VarHandle
*
i0
=
dynamic_cast
<
VarHandle
*>
(
GetValidInput
(
op1
));
VarHandle
*
i1
=
dynamic_cast
<
VarHandle
*>
(
GetValidInput
(
op2
));
PADDLE_ENFORCE
(
i0
!=
nullptr
&&
i1
!=
nullptr
,
"%s convert to %s error"
,
op1
->
DebugString
(),
op2
->
DebugString
());
auto
l_it
=
vars
.
find
(
i0
->
name_
);
auto
r_it
=
vars
.
find
(
i1
->
name_
);
if
(
l_it
->
second
<
r_it
->
second
)
return
true
;
if
(
l_it
->
second
==
r_it
->
second
)
{
return
i0
->
name_
<
i1
->
name_
;
}
return
false
;
});
// add dependency.
auto
&
sorted_ops
=
dist_ops
;
for
(
size_t
i
=
1
;
i
<
sorted_ops
.
size
();
++
i
)
{
auto
*
dep_var
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
auto
*
pre_op
=
sorted_ops
[
i
-
1
];
auto
*
op
=
sorted_ops
[
i
];
pre_op
->
AddOutput
(
dep_var
);
op
->
AddInput
(
dep_var
);
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dep_var
);
VLOG
(
10
)
<<
"add all_reduce sequential dependencies between "
<<
pre_op
<<
" and "
<<
op
;
VLOG
(
10
)
<<
"pre_op:"
<<
pre_op
->
DebugString
()
<<
", op:"
<<
op
->
DebugString
();
}
return
graph
;
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
all_reduce_deps_pass
,
paddle
::
framework
::
details
::
AllReduceDepsPass
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kAllOpDescs
);
paddle/fluid/framework/details/all_reduce_deps_pass.h
0 → 100644
浏览文件 @
a02ce58f
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
// TODO(gongwb): overlap allreduce with backward computation.
class
AllReduceDepsPass
:
public
ir
::
Pass
{
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
override
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/build_strategy.cc
浏览文件 @
a02ce58f
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include "paddle/fluid/framework/details/multi_devices_graph_check_pass.h"
#include "paddle/fluid/framework/details/multi_devices_graph_print_pass.h"
#include "paddle/fluid/framework/details/reduce_op_handle.h"
#include "paddle/fluid/framework/details/sequential_execution_pass.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
...
...
@@ -24,6 +25,10 @@ namespace paddle {
namespace
framework
{
namespace
details
{
static
inline
bool
SeqOnlyAllReduceOps
(
const
BuildStrategy
&
strategy
)
{
return
(
!
strategy
.
enable_sequential_execution_
&&
strategy
.
num_trainers_
>
1
);
}
class
ParallelExecutorPassBuilder
:
public
ir
::
PassBuilder
{
public:
explicit
ParallelExecutorPassBuilder
(
const
BuildStrategy
&
strategy
)
...
...
@@ -70,6 +75,10 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
// Verify that the graph is correct for multi-device executor.
AppendPass
(
"multi_devices_check_pass"
);
if
(
SeqOnlyAllReduceOps
(
strategy
))
{
AppendPass
(
"all_reduce_deps_pass"
);
}
if
(
strategy_
.
remove_unnecessary_lock_
)
{
AppendPass
(
"modify_op_lock_and_record_event_pass"
);
}
...
...
@@ -124,6 +133,17 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
pass
->
SetNotOwned
<
platform
::
NCCLContextMap
>
(
"nccl_ctxs"
,
nctx
);
#endif
}
else
if
(
pass
->
Type
()
==
"sequential_execution_pass"
)
{
VLOG
(
1
)
<<
"set enable_sequential_execution:"
<<
enable_sequential_execution_
;
pass
->
Erase
(
kAllOpDescs
);
pass
->
Set
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
,
new
std
::
vector
<
OpDesc
*>
(
main_program
.
Block
(
0
).
AllOps
()));
}
else
if
(
pass
->
Type
()
==
"all_reduce_deps_pass"
)
{
VLOG
(
1
)
<<
"SeqOnlyAllReduceOps:"
<<
SeqOnlyAllReduceOps
(
*
this
)
<<
", num_trainers:"
<<
num_trainers_
;
pass
->
Erase
(
kAllOpDescs
);
pass
->
Set
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
,
...
...
@@ -144,4 +164,5 @@ USE_PASS(multi_devices_pass);
USE_PASS
(
multi_devices_check_pass
);
USE_PASS
(
multi_devices_print_pass
);
USE_PASS
(
sequential_execution_pass
);
USE_PASS
(
all_reduce_deps_pass
);
USE_PASS
(
modify_op_lock_and_record_event_pass
);
paddle/fluid/framework/details/build_strategy.h
浏览文件 @
a02ce58f
...
...
@@ -73,6 +73,7 @@ struct BuildStrategy {
bool
fuse_broadcast_op_
{
false
};
int
num_trainers_
{
1
};
bool
remove_unnecessary_lock_
{
false
};
// NOTE:
...
...
paddle/fluid/framework/operator.h
浏览文件 @
a02ce58f
...
...
@@ -71,7 +71,7 @@ class OperatorBase;
class
ExecutionContext
;
/**
* OperatorBase has the basic element that Net will call to do computation.
* OperatorBase has the basic element
s
that Net will call to do computation.
* Only CreateOperator from OpRegistry will new Operator directly. User
* should always construct a proto message OpDesc and call
* OpRegistry::CreateOp(op_desc) to get an Operator instance.
...
...
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
a02ce58f
...
...
@@ -20,7 +20,7 @@ limitations under the License. */
#include "paddle/fluid/framework/ir/graph.h"
#if
def PADDLE_WITH_CUDA
#if
defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
#include "paddle/fluid/platform/nccl_helper.h"
#endif
...
...
@@ -54,7 +54,7 @@ class ParallelExecutorPrivate {
Scope
*
global_scope_
;
// not owned
std
::
unique_ptr
<
details
::
SSAGraphExecutor
>
executor_
;
#if
def PADDLE_WITH_CUDA
#if
defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
std
::
unique_ptr
<
platform
::
NCCLContextMap
>
nccl_ctxs_
;
#endif
bool
own_local_scope_
;
...
...
@@ -104,7 +104,7 @@ ParallelExecutor::ParallelExecutor(
if
(
member_
->
use_cuda_
)
{
// Bcast Parameters to all GPUs
#if
def PADDLE_WITH_CUDA
#if
defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
auto
*
nccl_id_var
=
scope
->
FindVar
(
NCCL_ID_VARNAME
);
ncclUniqueId
*
nccl_id
=
nullptr
;
if
(
nccl_id_var
!=
nullptr
)
{
...
...
@@ -124,7 +124,7 @@ ParallelExecutor::ParallelExecutor(
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
#if
def PADDLE_WITH_CUDA
#if
defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
build_strategy
.
Apply
(
main_program
,
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
...
...
@@ -213,7 +213,7 @@ void ParallelExecutor::BCastParamsToDevices(
}
auto
&
dims
=
main_tensor
.
dims
();
if
(
paddle
::
platform
::
is_gpu_place
(
main_tensor
.
place
()))
{
#if
def PADDLE_WITH_CUDA
#if
defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
std
::
vector
<
void
*>
buffers
;
size_t
numel
=
main_tensor
.
numel
();
ncclDataType_t
data_type
=
platform
::
ToNCCLDataType
(
main_tensor
.
type
());
...
...
paddle/fluid/framework/selected_rows.h
浏览文件 @
a02ce58f
...
...
@@ -120,8 +120,22 @@ class SelectedRows {
*/
int64_t
AutoGrownIndex
(
int64_t
key
,
bool
auto_grown
,
bool
is_test
=
false
);
void
SyncIndex
();
/*
* @brief Get the index of the key from id_to_index_ map.
*/
inline
int64_t
GetIndexFromId
(
int64_t
key
)
{
auto
iter
=
id_to_index_
.
find
(
key
);
if
(
iter
==
id_to_index_
.
end
())
{
return
-
1
;
}
else
{
return
iter
->
second
;
}
}
void
SyncIndex
();
/*
* @brief Get complete Dims before
*/
DDim
GetCompleteDims
()
const
{
std
::
vector
<
int64_t
>
dims
=
vectorize
(
value_
->
dims
());
dims
[
0
]
=
height_
;
...
...
@@ -133,9 +147,10 @@ class SelectedRows {
// SelectedRows are simply concated when adding together. Until a
// SelectedRows add a Tensor, will the duplicate rows be handled.
Vector
<
int64_t
>
rows_
;
std
::
unordered_map
<
int64_t
,
int64_t
>
id_to_index_
;
std
::
unordered_map
<
int64_t
,
int64_t
>
id_to_index_
;
// should not be used when rows_ has duplicate member
std
::
unique_ptr
<
Tensor
>
value_
{
nullptr
};
int64_t
height_
;
int64_t
height_
;
// height indicates the underline tensor's height
std
::
unique_ptr
<
RWLock
>
rwlock_
{
nullptr
};
};
...
...
paddle/fluid/framework/transfer_scope_cache.cc
浏览文件 @
a02ce58f
...
...
@@ -17,28 +17,16 @@
namespace
paddle
{
namespace
framework
{
// Holds all the transfer scope across the process.
std
::
unordered_map
<
size_t
,
Scope
*>&
global_transfer_data_cache
()
{
typedef
std
::
unordered_map
<
size_t
,
Scope
*>
map_t
;
thread_local
std
::
unique_ptr
<
map_t
>
x
(
new
map_t
);
thread_local
auto
*
x
=
new
std
::
unordered_map
<
size_t
,
Scope
*>
;
return
*
x
;
}
// Holds all the transfer scope for this thread.
std
::
unordered_set
<
Scope
*>&
global_transfer_scope_cache
()
{
typedef
std
::
unordered_set
<
Scope
*>
set_t
;
thread_local
std
::
unique_ptr
<
set_t
>
x
(
new
set_t
);
thread_local
auto
*
x
=
new
std
::
unordered_set
<
Scope
*>
;
return
*
x
;
}
// Try to create a transfer scope. If one cached scope has match the
// requirement, just return that one.
// Inputs:
// @type0: the source kernel type.
// @type1: the target kernel type.
// @scope: the execution scope of this op.
// Returns: A scope used to hold the transfer data across the different kernel
// type.
Scope
*
TryCreateTransferScope
(
OpKernelType
type0
,
OpKernelType
type1
,
const
Scope
*
scope
)
{
Scope
*
new_scope
{
nullptr
};
...
...
@@ -58,5 +46,27 @@ Scope* TryCreateTransferScope(OpKernelType type0, OpKernelType type1,
return
new_scope
;
}
void
RemoveKidsFromTransferScopeCache
(
Scope
*
scope
)
{
auto
it
=
global_transfer_scope_cache
().
find
(
scope
);
if
(
it
!=
global_transfer_scope_cache
().
end
())
{
global_transfer_scope_cache
().
erase
(
it
);
}
for
(
auto
*
s
:
scope
->
kids
())
{
auto
it
=
global_transfer_scope_cache
().
find
(
s
);
if
(
it
!=
global_transfer_scope_cache
().
end
())
{
global_transfer_scope_cache
().
erase
(
it
);
}
}
// remove global transfer data cache
auto
&
cache
=
global_transfer_data_cache
();
for
(
auto
it
=
cache
.
begin
();
it
!=
cache
.
end
();)
{
if
(
it
->
second
==
scope
)
it
=
cache
.
erase
(
it
);
else
it
++
;
}
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/inference/analysis/CMakeLists.txt
浏览文件 @
a02ce58f
...
...
@@ -35,4 +35,5 @@ function(inference_analysis_test TARGET)
endif
()
endfunction
(
inference_analysis_test
)
inference_analysis_test
(
test_analyzer SRCS analyzer_tester.cc EXTRA_DEPS reset_tensor_array paddle_inference_api
)
inference_analysis_test
(
test_analyzer SRCS analyzer_tester.cc
EXTRA_DEPS reset_tensor_array paddle_inference_api
)
paddle/fluid/inference/analysis/analyzer_tester.cc
浏览文件 @
a02ce58f
...
...
@@ -76,7 +76,8 @@ void TestWord2vecPrediction(const std::string& model_path) {
0.000932706
};
const
size_t
num_elements
=
outputs
.
front
().
data
.
length
()
/
sizeof
(
float
);
// The outputs' buffers are in CPU memory.
for
(
size_t
i
=
0
;
i
<
std
::
min
((
size_t
)
5UL
,
num_elements
);
i
++
)
{
for
(
size_t
i
=
0
;
i
<
std
::
min
(
static_cast
<
size_t
>
(
5UL
),
num_elements
);
i
++
)
{
LOG
(
INFO
)
<<
"data: "
<<
static_cast
<
float
*>
(
outputs
.
front
().
data
.
data
())[
i
];
PADDLE_ENFORCE
(
static_cast
<
float
*>
(
outputs
.
front
().
data
.
data
())[
i
],
...
...
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
a02ce58f
...
...
@@ -284,6 +284,7 @@ bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
framework
::
GetFetchVariable
(
*
scope
,
"fetch"
,
idx
);
auto
type
=
fetch
.
type
();
auto
output
=
&
(
outputs
->
at
(
i
));
output
->
name
=
fetchs_
[
idx
]
->
Input
(
"X"
)[
0
];
if
(
type
==
typeid
(
float
))
{
GetFetchOne
<
float
>
(
fetch
,
output
);
output
->
dtype
=
PaddleDType
::
FLOAT32
;
...
...
paddle/fluid/inference/api/analysis_predictor.h
浏览文件 @
a02ce58f
...
...
@@ -109,7 +109,7 @@ class AnalysisPredictor : public PaddlePredictor {
std
::
map
<
std
::
string
,
size_t
>
feed_names_
;
std
::
vector
<
framework
::
OpDesc
*>
fetchs_
;
// Memory buffer for feed inputs. The temporary LoDTensor will cause serious
// concurrency problems, so cache them.
// concurrency problems,
wrong results and memory leak,
so cache them.
std
::
vector
<
framework
::
LoDTensor
>
feed_tensors_
;
details
::
TensorArrayBatchCleaner
tensor_array_batch_cleaner_
;
...
...
paddle/fluid/inference/api/api_impl.cc
浏览文件 @
a02ce58f
...
...
@@ -185,8 +185,12 @@ bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
<<
inputs
.
size
();
return
false
;
}
// Cache the inputs memory for better concurrency performance.
feed_tensors_
.
resize
(
inputs
.
size
());
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
++
i
)
{
framework
::
LoDTensor
input
;
auto
&
input
=
feed_tensors_
[
i
]
;
framework
::
DDim
ddim
=
framework
::
make_ddim
(
inputs
[
i
].
shape
);
void
*
input_ptr
;
if
(
inputs
[
i
].
dtype
==
PaddleDType
::
INT64
)
{
...
...
@@ -261,6 +265,7 @@ bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
framework
::
GetFetchVariable
(
*
scope
,
"fetch"
,
idx
);
auto
type
=
fetch
.
type
();
auto
output
=
&
(
outputs
->
at
(
i
));
output
->
name
=
fetchs_
[
idx
]
->
Input
(
"X"
)[
0
];
if
(
type
==
typeid
(
float
))
{
GetFetchOne
<
float
>
(
fetch
,
output
);
output
->
dtype
=
PaddleDType
::
FLOAT32
;
...
...
paddle/fluid/inference/api/api_impl.h
浏览文件 @
a02ce58f
...
...
@@ -69,6 +69,9 @@ class NativePaddlePredictor : public PaddlePredictor {
std
::
vector
<
framework
::
OpDesc
*>
feeds_
;
std
::
map
<
std
::
string
,
size_t
>
feed_names_
;
std
::
vector
<
framework
::
OpDesc
*>
fetchs_
;
// Memory buffer for feed inputs. The temporary LoDTensor will cause serious
// concurrency problems, wrong results and memory leak, so cache them.
std
::
vector
<
framework
::
LoDTensor
>
feed_tensors_
;
// Do not use unique_ptr, use parent scope to delete
framework
::
Scope
*
sub_scope_
{
nullptr
};
details
::
TensorArrayBatchCleaner
tensor_array_batch_cleaner_
;
...
...
paddle/fluid/memory/allocation/best_fit_allocator_test.cc
浏览文件 @
a02ce58f
...
...
@@ -99,9 +99,8 @@ TEST(BestFitAllocator, test_concurrent_cpu_allocation) {
LockedAllocator
locked_allocator
(
std
::
move
(
best_fit_allocator
));
auto
th_main
=
[
&
]
{
std
::
random_device
dev
;
std
::
default_random_engine
engine
(
dev
());
auto
th_main
=
[
&
](
std
::
random_device
::
result_type
seed
)
{
std
::
default_random_engine
engine
(
seed
);
std
::
uniform_int_distribution
<
size_t
>
dist
(
1U
,
1024U
);
for
(
size_t
i
=
0
;
i
<
128
;
++
i
)
{
...
...
@@ -125,7 +124,8 @@ TEST(BestFitAllocator, test_concurrent_cpu_allocation) {
{
std
::
vector
<
std
::
thread
>
threads
;
for
(
size_t
i
=
0
;
i
<
1024
;
++
i
)
{
threads
.
emplace_back
(
th_main
);
std
::
random_device
dev
;
threads
.
emplace_back
(
th_main
,
dev
());
}
for
(
auto
&
th
:
threads
)
{
th
.
join
();
...
...
paddle/fluid/memory/allocation/best_fit_allocator_test.cu
浏览文件 @
a02ce58f
...
...
@@ -41,9 +41,8 @@ TEST(BestFitAllocator, concurrent_cuda) {
LockedAllocator
concurrent_allocator
(
std
::
unique_ptr
<
Allocator
>
(
new
BestFitAllocator
(
cuda_allocation
.
get
())));
auto
th_main
=
[
&
]
{
std
::
random_device
dev
;
std
::
default_random_engine
engine
(
dev
());
auto
th_main
=
[
&
](
std
::
random_device
::
result_type
seed
)
{
std
::
default_random_engine
engine
(
seed
);
std
::
uniform_int_distribution
<
size_t
>
dist
(
1U
,
1024U
);
platform
::
CUDAPlace
gpu
(
0
);
platform
::
CUDADeviceContext
dev_ctx
(
gpu
);
...
...
@@ -75,7 +74,8 @@ TEST(BestFitAllocator, concurrent_cuda) {
{
std
::
vector
<
std
::
thread
>
threads
;
for
(
size_t
i
=
0
;
i
<
1024
;
++
i
)
{
threads
.
emplace_back
(
th_main
);
std
::
random_device
dev
;
threads
.
emplace_back
(
th_main
,
dev
());
}
for
(
auto
&
th
:
threads
)
{
th
.
join
();
...
...
paddle/fluid/memory/detail/system_allocator.cc
浏览文件 @
a02ce58f
...
...
@@ -86,7 +86,11 @@ void CPUAllocator::Free(void* p, size_t size, size_t index) {
munlock
(
p
,
size
);
#endif
}
#ifdef _WIN32
_aligned_free
(
p
);
#else
free
(
p
);
#endif
}
bool
CPUAllocator
::
UseGpu
()
const
{
return
false
;
}
...
...
paddle/fluid/operators/activation_op.cc
浏览文件 @
a02ce58f
...
...
@@ -149,6 +149,13 @@ $out = \max(x, 0)$
)DOC"
;
UNUSED
constexpr
char
GeluDoc
[]
=
R"DOC(
Gelu Activation Operator.
$out = \\frac{1 + erf(\\frac{x}{\\sqrt{2}})}{2} x$
)DOC"
;
UNUSED
constexpr
char
TanhDoc
[]
=
R"DOC(
Tanh Activation Operator.
...
...
@@ -472,6 +479,7 @@ REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER
(
LogSigmoid
,
LogSigmoidDoc
);
REGISTER_ACTIVATION_OP_MAKER
(
Exp
,
ExpDoc
);
REGISTER_ACTIVATION_OP_MAKER
(
Relu
,
ReluDoc
);
REGISTER_ACTIVATION_OP_MAKER
(
Gelu
,
GeluDoc
);
REGISTER_ACTIVATION_OP_MAKER
(
Tanh
,
TanhDoc
);
REGISTER_ACTIVATION_OP_MAKER
(
TanhShrink
,
TanhShrinkDoc
);
REGISTER_ACTIVATION_OP_MAKER
(
Sqrt
,
SqrtDoc
);
...
...
@@ -489,6 +497,7 @@ REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);
REGISTER_ACTIVATION_OP_GRAD_MAKER
(
Sigmoid
,
sigmoid
);
REGISTER_ACTIVATION_OP_GRAD_MAKER
(
Relu
,
relu
);
REGISTER_ACTIVATION_OP_GRAD_MAKER
(
Gelu
,
gelu
);
REGISTER_ACTIVATION_OP_GRAD_MAKER
(
Exp
,
exp
);
REGISTER_ACTIVATION_OP_GRAD_MAKER
(
Tanh
,
tanh
);
REGISTER_ACTIVATION_OP_GRAD_MAKER
(
Ceil
,
ceil
);
...
...
@@ -525,6 +534,7 @@ namespace ops = paddle::operators;
__macro(Round, round); \
__macro(Log, log); \
__macro(Square, square); \
__macro(Gelu, gelu); \
__macro(BRelu, brelu); \
__macro(Pow, pow); \
__macro(STanh, stanh); \
...
...
paddle/fluid/operators/activation_op.h
浏览文件 @
a02ce58f
...
...
@@ -16,6 +16,11 @@ limitations under the License. */
#include <utility>
#include <vector>
#include <cmath>
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
...
...
@@ -212,6 +217,31 @@ struct ReluGradFunctor : public BaseActivationFunctor<T> {
}
};
// gelu(x) = 0.5 * x * (1 + erf(x / sqrt(2)))
template
<
typename
T
>
struct
GeluFunctor
:
public
BaseActivationFunctor
<
T
>
{
template
<
typename
Device
,
typename
X
,
typename
Out
>
void
operator
()(
Device
d
,
X
x
,
Out
out
)
const
{
auto
temp
=
((
x
*
static_cast
<
T
>
(
M_SQRT1_2
)).
erf
()).
template
cast
<
T
>().
eval
();
out
.
device
(
d
)
=
x
*
static_cast
<
T
>
(
0.5
)
*
(
static_cast
<
T
>
(
1
)
+
temp
);
}
};
template
<
typename
T
>
struct
GeluGradFunctor
:
BaseActivationFunctor
<
T
>
{
bool
Inplace
()
const
{
return
IsInplace
(
"gelu"
);
}
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
auto
temp
=
(
static_cast
<
T
>
(
0.5
*
M_2_SQRTPI
*
M_SQRT1_2
)
*
x
*
((
-
static_cast
<
T
>
(
0.5
)
*
x
.
square
()).
exp
()))
.
template
cast
<
T
>()
.
eval
();
dx
.
device
(
d
)
=
dout
*
(
out
/
x
+
temp
);
}
};
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template
<
typename
T
>
struct
TanhFunctor
:
public
BaseActivationFunctor
<
T
>
{
...
...
@@ -877,6 +907,7 @@ struct SwishGradFunctor : public BaseActivationFunctor<T> {
__macro(logsigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor); \
__macro(exp, ExpFunctor, ExpGradFunctor); \
__macro(relu, ReluFunctor, ReluGradFunctor); \
__macro(gelu, GeluFunctor, GeluGradFunctor); \
__macro(tanh, TanhFunctor, TanhGradFunctor); \
__macro(softshrink, SoftShrinkFunctor, SoftShrinkGradFunctor); \
__macro(sqrt, SqrtFunctor, SqrtGradFunctor); \
...
...
paddle/fluid/operators/bilinear_tensor_product_op.h
浏览文件 @
a02ce58f
...
...
@@ -70,7 +70,7 @@ class BilinearTensorProductKernel : public framework::OpKernel<T> {
if
(
bias
)
{
auto
bias_vec
=
EigenMatrix
<
T
>::
From
(
*
bias
);
Eigen
::
DSizes
<
int
,
2
>
bcast
(
batch_size
,
1
);
output_mat
.
device
(
place
)
=
bias_vec
.
broadcast
(
bcast
)
+
output_mat
;
output_mat
.
device
(
place
)
=
bias_vec
.
broadcast
(
bcast
)
.
eval
()
+
output_mat
;
}
}
};
...
...
@@ -99,13 +99,13 @@ class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
auto
d_out_mat
=
EigenMatrix
<
T
>::
From
(
*
d_out
);
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
// Create the intermediate variable to caculate the Output(Y@Grad).
// Create the intermediate variable to ca
l
culate the Output(Y@Grad).
Tensor
x_scale
;
x_scale
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
batch_size
,
x_dim
}),
ctx
.
GetPlace
());
auto
x_scale_mat
=
EigenMatrix
<
T
>::
From
(
x_scale
);
// Create the intermediate variable to caculate the Output(X@Grad).
// Create the intermediate variable to ca
l
culate the Output(X@Grad).
Tensor
y_scale
;
y_scale
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
batch_size
,
y_dim
}),
ctx
.
GetPlace
());
...
...
@@ -113,65 +113,64 @@ class BilinearTensorProductGradKernel : public framework::OpKernel<T> {
math
::
SetConstant
<
DeviceContext
,
T
>
set_zero
;
// Set Output(X@Grad) be zero.
if
(
d_x
)
{
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
d_x
,
static_cast
<
T
>
(
0
));
}
// Set Output(Y@Grad) be zero.
if
(
d_y
)
{
d_y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
d_y
,
static_cast
<
T
>
(
0
));
}
if
(
d_weight
)
{
d_weight
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
ctx
);
// Caculate the Output(X@Grad) and Output(Y@Grad).
if
(
d_x
||
d_y
)
{
if
(
d_x
||
d_y
||
d_weight
)
{
Eigen
::
DSizes
<
int
,
2
>
bcast_for_x
(
1
,
y_dim
);
Eigen
::
DSizes
<
int
,
2
>
bcast_for_y
(
1
,
x_dim
);
Eigen
::
DSizes
<
int
,
2
>
bcast_for_weight
(
1
,
x_dim
);
for
(
int
i
=
0
;
i
<
out_dim
;
++
i
)
{
Tensor
weight_i
=
weight
->
Slice
(
i
,
i
+
1
).
Resize
(
framework
::
make_ddim
({
x_dim
,
y_dim
}));
auto
output_vec
=
d_out_mat
.
chip
(
i
,
1
);
if
(
d_x
)
{
y_scale_mat
.
device
(
place
)
=
output_vec
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
batch_size
,
1
))
.
broadcast
(
bcast_for_x
)
*
.
broadcast
(
bcast_for_x
)
.
eval
()
*
y_mat
;
blas
.
GEMM
(
CblasNoTrans
,
CblasTrans
,
batch_size
,
x_dim
,
y_dim
,
1
,
y_scale
.
data
<
T
>
(),
weight_i
.
data
<
T
>
(),
1
,
d_x
->
data
<
T
>
());
}
if
(
d_y
)
{
x_scale_mat
.
device
(
place
)
=
if
(
d_y
||
d_weight
)
{
auto
output_vec_y
=
output_vec
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
batch_size
,
1
))
.
broadcast
(
bcast_for_y
)
*
x_mat
;
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
batch_size
,
y_dim
,
x_dim
,
1
,
x_scale
.
data
<
T
>
(),
weight_i
.
data
<
T
>
(),
1
,
d_y
->
data
<
T
>
());
.
broadcast
(
bcast_for_y
)
.
eval
();
x_scale_mat
.
device
(
place
)
=
output_vec_y
*
x_mat
;
if
(
d_y
)
{
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
batch_size
,
y_dim
,
x_dim
,
1
,
x_scale
.
data
<
T
>
(),
weight_i
.
data
<
T
>
(),
1
,
d_y
->
data
<
T
>
());
}
if
(
d_weight
)
{
Tensor
d_weight_i
=
d_weight
->
Slice
(
i
,
i
+
1
).
Resize
(
framework
::
make_ddim
({
x_dim
,
y_dim
}));
blas
.
GEMM
(
CblasTrans
,
CblasNoTrans
,
x_dim
,
y_dim
,
batch_size
,
1
,
x_scale
.
data
<
T
>
(),
y
->
data
<
T
>
(),
0
,
d_weight_i
.
data
<
T
>
());
}
}
}
}
// Caculate the gradient of Input(Weight).
if
(
d_weight
)
{
d_weight
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Eigen
::
DSizes
<
int
,
2
>
bcast_for_weight
(
1
,
x_dim
);
for
(
int
i
=
0
;
i
<
out_dim
;
++
i
)
{
Tensor
d_weight_i
=
d_weight
->
Slice
(
i
,
i
+
1
).
Resize
(
framework
::
make_ddim
({
x_dim
,
y_dim
}));
auto
output_vec
=
d_out_mat
.
chip
(
i
,
1
);
x_scale_mat
.
device
(
place
)
=
output_vec
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
batch_size
,
1
))
.
broadcast
(
bcast_for_weight
)
*
x_mat
;
blas
.
GEMM
(
CblasTrans
,
CblasNoTrans
,
x_dim
,
y_dim
,
batch_size
,
1
,
x_scale
.
data
<
T
>
(),
y
->
data
<
T
>
(),
0
,
d_weight_i
.
data
<
T
>
());
}
}
// Caculate the gradient of Input(Bias).
// calculate the gradient of Input(Bias).
if
(
d_bias
)
{
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
d_bias_mat
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_bias
);
...
...
paddle/fluid/operators/dropout_op.cc
浏览文件 @
a02ce58f
...
...
@@ -120,6 +120,7 @@ class DropoutOpGrad : public framework::OperatorWithKernel {
"Dimensions of Input(X) and Mask must be the same."
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
framework
::
GradVarName
(
"X"
));
}
};
...
...
paddle/fluid/operators/dropout_op_test.cc
浏览文件 @
a02ce58f
...
...
@@ -12,7 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef _WIN32
#include <unistd.h>
#endif
#include <string>
#include <thread> // NOLINT
...
...
paddle/fluid/operators/elementwise/elementwise_mul_mkldnn_op.cc
浏览文件 @
a02ce58f
...
...
@@ -19,36 +19,21 @@ limitations under the License. */
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/operators/math/jit_kernel.h"
#include "xbyak.h"
#include "xbyak_util.h"
#include "xbyak
/xbyak
.h"
#include "xbyak
/xbyak
_util.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
DataLayout
;
using
mkldnn
::
memory
;
static
mkldnn
::
memory
::
format
StringToMKLDNNFormat
(
std
::
string
&
format
)
{
std
::
transform
(
format
.
begin
(),
format
.
end
(),
format
.
begin
(),
::
tolower
);
if
(
!
format
.
compare
(
"nchw"
))
{
return
memory
::
format
::
nchw
;
}
else
if
(
!
format
.
compare
(
"nchw16c"
))
{
return
memory
::
format
::
nChw16c
;
}
else
if
(
!
format
.
compare
(
"nchw8c"
))
{
return
memory
::
format
::
nChw8c
;
}
else
if
(
!
format
.
compare
(
"nhwc"
))
{
return
memory
::
format
::
nhwc
;
}
else
{
return
memory
::
format
::
any
;
}
}
using
platform
::
StringToMKLDNNFormat
;
static
void
UpdateDataFormat
(
const
framework
::
ExecutionContext
&
ctx
,
framework
::
Tensor
*
tensor
,
const
char
*
attribute
)
{
if
(
ctx
.
op
().
HasAttr
(
attribute
))
{
auto
format_as_string
=
ctx
.
Attr
<
std
::
string
>
(
attribute
);
auto
format
=
StringToMKLDNNFormat
(
format_as_string
);
auto
format
=
StringToMKLDNNFormat
(
&
format_as_string
);
if
(
format
!=
memory
::
format
::
any
)
{
tensor
->
set_format
(
format
);
}
...
...
@@ -93,8 +78,8 @@ class ElementwiseMulMKLDNNKernel : public framework::OpKernel<T> {
auto
y_dims_untrimmed
=
y
->
dims
();
auto
x_int_dims
=
paddle
::
framework
::
vectorize2int
(
x_dims
);
UpdateDataFormat
(
ctx
,
(
Tensor
*
)
x
,
"x_data_format"
);
UpdateDataFormat
(
ctx
,
(
Tensor
*
)
y
,
"y_data_format"
);
UpdateDataFormat
(
ctx
,
const_cast
<
Tensor
*>
(
x
)
,
"x_data_format"
);
UpdateDataFormat
(
ctx
,
const_cast
<
Tensor
*>
(
y
)
,
"y_data_format"
);
Xbyak
::
util
::
Cpu
cpu
;
const
bool
is_avx512_enabled
=
cpu
.
has
(
Xbyak
::
util
::
Cpu
::
tAVX512F
);
...
...
@@ -156,10 +141,10 @@ class ElementwiseMulMKLDNNKernel : public framework::OpKernel<T> {
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
if
(
!
(
is_x_nchw
||
is_x_nc
))
ReorderInput
<
T
>
(
(
Tensor
*
)
x
,
ctx
.
GetPlace
(),
mkldnn_engine
,
ReorderInput
<
T
>
(
const_cast
<
Tensor
*>
(
x
)
,
ctx
.
GetPlace
(),
mkldnn_engine
,
x
->
dims
().
size
()
==
4
);
if
(
!
(
is_y_nchw
||
is_y_nc
))
ReorderInput
<
T
>
(
(
Tensor
*
)
y
,
ctx
.
GetPlace
(),
mkldnn_engine
,
ReorderInput
<
T
>
(
const_cast
<
Tensor
*>
(
y
)
,
ctx
.
GetPlace
(),
mkldnn_engine
,
y
->
dims
().
size
()
==
4
);
}
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.cc
浏览文件 @
a02ce58f
...
...
@@ -13,8 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/hierarchical_sigmoid_op.h"
#include <string>
#include <vector>
namespace
paddle
{
namespace
operators
{
...
...
@@ -70,13 +70,14 @@ class HierarchicalSigmoidOp : public framework::OperatorWithKernel {
const
int64_t
batch_size
=
ctx
->
GetInputDim
(
"X"
)[
0
];
std
::
vector
<
int64_t
>
output_shape
({
batch_size
,
1
});
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_shape
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoD
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
());
}
};
...
...
@@ -86,27 +87,40 @@ class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor, required) The input tensor with shape [N, D], "
"(
LoD
Tensor, required) The input tensor with shape [N, D], "
"where N is the size of mini-batch, and D is the feature size."
);
AddInput
(
"W"
,
"(Tensor, required), The parameters of hierarchical "
"(
LoD
Tensor, required), The parameters of hierarchical "
"sigmoid operator, each of them is a 2-D tensor, the shape is"
"[
num_classes - 1, D].
"
);
"[
K, D]. Which K is the num of non-leaf node in Path Tree
"
);
AddInput
(
"Label"
,
"(Tensor, required), The labels of training data. It's a"
"(
LoD
Tensor, required), The labels of training data. It's a"
"tensor with shape [N, 1]."
);
AddInput
(
"PTable"
,
"(LoDTensor, optional), The Path Table from root to current word"
"it should have shape like [N, L], L is the length of the Path"
)
.
AsDispensable
();
AddInput
(
"PathCode"
,
"(LoDTensor, optional), The Code on each Node of the Path from root "
"to current word"
"it should have shape like [N, L], L is the length of the Path"
)
.
AsDispensable
();
AddInput
(
"Bias"
,
"(Tensor, optional), The bias is a tensor with shape"
"[1, num_classes - 1]."
);
AddOutput
(
"Out"
,
"(Tensor, required) The output of hierarchical sigmoid operator."
"The shape is [N, 1]."
);
"(LoDTensor, optional), The bias is a tensor with shape or "
"[num_classes, 1]"
"[num_classes - 1, 1]."
)
.
AsDispensable
();
AddOutput
(
"Out"
,
"(LoDTensor, required) The output of hierarchical sigmoid operator."
"The shape is [N, 1]."
);
AddOutput
(
"PreOut"
,
"(Tensor, required) A intermedia 2-D tensor with shape "
"(
LoD
Tensor, required) A intermedia 2-D tensor with shape "
"[batch_size, code_length], where code_length represents the "
"maximum path length from root to leaf nodes."
)
.
AsIntermediate
();
AddAttr
<
AttrType
>
(
"num_classes"
,
"(int,
required
), The number of classes"
)
AddAttr
<
AttrType
>
(
"num_classes"
,
"(int,
optional
), The number of classes"
)
.
SetDefault
(
2
);
AddComment
(
R"DOC(
The hierarchical sigmoid operator organize the classes into a binary tree.
...
...
@@ -115,6 +129,10 @@ belonging to the right branch. This idea is from
"F. Morin, Y. Bengio (AISTATS 05):
Hierarchical Probabilistic Neural Network Language Model."
)DOC"
);
AddAttr
<
bool
>
(
"is_sparse"
,
"(boolean, default false) "
"Sparse update."
)
.
SetDefault
(
false
);
}
};
...
...
@@ -124,16 +142,21 @@ class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"W"
),
"Input(W) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input(Label) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@Grad) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"PreOut"
),
"Input(Preout) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"W"
)),
"Output(W@Grad should not be null.)"
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)));
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Bias"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Bias"
),
ctx
->
GetInputDim
(
"Bias"
));
"Output(W@Grad should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
"Output(X@Grad should not be null."
);
if
(
!
ctx
->
Attrs
().
Get
<
bool
>
(
"is_sparse"
))
{
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Bias"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Bias"
),
ctx
->
GetInputDim
(
"Bias"
));
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"W"
),
ctx
->
GetInputDim
(
"W"
));
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"W"
),
ctx
->
GetInputDim
(
"W"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
}
...
...
@@ -141,11 +164,55 @@ class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoD
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
());
}
};
class
HierarchicalSigmoidGradOpGradVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
w_grad_var_name
=
op_desc
.
Output
(
framework
::
GradVarName
(
"W"
)).
front
();
auto
bias_grad_var_name_vec
=
op_desc
.
Output
(
framework
::
GradVarName
(
"Bias"
));
std
::
string
bias_grad_var_name
;
bool
hasBias
=
false
;
if
(
bias_grad_var_name_vec
.
size
())
{
hasBias
=
true
;
bias_grad_var_name
=
op_desc
.
Output
(
framework
::
GradVarName
(
"Bias"
)).
front
();
}
auto
attr
=
op_desc
.
GetAttr
(
"is_sparse"
);
bool
is_sparse
=
boost
::
get
<
bool
>
(
attr
);
if
(
is_sparse
)
{
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to SelectedRows"
;
block
->
Var
(
w_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
if
(
hasBias
)
{
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"Bias"
)
<<
" is set to SelectedRows"
;
block
->
Var
(
bias_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
}
else
{
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to LoDTensor"
;
block
->
Var
(
w_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
if
(
hasBias
)
{
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"Bias"
)
<<
" is set to LoDTensor"
;
block
->
Var
(
bias_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
}
block
->
Var
(
w_grad_var_name
)
->
SetDataType
(
block
->
Var
(
"W"
)
->
GetDataType
());
}
};
}
// namespace operators
}
// namespace paddle
...
...
@@ -153,7 +220,8 @@ namespace ops = paddle::operators;
REGISTER_OPERATOR
(
hierarchical_sigmoid
,
ops
::
HierarchicalSigmoidOp
,
ops
::
HierarchicalSigmoidOpMaker
<
int
>
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
hierarchical_sigmoid_grad
,
ops
::
HierarchicalSigmoidGradOp
);
REGISTER_OPERATOR
(
hierarchical_sigmoid_grad
,
ops
::
HierarchicalSigmoidGradOp
,
ops
::
HierarchicalSigmoidGradOpGradVarTypeInference
);
REGISTER_OP_CPU_KERNEL
(
hierarchical_sigmoid
,
ops
::
HierarchicalSigmoidOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.h
浏览文件 @
a02ce58f
...
...
@@ -14,12 +14,16 @@ limitations under the License. */
#pragma once
#include <iostream>
#include <set>
#include <vector>
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/clip_op.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/matrix_bit_code.h"
#include "paddle/fluid/platform/transform.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -28,20 +32,38 @@ template <typename T, int MajorType = Eigen::RowMajor,
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
using
platform
::
Transform
;
static
std
::
vector
<
int64_t
>
PathToRows
(
const
framework
::
LoDTensor
&
path
)
{
std
::
set
<
int64_t
>
rows
;
for
(
int64_t
i
=
0
;
i
<
path
.
numel
();
++
i
)
{
int64_t
row
=
path
.
data
<
int64_t
>
()[
i
];
if
(
row
<
0
)
{
continue
;
}
rows
.
emplace
(
row
);
}
return
std
::
vector
<
int64_t
>
(
rows
.
begin
(),
rows
.
end
());
}
template
<
typename
DeviceContext
,
typename
T
>
class
HierarchicalSigmoidOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
w
=
ctx
.
Input
<
framework
::
Tensor
>
(
"W"
);
auto
*
label
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
);
auto
*
bias
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Bias"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
pre_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"PreOut"
);
auto
&
in
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
));
auto
&
w
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"W"
));
auto
*
path
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PTable"
);
auto
*
code
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PathCode"
);
auto
&
label
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Label"
));
auto
*
bias
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Bias"
);
auto
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
pre_out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"PreOut"
);
size_t
num_classes
=
static_cast
<
size_t
>
(
ctx
.
Attr
<
int
>
(
"num_classes"
));
int64_t
code_length
=
math
::
FindLastSet
(
num_classes
-
1
);
int64_t
batch_size
=
in
->
dims
()[
0
];
framework
::
Tensor
sum
;
bool
is_custom
=
false
;
if
(
path
)
{
is_custom
=
true
;
}
int64_t
code_length
=
path
?
path
->
dims
()[
1
]
:
math
::
FindLastSet
(
num_classes
-
1
);
int64_t
batch_size
=
in
.
dims
()[
0
];
framework
::
LoDTensor
sum
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
*
pre_out_data
=
pre_out
->
mutable_data
<
T
>
(
framework
::
make_ddim
({
batch_size
,
code_length
}),
ctx
.
GetPlace
());
...
...
@@ -52,7 +74,15 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
zero
(
dev_ctx
,
pre_out
,
static_cast
<
T
>
(
0.0
));
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
math
::
RowwiseSum
<
DeviceContext
,
T
>
row_sum
;
math
::
MatrixBitCodeFunctor
<
T
>
bit_code
(
num_classes
,
label
->
data
<
int64_t
>
());
std
::
unique_ptr
<
math
::
MatrixBitCodeFunctor
<
T
>>
bit_code
;
if
(
!
is_custom
)
{
bit_code
.
reset
(
new
math
::
MatrixBitCodeFunctor
<
T
>
(
num_classes
,
label
.
data
<
int64_t
>
()));
}
else
{
bit_code
.
reset
(
new
math
::
MatrixBitCodeFunctor
<
T
>
(
*
path
,
*
code
,
label
.
data
<
int64_t
>
()));
}
std
::
vector
<
int64_t
>
sum_dims
({
batch_size
,
1UL
});
sum
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
sum_dims
),
ctx
.
GetPlace
());
...
...
@@ -60,15 +90,15 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
out_mat
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out
);
if
(
bias
)
{
bit_code
.
Add
(
pre_out
,
*
bias
);
bit_code
->
Add
(
*
bias
,
pre_out
);
}
bit_code
.
Mul
(
pre_out
,
*
w
,
*
in
);
bit_code
->
Mul
(
pre_out
,
w
,
in
);
// clip to [-40, 40]
Transform
<
DeviceContext
>
trans
;
trans
(
ctx
.
template
device_context
<
DeviceContext
>(),
pre_out_data
,
pre_out_data
+
pre_out
->
numel
(),
pre_out_data
,
ClipFunctor
<
T
>
(
static_cast
<
T
>
(
-
40.0
),
static_cast
<
T
>
(
40.0
)));
bit_code
.
Sum
(
*
pre_out
,
out
,
static_cast
<
T
>
(
-
1
));
bit_code
->
Sum
(
*
pre_out
,
out
,
static_cast
<
T
>
(
-
1
));
// use softrelu to calculate cross entropy
pre_out_mat
.
device
(
place
)
=
(
static_cast
<
T
>
(
1.0
)
+
pre_out_mat
.
exp
()).
log
();
row_sum
(
dev_ctx
,
*
pre_out
,
&
sum
);
...
...
@@ -84,50 +114,103 @@ template <typename DeviceContext, typename T>
class
HierarchicalSigmoidGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
w
=
ctx
.
Input
<
framework
::
Tensor
>
(
"W"
);
auto
*
in_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
w_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"W"
));
auto
*
bias_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
auto
*
label
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
);
auto
*
pre_out
=
ctx
.
Input
<
framework
::
Tensor
>
(
"PreOut"
);
auto
*
out_grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
framework
::
Tensor
pre_out_grad
;
pre_out_grad
.
mutable_data
<
T
>
(
pre_out
->
dims
(),
ctx
.
GetPlace
());
in_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
w_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
in
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
));
auto
&
w
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"W"
));
auto
*
path
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PTable"
);
auto
*
code
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PathCode"
);
auto
*
bias
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Bias"
);
auto
*
in_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
bool
is_sparse
=
ctx
.
Attr
<
bool
>
(
"is_sparse"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
math
::
SetConstant
<
DeviceContext
,
T
>
zero
;
auto
&
label
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Label"
));
auto
&
pre_out
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PreOut"
));
auto
&
out_grad
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
)));
framework
::
LoDTensor
pre_out_grad
;
pre_out_grad
.
mutable_data
<
T
>
(
pre_out
.
dims
(),
ctx
.
GetPlace
());
in_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
zero
(
dev_ctx
,
in_grad
,
static_cast
<
T
>
(
0.0
));
zero
(
dev_ctx
,
w_grad
,
static_cast
<
T
>
(
0.0
));
size_t
num_classes
=
static_cast
<
size_t
>
(
ctx
.
Attr
<
int
>
(
"num_classes"
));
math
::
MatrixBitCodeFunctor
<
T
>
bit_code
(
num_classes
,
label
->
data
<
int64_t
>
());
bool
is_custom
=
false
;
if
(
path
)
{
is_custom
=
true
;
}
std
::
unique_ptr
<
math
::
MatrixBitCodeFunctor
<
T
>>
bit_code
;
if
(
!
is_custom
)
{
bit_code
.
reset
(
new
math
::
MatrixBitCodeFunctor
<
T
>
(
num_classes
,
label
.
data
<
int64_t
>
()));
}
else
{
bit_code
.
reset
(
new
math
::
MatrixBitCodeFunctor
<
T
>
(
*
path
,
*
code
,
label
.
data
<
int64_t
>
()));
}
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
pre_out_mat
=
EigenMatrix
<
T
>::
From
(
*
pre_out
);
auto
pre_out_mat
=
EigenMatrix
<
T
>::
From
(
pre_out
);
auto
pre_out_grad_mat
=
EigenMatrix
<
T
>::
From
(
pre_out_grad
);
auto
out_grad_mat
=
EigenMatrix
<
T
>::
From
(
*
out_grad
);
auto
out_grad_mat
=
EigenMatrix
<
T
>::
From
(
out_grad
);
Eigen
::
array
<
int
,
2
>
bcast
{
1
,
static_cast
<
int
>
(
pre_out_grad
.
dims
()[
1
])};
// softrelu derivative
pre_out_grad_mat
.
device
(
place
)
=
static_cast
<
T
>
(
1.0
)
-
static_cast
<
T
>
(
1.0
)
/
pre_out_mat
.
exp
();
bit_code
.
Sub
(
&
pre_out_grad
);
// the gradient of clip(w * x + b)
bit_code
->
Sub
(
&
pre_out_grad
);
// the gradient of clip(w * x + b)
pre_out_grad_mat
.
device
(
place
)
=
pre_out_grad_mat
*
out_grad_mat
.
broadcast
(
bcast
);
// TODO(guosheng): multiply pre_out_grad with subgradient of clipping to
// be consistent with the clipping in forward.
if
(
bias_grad
)
{
bias_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
zero
(
dev_ctx
,
bias_grad
,
static_cast
<
T
>
(
0.0
));
bit_code
.
AddGrad
(
pre_out_grad
,
bias_grad
);
if
(
!
is_sparse
)
{
auto
*
bias_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Bias"
));
if
(
bias_grad
)
{
bias_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
zero
(
dev_ctx
,
bias_grad
,
static_cast
<
T
>
(
0.0
));
bit_code
->
AddGrad
(
pre_out_grad
,
bias_grad
);
}
auto
*
w_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"W"
));
w_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
zero
(
dev_ctx
,
w_grad
,
static_cast
<
T
>
(
0.0
));
bit_code
->
MulGradWeight
(
pre_out_grad
,
w_grad
,
in
);
}
else
{
framework
::
Vector
<
int64_t
>
real_rows
=
PathToRows
(
*
path
);
auto
*
w_grad
=
ctx
.
Output
<
framework
::
SelectedRows
>
(
framework
::
GradVarName
(
"W"
));
w_grad
->
set_rows
(
real_rows
);
// Build a map of id -> row_index to speed up finding the index of one id
w_grad
->
SyncIndex
();
w_grad
->
set_height
(
w
.
dims
()[
0
]);
auto
*
w_grad_value
=
w_grad
->
mutable_value
();
framework
::
DDim
temp_dim
(
w
.
dims
());
set
(
temp_dim
,
0
,
real_rows
.
size
());
w_grad_value
->
mutable_data
<
T
>
(
temp_dim
,
ctx
.
GetPlace
());
zero
(
dev_ctx
,
w_grad_value
,
static_cast
<
T
>
(
0.0
));
auto
*
bias_grad
=
ctx
.
Output
<
framework
::
SelectedRows
>
(
framework
::
GradVarName
(
"Bias"
));
if
(
bias_grad
)
{
bias_grad
->
set_rows
(
real_rows
);
// build ids -> rows index map
bias_grad
->
SyncIndex
();
bias_grad
->
set_height
(
bias
->
dims
()[
0
]);
auto
*
bias_grad_value
=
bias_grad
->
mutable_value
();
std
::
vector
<
int64_t
>
dims
=
{
static_cast
<
int64_t
>
(
real_rows
.
size
()),
bias
->
dims
()[
1
]};
bias_grad_value
->
mutable_data
<
T
>
(
framework
::
make_ddim
(
dims
),
ctx
.
GetPlace
());
zero
(
dev_ctx
,
bias_grad_value
,
static_cast
<
T
>
(
0.0
));
bit_code
->
AddGrad
(
pre_out_grad
,
bias_grad
);
}
bit_code
->
MulGradWeight
(
pre_out_grad
,
w_grad
,
in
);
}
bit_code
.
MulGradWeight
(
pre_out_grad
,
w_grad
,
*
in
);
bit_code
.
MulGradError
(
pre_out_grad
,
*
w
,
in_grad
);
bit_code
->
MulGradError
(
pre_out_grad
,
w
,
in_grad
);
}
};
...
...
paddle/fluid/operators/interpolate_op.cc
浏览文件 @
a02ce58f
...
...
@@ -76,11 +76,12 @@ class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
int
>
(
"out_h"
,
"output height of interpolate op."
);
AddAttr
<
int
>
(
"out_w"
,
"output width of interpolate op."
);
AddAttr
<
std
::
string
>
(
"interp_method"
,
"(string), interpolation method, can be
\"
bilinear
\"
for "
"bilinear interpolation and
\"
nearest
\"
for nearest "
"neighbor interpolation."
);
AddAttr
<
std
::
string
>
(
"interp_method"
,
"(string, default
\"
bilinear
\"
), interpolation "
"method, can be
\"
bilinear
\"
for "
"bilinear interpolation and
\"
nearest
\"
for nearest "
"neighbor interpolation."
)
.
SetDefault
(
"bilinear"
);
AddComment
(
R"DOC(
This operator samples input X to given output shape by using specified
interpolation method, the interpolation methods can be \"nearest\"
...
...
@@ -132,11 +133,19 @@ class InterpolateOpGrad : public framework::OperatorWithKernel {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
interpolate
,
ops
::
InterpolateOp
,
ops
::
InterpolateOpMaker
,
REGISTER_OPERATOR
(
bilinear_interp
,
ops
::
InterpolateOp
,
ops
::
InterpolateOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
interpolate_grad
,
ops
::
InterpolateOpGrad
);
REGISTER_OP_CPU_KERNEL
(
interpolate
,
ops
::
InterpolateKernel
<
float
>
,
REGISTER_OPERATOR
(
bilinear_interp_grad
,
ops
::
InterpolateOpGrad
);
REGISTER_OPERATOR
(
nearest_interp
,
ops
::
InterpolateOp
,
ops
::
InterpolateOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
nearest_interp_grad
,
ops
::
InterpolateOpGrad
);
REGISTER_OP_CPU_KERNEL
(
bilinear_interp
,
ops
::
InterpolateKernel
<
float
>
,
ops
::
InterpolateKernel
<
double
>
,
ops
::
InterpolateKernel
<
uint8_t
>
);
REGISTER_OP_CPU_KERNEL
(
bilinear_interp_grad
,
ops
::
InterpolateGradKernel
<
float
>
,
ops
::
InterpolateGradKernel
<
double
>
);
REGISTER_OP_CPU_KERNEL
(
nearest_interp
,
ops
::
InterpolateKernel
<
float
>
,
ops
::
InterpolateKernel
<
double
>
,
ops
::
InterpolateKernel
<
uint8_t
>
);
REGISTER_OP_CPU_KERNEL
(
interpolate
_grad
,
ops
::
InterpolateGradKernel
<
float
>
,
REGISTER_OP_CPU_KERNEL
(
nearest_interp
_grad
,
ops
::
InterpolateGradKernel
<
float
>
,
ops
::
InterpolateGradKernel
<
double
>
);
paddle/fluid/operators/interpolate_op.cu
浏览文件 @
a02ce58f
...
...
@@ -284,9 +284,15 @@ class InterpolateGradOpCUDAKernel : public framework::OpKernel<T> {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
interpolate
,
ops
::
InterpolateOpCUDAKernel
<
float
>
,
REGISTER_OP_CUDA_KERNEL
(
bilinear_interp
,
ops
::
InterpolateOpCUDAKernel
<
float
>
,
ops
::
InterpolateOpCUDAKernel
<
double
>
,
ops
::
InterpolateOpCUDAKernel
<
int
>
);
REGISTER_OP_CUDA_KERNEL
(
interpolate_grad
,
REGISTER_OP_CUDA_KERNEL
(
bilinear_interp_grad
,
ops
::
InterpolateGradOpCUDAKernel
<
float
>
,
ops
::
InterpolateGradOpCUDAKernel
<
double
>
);
REGISTER_OP_CUDA_KERNEL
(
nearest_interp
,
ops
::
InterpolateOpCUDAKernel
<
float
>
,
ops
::
InterpolateOpCUDAKernel
<
double
>
,
ops
::
InterpolateOpCUDAKernel
<
int
>
);
REGISTER_OP_CUDA_KERNEL
(
nearest_interp_grad
,
ops
::
InterpolateGradOpCUDAKernel
<
float
>
,
ops
::
InterpolateGradOpCUDAKernel
<
double
>
);
paddle/fluid/operators/math/matrix_bit_code.cc
浏览文件 @
a02ce58f
...
...
@@ -19,16 +19,15 @@ namespace operators {
namespace
math
{
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
Add
(
framework
::
Tensor
*
tmat
,
const
framework
::
Tensor
&
vec
)
{
SimpleCodeTable
code_table
(
num_classes_
);
void
MatrixBitCodeFunctor
<
T
>::
Add
(
const
framework
::
Tensor
&
vec
,
framework
::
Tensor
*
tmat
)
{
size_t
batch_size
=
tmat
->
dims
()[
0
];
size_t
width
=
tmat
->
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
])
);
int
code_length
=
code
.
get_length
();
auto
code
=
code_table
_
->
get_code
(
i
);
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
size_t
index
=
code
->
calc_index
(
j
);
tmat
->
data
<
T
>
()[
i
*
width
+
j
]
+=
vec
.
data
<
T
>
()[
index
];
}
}
...
...
@@ -37,31 +36,46 @@ void MatrixBitCodeFunctor<T>::Add(framework::Tensor* tmat,
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
AddGrad
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
vec
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
batch_size
=
tmat
.
dims
()[
0
];
size_t
width
=
tmat
.
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
])
);
int
code_length
=
code
.
get_length
();
auto
code
=
code_table
_
->
get_code
(
i
);
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
size_t
index
=
code
->
calc_index
(
j
);
vec
->
data
<
T
>
()[
index
]
+=
tmat
.
data
<
T
>
()[
i
*
width
+
j
];
}
}
}
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
AddGrad
(
const
framework
::
Tensor
&
tmat
,
framework
::
SelectedRows
*
vec
)
{
size_t
batch_size
=
tmat
.
dims
()[
0
];
size_t
width
=
tmat
.
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
auto
code
=
code_table_
->
get_code
(
i
);
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
->
calc_index
(
j
);
int64_t
row_index
=
vec
->
GetIndexFromId
(
static_cast
<
int64_t
>
(
index
));
vec
->
mutable_value
()
->
data
<
T
>
()[
row_index
]
+=
tmat
.
data
<
T
>
()[
i
*
width
+
j
];
}
}
}
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
Sum
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
sum
,
T
scale_sum
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
o_width
=
tmat
.
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
T
sm
=
static_cast
<
T
>
(
0.0
);
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
])
);
int
code_length
=
code
.
get_length
();
auto
code
=
code_table
_
->
get_code
(
i
);
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
if
(
code
.
calc_bit
(
j
))
{
if
(
code
->
calc_bit
(
j
))
{
// calc_bit starts from right most bit, while data in tmat[i] is in the
// reverse order.
sm
+=
tmat
.
data
<
T
>
()[
i
*
o_width
+
j
];
...
...
@@ -75,7 +89,6 @@ template <typename T>
void
MatrixBitCodeFunctor
<
T
>::
Mul
(
framework
::
Tensor
*
tmat
,
const
framework
::
Tensor
&
weight
,
const
framework
::
Tensor
&
input
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
->
dims
()[
0
];
size_t
tmat_width
=
tmat
->
dims
()[
1
];
size_t
input_width
=
input
.
dims
()[
1
];
...
...
@@ -84,10 +97,10 @@ void MatrixBitCodeFunctor<T>::Mul(framework::Tensor* tmat,
auto
weight_value
=
weight
.
data
<
T
>
();
auto
input_value
=
input
.
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
])
);
int
code_length
=
code
.
get_length
();
auto
code
=
code_table
_
->
get_code
(
i
);
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
size_t
index
=
code
->
calc_index
(
j
);
T
sum
=
static_cast
<
T
>
(
0.0
);
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
sum
+=
weight_value
[
weight_width
*
index
+
k
]
*
...
...
@@ -102,7 +115,6 @@ template <typename T>
void
MatrixBitCodeFunctor
<
T
>::
MulGradWeight
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
weight
,
const
framework
::
Tensor
&
input
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
input_width
=
input
.
dims
()[
1
];
size_t
tmat_width
=
tmat
.
dims
()[
1
];
...
...
@@ -111,10 +123,10 @@ void MatrixBitCodeFunctor<T>::MulGradWeight(const framework::Tensor& tmat,
auto
weight_value
=
weight
->
data
<
T
>
();
auto
input_value
=
input
.
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
])
);
int
code_length
=
code
.
get_length
();
auto
code
=
code_table
_
->
get_code
(
i
);
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
size_t
index
=
code
->
calc_index
(
j
);
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
weight_value
[
weight_width
*
index
+
k
]
+=
...
...
@@ -124,11 +136,35 @@ void MatrixBitCodeFunctor<T>::MulGradWeight(const framework::Tensor& tmat,
}
}
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
MulGradWeight
(
const
framework
::
Tensor
&
tmat
,
framework
::
SelectedRows
*
weight
,
const
framework
::
Tensor
&
input
)
{
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
input_width
=
input
.
dims
()[
1
];
size_t
tmat_width
=
tmat
.
dims
()[
1
];
size_t
weight_width
=
weight
->
value
().
dims
()[
1
];
auto
tmat_value
=
tmat
.
data
<
T
>
();
auto
weight_value
=
weight
->
mutable_value
()
->
data
<
T
>
();
auto
input_value
=
input
.
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table_
->
get_code
(
i
);
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
->
calc_index
(
j
);
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
int64_t
row_index
=
weight
->
GetIndexFromId
(
static_cast
<
int64_t
>
(
index
));
weight_value
[
row_index
*
weight_width
+
k
]
+=
tmat_value
[
i
*
tmat_width
+
j
]
*
input_value
[
input_width
*
i
+
k
];
}
}
}
}
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
MulGradError
(
const
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
input
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
tmat_width
=
tmat
.
dims
()[
1
];
size_t
input_width
=
input
->
dims
()[
1
];
...
...
@@ -138,10 +174,10 @@ void MatrixBitCodeFunctor<T>::MulGradError(const framework::Tensor& tmat,
auto
input_value
=
input
->
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
])
);
int
code_length
=
code
.
get_length
();
auto
code
=
code_table
_
->
get_code
(
i
);
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
size_t
index
=
code
->
calc_index
(
j
);
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
input_value
[
input_width
*
i
+
k
]
+=
...
...
@@ -154,14 +190,13 @@ void MatrixBitCodeFunctor<T>::MulGradError(const framework::Tensor& tmat,
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
Sub
(
framework
::
Tensor
*
tmat
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
->
dims
()[
0
];
size_t
o_width
=
tmat
->
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
])
);
int
code_length
=
code
.
get_length
();
auto
code
=
code_table
_
->
get_code
(
i
);
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
if
(
code
.
calc_bit
(
j
))
{
if
(
code
->
calc_bit
(
j
))
{
tmat
->
data
<
T
>
()[
i
*
o_width
+
j
]
-=
1
;
}
}
...
...
paddle/fluid/operators/math/matrix_bit_code.h
浏览文件 @
a02ce58f
...
...
@@ -14,6 +14,8 @@ limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
...
...
@@ -92,9 +94,27 @@ inline int clz(const T& value) {
inline
size_t
FindLastSet
(
size_t
x
)
{
return
sizeof
(
size_t
)
*
8
-
clz
(
x
);
}
#endif // !_WIN32
// set a code interface to create multiple code
class
Code
{
public:
virtual
~
Code
()
{}
virtual
size_t
calc_index
(
int
bit
)
const
=
0
;
virtual
bool
calc_bit
(
int
bit
)
const
=
0
;
virtual
int
get_length
()
const
=
0
;
};
// set a CodeTable interface to create multiple code table
class
CodeTable
{
public:
virtual
std
::
unique_ptr
<
Code
>
get_code
(
int64_t
code
)
const
=
0
;
virtual
size_t
size
()
const
=
0
;
virtual
int
get_max_code_length
()
const
=
0
;
virtual
~
CodeTable
()
{}
};
struct
SimpleCode
{
SimpleCode
(
size_t
code
,
size_t
num_classes
)
:
c_
(
code
+
num_classes
)
{}
class
SimpleCode
:
public
Code
{
public:
SimpleCode
(
size_t
code
,
size_t
num_classes
,
const
int64_t
*
ids
)
:
c_
(
static_cast
<
size_t
>
(
ids
[
code
])
+
num_classes
)
{}
/**
* Here the id of root shoud be 1 rather than 0, thus the encoding of class c
* is `c + num_classes` and all siblings can get the same weight indice using
...
...
@@ -104,41 +124,121 @@ struct SimpleCode {
* Binary classification path is the suffixes of encoding, thus leave out the
* left most bit in calc_bit.
*/
inline
size_t
calc_index
(
int
bit
)
const
{
return
(
c_
>>
(
bit
+
1
))
-
1
;
}
inline
bool
calc_bit
(
int
bit
)
const
{
return
c_
&
(
1
<<
bit
);
}
in
line
in
t
get_length
()
const
{
return
FindLastSet
(
c_
)
-
1
;
}
size_t
calc_index
(
int
bit
)
const
{
return
(
c_
>>
(
bit
+
1
))
-
1
;
}
bool
calc_bit
(
int
bit
)
const
{
return
c_
&
(
1
<<
bit
);
}
int
get_length
()
const
{
return
FindLastSet
(
c_
)
-
1
;
}
private:
size_t
c_
;
};
struct
SimpleCodeTable
{
explicit
SimpleCodeTable
(
size_t
num_classes
)
:
num_classes_
(
num_classes
)
{}
SimpleCode
operator
()(
size_t
code
)
const
{
return
SimpleCode
(
code
,
num_classes_
);
template
<
typename
T
>
class
CustomCode
:
public
Code
{
public:
CustomCode
(
const
framework
::
Tensor
&
ptable
,
const
framework
::
Tensor
&
pcode
,
const
int64_t
*
ids
,
int
index
)
:
ids_
(
ids
),
index_
(
index
)
{
ptable_
=
ptable
.
Slice
(
index
,
index
+
1
);
pcode_
=
pcode
.
Slice
(
index
,
index
+
1
);
}
/**
* Here the id of root shoud be 1 rather than 0, thus the encoding of class c
* is `c + num_classes` and all siblings can get the same weight indice using
* prefixes.
* Weight index is the prefixes of encoding, thus leave out the right most
* bit in calc_index.
* Binary classification path is the suffixes of encoding, thus leave out the
* left most bit in calc_bit.
*/
size_t
calc_index
(
int
bit
)
const
{
return
ptable_
.
data
<
T
>
()[
bit
];
}
bool
calc_bit
(
int
bit
)
const
{
return
pcode_
.
data
<
T
>
()[
bit
];
}
int
get_length
()
const
{
int
length
=
0
;
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
ptable_
.
dims
()[
1
]);
i
++
)
{
if
(
ptable_
.
data
<
T
>
()[
i
]
>=
0
)
{
length
++
;
}
else
{
return
length
;
}
}
return
length
;
}
private:
framework
::
Tensor
ptable_
;
framework
::
Tensor
pcode_
;
const
int64_t
*
ids_
;
const
int
index_
;
};
class
SimpleCodeTable
:
public
CodeTable
{
public:
SimpleCodeTable
(
size_t
num_classes
,
const
int64_t
*
ids
)
:
num_classes_
(
num_classes
),
ids_
(
ids
)
{}
std
::
unique_ptr
<
Code
>
get_code
(
int64_t
code
)
const
{
std
::
unique_ptr
<
Code
>
coder
(
new
SimpleCode
(
code
,
num_classes_
,
ids_
));
return
coder
;
}
size_t
size
()
const
{
return
num_classes_
;
}
int
get_max_code_length
()
const
{
return
FindLastSet
(
num_classes_
-
1
);
}
private:
size_t
num_classes_
;
const
int64_t
*
ids_
;
};
template
<
typename
T
>
class
CustomCodeTable
:
public
CodeTable
{
public:
CustomCodeTable
(
const
framework
::
Tensor
&
ptable
,
const
framework
::
Tensor
&
pcode
,
const
int64_t
*
ids
)
:
ptable_
(
ptable
),
pcode_
(
pcode
),
ids_
(
ids
)
{}
std
::
unique_ptr
<
Code
>
get_code
(
int64_t
code
)
const
{
std
::
unique_ptr
<
Code
>
coder
(
new
CustomCode
<
T
>
(
ptable_
,
pcode_
,
ids_
,
code
));
return
coder
;
}
size_t
size
()
const
{
return
static_cast
<
size_t
>
(
ptable_
.
dims
()[
1
]);
}
int
get_max_code_length
()
const
{
return
static_cast
<
size_t
>
(
ptable_
.
dims
()[
1
]);
}
private:
const
framework
::
Tensor
&
ptable_
;
const
framework
::
Tensor
&
pcode_
;
const
int64_t
*
ids_
;
};
template
<
typename
T
>
class
MatrixBitCodeFunctor
{
public:
explicit
MatrixBitCodeFunctor
(
size_t
num_classes
,
const
int64_t
*
ids
)
:
num_classes_
(
num_classes
),
ids_
(
ids
)
{}
MatrixBitCodeFunctor
(
size_t
num_classes
,
const
int64_t
*
ids
)
:
num_classes_
(
num_classes
),
ids_
(
ids
),
code_table_
(
new
SimpleCodeTable
(
num_classes
,
ids
))
{}
MatrixBitCodeFunctor
(
const
framework
::
Tensor
&
ptable
,
const
framework
::
Tensor
&
pcode
,
const
int64_t
*
ids
)
:
num_classes_
(
static_cast
<
size_t
>
(
ptable
.
dims
()[
1
])),
ids_
(
ids
),
code_table_
(
new
CustomCodeTable
<
int64_t
>
(
ptable
,
pcode
,
ids
))
{}
/* For j < code_length
tmat(i, j) += vec(0, index(i, j))
*/
void
Add
(
framework
::
Tensor
*
tmat
,
const
framework
::
Tensor
&
vec
);
void
Add
(
const
framework
::
Tensor
&
vec
,
framework
::
Tensor
*
tmat
);
/* For j < code_length
vec(0, index(i, j)) += tmat(i, j)
*/
void
AddGrad
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
vec
);
/* For selected rows For j < code_length
vec(0, index(i, j)) += tmat(i, j)
*/
void
AddGrad
(
const
framework
::
Tensor
&
tmat
,
framework
::
SelectedRows
*
vec
);
/* For j < code_length
sum(i, 0) = \sum_j bit(i, j) * tmat(i, j)
*/
...
...
@@ -159,6 +259,12 @@ class MatrixBitCodeFunctor {
*/
void
MulGradWeight
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
weight
,
const
framework
::
Tensor
&
input
);
/* For SelectedRows Weight, For index(i, j) >= 0:
weight.row(index(i, j)) += tmat(i, j) * input.row(i)
*/
void
MulGradWeight
(
const
framework
::
Tensor
&
tmat
,
framework
::
SelectedRows
*
weight
,
const
framework
::
Tensor
&
input
);
/* For j < code_length
input.row(i) += tmat(i, j) * weight.row(index(i, j))
*/
...
...
@@ -167,6 +273,7 @@ class MatrixBitCodeFunctor {
size_t
num_classes_
;
const
int64_t
*
ids_
;
std
::
unique_ptr
<
CodeTable
>
code_table_
;
};
}
// namespace math
}
// namespace operators
...
...
paddle/fluid/operators/math/sampler.cc
浏览文件 @
a02ce58f
...
...
@@ -60,75 +60,30 @@ float LogUniformSampler::Probability(int64_t value) const {
return
(
log
((
value
+
2.0
)
/
(
value
+
1.0
)))
/
log_range_
;
}
CustomSampler
::
CustomSampler
(
int64_t
range
,
const
float
*
probabilities
,
CustomSampler
::
CustomSampler
(
int64_t
range
,
const
float
*
probabilities
,
const
int
*
alias
,
const
float
*
alias_probabilities
,
unsigned
int
seed
)
:
Sampler
(
range
,
seed
)
{
random_engine_
=
std
::
make_shared
<
std
::
mt19937
_64
>
(
seed_
);
random_engine_
=
std
::
make_shared
<
std
::
mt19937
>
(
seed_
);
real_dist_
=
std
::
make_shared
<
std
::
uniform_real_distribution
<>>
(
0
,
1
);
int_dist_
=
std
::
make_shared
<
std
::
uniform_int_distribution
<>>
(
0
,
range
);
alias_probs_
=
std
::
make_shared
<
std
::
vector
<
float
>>
(
range
+
1
);
alias_
=
std
::
make_shared
<
std
::
vector
<
int64_t
>>
(
range
+
1
);
probs_
=
std
::
make_shared
<
std
::
vector
<
float
>>
(
range
+
1
);
std
::
queue
<
std
::
pair
<
int64_t
,
float
>>
bigs
;
std
::
queue
<
std
::
pair
<
int64_t
,
float
>>
littles
;
for
(
int64_t
i
=
0
;
i
<=
range
;
++
i
)
{
(
*
probs_
)[
i
]
=
probabilities
[
i
];
float
normal_prob
=
probabilities
[
i
]
*
(
range
+
1
);
if
(
normal_prob
-
1.0
>
1e-4
)
{
bigs
.
emplace
(
i
,
normal_prob
);
}
else
if
(
1.0
-
normal_prob
>
1e-4
)
{
littles
.
emplace
(
i
,
normal_prob
);
}
else
{
(
*
alias_probs_
)[
i
]
=
normal_prob
;
(
*
alias_
)[
i
]
=
-
1
;
}
}
while
((
!
littles
.
empty
())
&&
(
!
bigs
.
empty
()))
{
auto
big
=
bigs
.
front
();
auto
little
=
littles
.
front
();
bigs
.
pop
();
littles
.
pop
();
(
*
alias_probs_
)[
little
.
first
]
=
little
.
second
;
(
*
alias_
)[
little
.
first
]
=
big
.
first
;
auto
big_left
=
big
.
second
-
(
1
-
little
.
second
);
if
(
big_left
-
1.0
>
1e-4
)
{
bigs
.
emplace
(
big
.
first
,
big_left
);
}
else
if
(
1.0
-
big_left
>
1e-4
)
{
littles
.
emplace
(
big
.
first
,
big_left
);
}
else
{
(
*
alias_probs_
)[
big
.
first
]
=
big_left
;
(
*
alias_
)[
big
.
first
]
=
-
1
;
}
}
if
(
!
littles
.
empty
())
{
// littles.second is close to 1.0
auto
little
=
littles
.
front
();
(
*
alias_probs_
)[
little
.
first
]
=
1.0
;
(
*
alias_
)[
little
.
first
]
=
-
1
;
}
if
(
!
bigs
.
empty
())
{
// bigs.second is close to 1.0
auto
big
=
bigs
.
front
();
(
*
alias_probs_
)[
big
.
first
]
=
1.0
;
(
*
alias_
)[
big
.
first
]
=
-
1
;
}
alias_probs_
=
alias_probabilities
;
probs_
=
probabilities
;
alias_
=
alias
;
}
int64_t
CustomSampler
::
Sample
()
const
{
auto
index
=
(
*
int_dist_
)(
*
random_engine_
);
auto
p
=
(
*
real_dist_
)(
*
random_engine_
);
if
(
p
>
(
*
alias_probs_
)
[
index
])
{
return
(
*
alias_
)
[
index
];
if
(
p
>
alias_probs_
[
index
])
{
return
alias_
[
index
];
}
else
{
return
index
;
}
}
float
CustomSampler
::
Probability
(
int64_t
value
)
const
{
return
(
*
probs_
)[
value
];
}
float
CustomSampler
::
Probability
(
int64_t
value
)
const
{
return
probs_
[
value
];
}
}
// namespace math
}
// namespace operators
...
...
paddle/fluid/operators/math/sampler.h
浏览文件 @
a02ce58f
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <cstdint>
#include <memory>
#include <random>
...
...
@@ -38,9 +39,12 @@ class Sampler {
seed_
=
seed
;
}
}
virtual
~
Sampler
();
// Sample a single value
virtual
int64_t
Sample
()
const
=
0
;
// The probability that a single call to Sample() returns the given value.
virtual
float
Probability
(
int64_t
value
)
const
=
0
;
...
...
@@ -99,6 +103,7 @@ class LogUniformSampler : public Sampler {
class
CustomSampler
:
public
Sampler
{
public:
explicit
CustomSampler
(
int64_t
range
,
const
float
*
probabilities
,
const
int
*
alias
,
const
float
*
alias_probabilities
,
unsigned
int
seed
=
0UL
);
~
CustomSampler
()
override
{}
...
...
@@ -108,10 +113,10 @@ class CustomSampler : public Sampler {
float
Probability
(
int64_t
value
)
const
override
;
private:
std
::
shared_ptr
<
std
::
vector
<
float
>>
alias_probs_
;
std
::
shared_ptr
<
std
::
vector
<
int64_t
>>
alias_
;
std
::
shared_ptr
<
std
::
vector
<
float
>>
probs_
;
std
::
shared_ptr
<
std
::
mt19937
_64
>
random_engine_
;
const
float
*
alias_probs_
;
const
int
*
alias_
;
const
float
*
probs_
;
std
::
shared_ptr
<
std
::
mt19937
>
random_engine_
;
std
::
shared_ptr
<
std
::
uniform_real_distribution
<>>
real_dist_
;
std
::
shared_ptr
<
std
::
uniform_int_distribution
<>>
int_dist_
;
};
...
...
paddle/fluid/operators/math/sequence_pooling.cu
浏览文件 @
a02ce58f
...
...
@@ -16,13 +16,12 @@ limitations under the License. */
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence_pooling.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/macros.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
#define FLT_MAX __FLT_MAX__
template
<
typename
T
>
struct
MaxPoolFunctor
{
HOSTDEVICE
void
operator
()(
const
T
*
input
,
const
size_t
start
,
...
...
paddle/fluid/operators/nce_op.cc
浏览文件 @
a02ce58f
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#include "paddle/fluid/operators/nce_op.h"
#include <string>
#include <vector>
namespace
paddle
{
...
...
@@ -25,7 +26,7 @@ class NCEOp : public framework::OperatorWithKernel {
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Input"
));
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
));
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Weight"
));
...
...
@@ -67,7 +68,7 @@ class NCEOp : public framework::OperatorWithKernel {
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"Input"
)
->
type
()),
platform
::
CPUPlace
());
...
...
@@ -101,11 +102,24 @@ class NCEOpMaker : public framework::OpProtoAndCheckerMaker {
.
AsDispensable
();
AddInput
(
"CustomDist
ribution
"
,
"CustomDist
Probs
"
,
"(Tensor) It is used in 'CostumDist' sampler. "
"It is a tensor with shape [num_total_classes]."
"The i-th element is the probsbility of the i-th class being sampled."
)
.
AsDispensable
();
AddInput
(
"CustomDistAlias"
,
"(Tensor) It is used in 'CostumDist' sampler. "
"It is a tensor with shape [num_total_classes]."
"The i-th element is the probsbility of the i-th class being sampled."
)
.
AsDispensable
();
AddInput
(
"CustomDistAliasProbs"
,
"(Tensor) It is used in 'CostumDist' sampler. "
"It is a tensor with shape [num_total_classes]."
"The i-th element is the probsbility of the i-th class being sampled."
)
.
AsDispensable
();
AddOutput
(
"Cost"
,
"(Tensor) A tensor of shape [batch_size, 1]. Cost of samples."
);
AddOutput
(
"SampleLogits"
,
...
...
@@ -124,21 +138,22 @@ class NCEOpMaker : public framework::OpProtoAndCheckerMaker {
"kernel to compute grads."
""
)
.
AsIntermediate
();
AddAttr
<
int
>
(
"num_total_classes"
,
"Total number of classes in all samples."
);
AddAttr
<
int
>
(
"num_neg_samples"
,
"The number of negative classes. The default value is 10."
)
.
SetDefault
(
10
);
AddAttr
<
int
>
(
"sampler"
,
"(int) Which sampler to be used to sample negative class."
"0: Uniform; 1: LogUniform; 2: CostumDist."
)
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"seed"
,
"(int) The seed used in sampler. If it is 0, "
"the sampler will generate a seed randomly."
)
.
SetDefault
(
0
);
AddAttr
<
bool
>
(
"is_sparse"
,
"(boolean, default false) Sparse update."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"custom_neg_classes"
,
"This attribute only be used in unitest. Classes "
...
...
@@ -156,11 +171,19 @@ By default this operator uses a uniform distribution for sampling.
}
};
class
NCEOpGradDescMaker
:
public
framework
::
DefaultGradOpDescMaker
<
true
>
{
using
::
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>::
DefaultGradOpDescMaker
;
protected:
virtual
std
::
string
GradOpType
()
const
{
return
"nce_grad"
;
}
};
class
NCEOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Input"
));
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Weight"
));
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Cost"
));
...
...
@@ -190,20 +213,45 @@ class NCEOpGrad : public framework::OperatorWithKernel {
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"Input"
)
->
type
()),
platform
::
CPUPlace
());
}
};
class
NCEOpGradVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
weight_grad
=
op_desc
.
Output
(
framework
::
GradVarName
(
"Weight"
)).
front
();
auto
bias_grad
=
op_desc
.
Output
(
framework
::
GradVarName
(
"Bias"
)).
front
();
auto
attr
=
op_desc
.
GetAttr
(
"is_sparse"
);
bool
is_sparse
=
boost
::
get
<
bool
>
(
attr
);
if
(
is_sparse
)
{
VLOG
(
30
)
<<
"nce_op_grad op "
<<
weight_grad
<<
" and "
<<
bias_grad
<<
" is set to SelectedRows"
;
block
->
Var
(
weight_grad
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
block
->
Var
(
bias_grad
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
else
{
VLOG
(
30
)
<<
"nce_op_grad op "
<<
weight_grad
<<
" and "
<<
bias_grad
<<
" is set to LoDTensor"
;
block
->
Var
(
weight_grad
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
block
->
Var
(
bias_grad
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
block
->
Var
(
weight_grad
)
->
SetDataType
(
block
->
Var
(
"Input"
)
->
GetDataType
());
block
->
Var
(
bias_grad
)
->
SetDataType
(
block
->
Var
(
"Input"
)
->
GetDataType
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
nce
,
ops
::
NCEOp
,
ops
::
NCEOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
nce_grad
,
ops
::
NCEOpGrad
);
REGISTER_OPERATOR
(
nce
,
ops
::
NCEOp
,
ops
::
NCEOpGradDescMaker
,
ops
::
NCEOpMaker
);
REGISTER_OPERATOR
(
nce_grad
,
ops
::
NCEOpGrad
,
ops
::
NCEOpGradVarTypeInference
);
REGISTER_OP_CPU_KERNEL
(
nce
,
ops
::
NCEKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
NCEKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
nce_grad
,
...
...
paddle/fluid/operators/nce_op.h
浏览文件 @
a02ce58f
...
...
@@ -16,26 +16,32 @@ limitations under the License. */
#include <math.h>
#include <random>
#include <set>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/math/sampler.h"
#include "unsupported/Eigen/CXX11/Tensor"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
SelectedRows
=
framework
::
SelectedRows
;
using
Sampler
=
math
::
Sampler
;
using
DDim
=
framework
::
DDim
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
DeviceContext
,
typename
T
>
void
PrepareSamples
(
const
framework
::
ExecutionContext
&
context
,
Sampler
*
sampler
)
{
void
PrepareSamples
(
const
framework
::
ExecutionContext
&
context
,
Sampler
*
sampler
)
{
auto
label
=
context
.
Input
<
Tensor
>
(
"Label"
);
const
int64_t
*
label_data
=
label
->
data
<
int64_t
>
();
const
int64_t
*
label_data
=
label
->
data
<
int64_t
>
();
auto
label_dims
=
label
->
dims
();
// int num_total_classes = context.Attr<int>("num_total_classes");
// for unitest
...
...
@@ -44,7 +50,7 @@ void PrepareSamples(const framework::ExecutionContext& context,
auto
sample_labels
=
context
.
Output
<
Tensor
>
(
"SampleLabels"
);
auto
sample_labels_dims
=
sample_labels
->
dims
();
int64_t
*
sample_labels_data
=
int64_t
*
sample_labels_data
=
sample_labels
->
mutable_data
<
int64_t
>
(
context
.
GetPlace
());
int
num_label
=
label_dims
.
size
()
==
2
?
label_dims
[
1
]
:
1
;
...
...
@@ -70,13 +76,13 @@ void PrepareSamples(const framework::ExecutionContext& context,
template
<
typename
DeviceContext
,
typename
T
>
class
NCEKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
int
sampler_type
=
context
.
Attr
<
int
>
(
"sampler"
);
int
seed
=
context
.
Attr
<
int
>
(
"seed"
);
int
num_total_classes
=
context
.
Attr
<
int
>
(
"num_total_classes"
);
int
num_neg_samples
=
context
.
Attr
<
int
>
(
"num_neg_samples"
);
Sampler
*
sampler
;
Sampler
*
sampler
;
switch
(
sampler_type
)
{
case
0
:
{
sampler
=
new
math
::
UniformSampler
(
num_total_classes
-
1
,
seed
);
...
...
@@ -87,11 +93,19 @@ class NCEKernel : public framework::OpKernel<T> {
break
;
}
case
2
:
{
auto
custom_dist
=
context
.
Input
<
Tensor
>
(
"CustomDistribution"
);
const
float
*
custom_dist_data
=
custom_dist
->
data
<
float
>
();
PADDLE_ENFORCE_EQ
(
custom_dist
->
numel
(),
num_total_classes
);
sampler
=
new
math
::
CustomSampler
(
num_total_classes
-
1
,
custom_dist_data
,
seed
);
auto
dist_probs
=
context
.
Input
<
Tensor
>
(
"CustomDistProbs"
);
auto
dist_alias
=
context
.
Input
<
Tensor
>
(
"CustomDistAlias"
);
auto
dist_alias_probs
=
context
.
Input
<
Tensor
>
(
"CustomDistAliasProbs"
);
PADDLE_ENFORCE_EQ
(
dist_probs
->
numel
(),
num_total_classes
);
PADDLE_ENFORCE_EQ
(
dist_alias
->
numel
(),
num_total_classes
);
PADDLE_ENFORCE_EQ
(
dist_alias_probs
->
numel
(),
num_total_classes
);
const
float
*
probs_data
=
dist_probs
->
data
<
float
>
();
const
int
*
alias_data
=
dist_alias
->
data
<
int
>
();
const
float
*
alias_probs_data
=
dist_alias_probs
->
data
<
float
>
();
sampler
=
new
math
::
CustomSampler
(
num_total_classes
-
1
,
probs_data
,
alias_data
,
alias_probs_data
,
seed
);
break
;
}
default:
{
PADDLE_THROW
(
"Unsupported SamplerType."
);
}
...
...
@@ -99,17 +113,17 @@ class NCEKernel : public framework::OpKernel<T> {
PrepareSamples
<
DeviceContext
,
T
>
(
context
,
sampler
);
auto
sample_labels
=
context
.
Output
<
Tensor
>
(
"SampleLabels"
);
const
int64_t
*
sample_labels_data
=
sample_labels
->
data
<
int64_t
>
();
const
int64_t
*
sample_labels_data
=
sample_labels
->
data
<
int64_t
>
();
auto
sample_out
=
context
.
Output
<
Tensor
>
(
"SampleLogits"
);
T
*
sample_out_data
=
sample_out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
sample_out_data
=
sample_out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
label
=
context
.
Input
<
Tensor
>
(
"Label"
);
auto
sample_weight
=
context
.
Input
<
Tensor
>
(
"SampleWeight"
);
const
T
*
sample_weight_data
=
nullptr
;
const
T
*
sample_weight_data
=
nullptr
;
if
(
sample_weight
!=
nullptr
)
{
sample_weight_data
=
sample_weight
->
data
<
T
>
();
}
auto
out
=
context
.
Output
<
Tensor
>
(
"Cost"
);
T
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int64_t
num_true_class
=
1
;
if
(
label
!=
nullptr
)
{
num_true_class
=
label
->
dims
()[
1
];
...
...
@@ -119,7 +133,7 @@ class NCEKernel : public framework::OpKernel<T> {
// forward bias
auto
bias
=
context
.
Input
<
Tensor
>
(
"Bias"
);
if
(
bias
!=
nullptr
)
{
const
T
*
bias_data
=
bias
->
data
<
T
>
();
const
T
*
bias_data
=
bias
->
data
<
T
>
();
for
(
int64_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
sample_out_data
[
i
]
=
bias_data
[
sample_labels_data
[
i
]];
}
...
...
@@ -158,16 +172,16 @@ class NCEKernel : public framework::OpKernel<T> {
template
<
typename
DeviceContext
,
typename
T
>
class
NCEGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
d_out
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Cost"
));
const
T
*
d_out_data
=
d_out
->
data
<
T
>
();
const
T
*
d_out_data
=
d_out
->
data
<
T
>
();
auto
label
=
context
.
Input
<
Tensor
>
(
"Label"
);
auto
sample_out
=
context
.
Input
<
Tensor
>
(
"SampleLogits"
);
const
T
*
sample_out_data
=
sample_out
->
data
<
T
>
();
const
T
*
sample_out_data
=
sample_out
->
data
<
T
>
();
auto
sample_labels
=
context
.
Input
<
Tensor
>
(
"SampleLabels"
);
const
int64_t
*
sample_labels_data
=
sample_labels
->
data
<
int64_t
>
();
const
int64_t
*
sample_labels_data
=
sample_labels
->
data
<
int64_t
>
();
auto
sample_weight
=
context
.
Input
<
Tensor
>
(
"SampleWeight"
);
const
T
*
sample_weight_data
=
nullptr
;
const
T
*
sample_weight_data
=
nullptr
;
if
(
sample_weight
!=
nullptr
)
{
sample_weight_data
=
sample_weight
->
data
<
T
>
();
}
...
...
@@ -180,7 +194,7 @@ class NCEGradKernel : public framework::OpKernel<T> {
int
sampler_type
=
context
.
Attr
<
int
>
(
"sampler"
);
int
seed
=
context
.
Attr
<
int
>
(
"seed"
);
Sampler
*
sampler
;
Sampler
*
sampler
;
switch
(
sampler_type
)
{
case
0
:
{
sampler
=
new
math
::
UniformSampler
(
num_total_classes
-
1
,
seed
);
...
...
@@ -191,11 +205,19 @@ class NCEGradKernel : public framework::OpKernel<T> {
break
;
}
case
2
:
{
auto
custom_dist
=
context
.
Input
<
Tensor
>
(
"CustomDistribution"
);
const
float
*
custom_dist_data
=
custom_dist
->
data
<
float
>
();
PADDLE_ENFORCE_EQ
(
custom_dist
->
numel
(),
num_total_classes
);
sampler
=
new
math
::
CustomSampler
(
num_total_classes
-
1
,
custom_dist_data
,
seed
);
auto
dist_probs
=
context
.
Input
<
Tensor
>
(
"CustomDistProbs"
);
auto
dist_alias
=
context
.
Input
<
Tensor
>
(
"CustomDistAlias"
);
auto
dist_alias_probs
=
context
.
Input
<
Tensor
>
(
"CustomDistAliasProbs"
);
PADDLE_ENFORCE_EQ
(
dist_probs
->
numel
(),
num_total_classes
);
PADDLE_ENFORCE_EQ
(
dist_alias
->
numel
(),
num_total_classes
);
PADDLE_ENFORCE_EQ
(
dist_alias_probs
->
numel
(),
num_total_classes
);
const
float
*
probs_data
=
dist_probs
->
data
<
float
>
();
const
int
*
alias_data
=
dist_alias
->
data
<
int
>
();
const
float
*
alias_probs_data
=
dist_alias_probs
->
data
<
float
>
();
sampler
=
new
math
::
CustomSampler
(
num_total_classes
-
1
,
probs_data
,
alias_data
,
alias_probs_data
,
seed
);
break
;
}
default:
{
PADDLE_THROW
(
"Unsupported SamplerType."
);
}
...
...
@@ -203,7 +225,7 @@ class NCEGradKernel : public framework::OpKernel<T> {
// T b = 1. / num_total_classes * num_neg_samples;
Tensor
sample_grad
;
// tmp tensor
T
*
sample_grad_data
=
T
*
sample_grad_data
=
sample_grad
.
mutable_data
<
T
>
(
sample_labels
->
dims
(),
context
.
GetPlace
());
// backward cost
for
(
int64_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
...
...
@@ -217,32 +239,105 @@ class NCEGradKernel : public framework::OpKernel<T> {
:
w
*
(
o
*
(
1
-
o
)
/
(
o
+
b
));
sample_grad_data
[
i
]
*=
d_out_data
[
sample_idx
];
}
// get d_bias
auto
d_bias
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
if
(
d_bias
!=
nullptr
)
{
T
*
d_bias_data
=
d_bias
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
fill
(
d_bias_data
,
d_bias_data
+
d_bias
->
numel
(),
0.0
);
bool
is_sparse
=
context
.
Attr
<
bool
>
(
"is_sparse"
);
if
(
!
is_sparse
)
{
// get d_bias
auto
d_bias
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
if
(
d_bias
!=
nullptr
)
{
T
*
d_bias_data
=
d_bias
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
fill
(
d_bias_data
,
d_bias_data
+
d_bias
->
numel
(),
0.0
);
for
(
int64_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
d_bias_data
[
sample_labels_data
[
i
]]
+=
sample_grad_data
[
i
];
}
}
// get d_w
auto
d_w
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Weight"
));
if
(
d_w
!=
nullptr
)
{
auto
d_w_data
=
d_w
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
fill
(
d_w_data
,
d_w_data
+
d_w
->
numel
(),
0.0
);
auto
d_w_matrix
=
EigenMatrix
<
T
>::
From
(
*
d_w
);
auto
x_matrix
=
EigenMatrix
<
T
>::
From
(
*
(
context
.
Input
<
Tensor
>
(
"Input"
)));
for
(
int64_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
d_w_matrix
.
chip
(
sample_labels_data
[
i
],
0
)
+=
x_matrix
.
chip
(
static_cast
<
int
>
(
i
/
sample_labels
->
dims
()[
1
]),
0
)
*
sample_grad_data
[
i
];
}
}
}
else
{
std
::
vector
<
int64_t
>
labels
;
for
(
int64_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
d_bias_data
[
sample_labels_data
[
i
]]
+=
sample_grad_data
[
i
]
;
labels
.
push_back
(
sample_labels_data
[
i
])
;
}
}
// get d_w
auto
d_w
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Weight"
));
if
(
d_w
!=
nullptr
)
{
auto
d_w_data
=
d_w
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
fill
(
d_w_data
,
d_w_data
+
d_w
->
numel
(),
0.0
);
auto
d_w_matrix
=
EigenMatrix
<
T
>::
From
(
*
d_w
);
std
::
set
<
T
>
st
(
labels
.
begin
(),
labels
.
end
());
labels
.
assign
(
st
.
begin
(),
st
.
end
());
auto
*
bias_var
=
context
.
InputVar
(
"Bias"
);
DDim
bias_dim
;
if
(
bias_var
->
IsType
<
LoDTensor
>
())
{
bias_dim
=
context
.
Input
<
LoDTensor
>
(
"Bias"
)
->
dims
();
}
else
if
(
bias_var
->
IsType
<
SelectedRows
>
())
{
auto
*
table_t
=
context
.
Input
<
SelectedRows
>
(
"Bias"
);
bias_dim
=
table_t
->
value
().
dims
();
}
else
{
PADDLE_THROW
(
"The parameter Bias of a NCE_OP "
"must be either LoDTensor or SelectedRows"
);
}
auto
d_bias
=
context
.
Output
<
SelectedRows
>
(
framework
::
GradVarName
(
"Bias"
));
d_bias
->
set_rows
(
labels
);
d_bias
->
set_height
(
bias_dim
[
0
]);
d_bias
->
mutable_value
()
->
Resize
(
{
static_cast
<
int64_t
>
(
labels
.
size
()),
bias_dim
[
1
]});
T
*
d_bias_data
=
d_bias
->
mutable_value
()
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
fill
(
d_bias_data
,
d_bias_data
+
labels
.
size
(),
0.0
);
for
(
int64_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
d_bias_data
[
d_bias
->
Index
(
sample_labels_data
[
i
])]
+=
sample_grad_data
[
i
];
}
auto
*
table_var
=
context
.
InputVar
(
"Weight"
);
DDim
table_dim
;
if
(
table_var
->
IsType
<
LoDTensor
>
())
{
table_dim
=
context
.
Input
<
LoDTensor
>
(
"Weight"
)
->
dims
();
}
else
if
(
table_var
->
IsType
<
SelectedRows
>
())
{
auto
*
table_t
=
context
.
Input
<
SelectedRows
>
(
"Weight"
);
table_dim
=
table_t
->
value
().
dims
();
}
else
{
PADDLE_THROW
(
"The parameter Weight of a NCE_OP "
"must be either LoDTensor or SelectedRows"
);
}
auto
d_w
=
context
.
Output
<
SelectedRows
>
(
framework
::
GradVarName
(
"Weight"
));
d_w
->
set_rows
(
labels
);
d_w
->
set_height
(
table_dim
[
0
]);
auto
*
d_table_value
=
d_w
->
mutable_value
();
d_table_value
->
Resize
(
{
static_cast
<
int64_t
>
(
labels
.
size
()),
table_dim
[
1
]});
auto
d_w_data
=
d_table_value
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
fill
(
d_w_data
,
d_w_data
+
d_table_value
->
numel
(),
0.0
);
auto
d_w_matrix
=
EigenMatrix
<
T
>::
From
(
*
d_table_value
);
auto
x_matrix
=
EigenMatrix
<
T
>::
From
(
*
(
context
.
Input
<
Tensor
>
(
"Input"
)));
for
(
int64_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
d_w_matrix
.
chip
(
sample_labels_data
[
i
]
,
0
)
+=
d_w_matrix
.
chip
(
d_w
->
Index
(
sample_labels_data
[
i
])
,
0
)
+=
x_matrix
.
chip
(
static_cast
<
int
>
(
i
/
sample_labels
->
dims
()[
1
]),
0
)
*
sample_grad_data
[
i
];
}
}
// get d_x
auto
d_x
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
if
(
d_x
!=
nullptr
)
{
auto
*
d_x_data
=
d_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
d_x_data
=
d_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
fill
(
d_x_data
,
d_x_data
+
d_x
->
numel
(),
0.0
);
auto
d_x_matrix
=
EigenMatrix
<
T
>::
From
(
*
d_x
);
auto
w_matrix
=
EigenMatrix
<
T
>::
From
(
*
(
context
.
Input
<
Tensor
>
(
"Weight"
)));
...
...
@@ -251,6 +346,7 @@ class NCEGradKernel : public framework::OpKernel<T> {
w_matrix
.
chip
(
sample_labels_data
[
i
],
0
)
*
sample_grad_data
[
i
];
}
}
delete
sampler
;
}
};
...
...
paddle/fluid/operators/reader/CMakeLists.txt
浏览文件 @
a02ce58f
...
...
@@ -28,6 +28,12 @@ reader_library(create_multi_pass_reader_op SRCS create_multi_pass_reader_op.cc)
reader_library
(
create_custom_reader_op SRCS create_custom_reader_op.cc
)
reader_library
(
create_py_reader_op SRCS create_py_reader_op.cc
)
if
(
NOT WIN32 AND NOT ON_INFER
)
cc_library
(
ctr_reader SRCS ctr_reader.cc DEPS gzstream reader zlib
)
cc_test
(
ctr_reader_test SRCS ctr_reader_test.cc DEPS ctr_reader
)
reader_library
(
create_ctr_reader_op SRCS create_ctr_reader_op.cc DEPS ctr_reader
)
endif
()
cc_test
(
reader_blocking_queue_test SRCS reader_blocking_queue_test.cc
)
# Export local libraries to parent
# set(READER_LIBRARY ${LOCAL_READER_LIBS} PARENT_SCOPE)
...
...
paddle/fluid/operators/reader/create_ctr_reader_op.cc
0 → 100644
浏览文件 @
a02ce58f
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reader/ctr_reader.h"
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
#include "paddle/fluid/operators/reader/reader_op_registry.h"
namespace
paddle
{
namespace
operators
{
namespace
reader
{
class
CreateCTRReaderOp
:
public
framework
::
OperatorBase
{
public:
using
framework
::
OperatorBase
::
OperatorBase
;
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
auto
*
out
=
scope
.
FindVar
(
Output
(
"Out"
))
->
template
GetMutable
<
framework
::
ReaderHolder
>();
if
(
out
->
Get
()
!=
nullptr
)
return
;
const
std
::
string
&
queue_name
=
Input
(
"blocking_queue"
);
auto
*
queue_holder_var
=
scope
.
FindVar
(
queue_name
);
PADDLE_ENFORCE_NOT_NULL
(
queue_holder_var
,
"No LoDTensorBlockingQueueHolder variable with name %s found"
,
queue_name
);
auto
*
queue_holder
=
queue_holder_var
->
template
GetMutable
<
LoDTensorBlockingQueueHolder
>();
int
thread_num
=
Attr
<
int
>
(
"thread_num"
);
std
::
vector
<
std
::
string
>
slots
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"slots"
);
int
batch_size
=
Attr
<
int
>
(
"batch_size"
);
std
::
vector
<
std
::
string
>
file_list
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"file_list"
);
out
->
Reset
(
std
::
make_shared
<
CTRReader
>
(
queue_holder
->
GetQueue
(),
batch_size
,
thread_num
,
slots
,
file_list
));
}
};
class
CreateCTRReaderOpMaker
:
public
FileReaderMakerBase
{
protected:
void
Apply
()
override
{
AddInput
(
"blocking_queue"
,
"Name of the `LoDTensorBlockingQueueHolder` variable"
);
AddAttr
<
int
>
(
"thread_num"
,
"the thread num to read data"
);
AddAttr
<
int
>
(
"batch_size"
,
"the batch size of read data"
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
"file_list"
,
"The list of files that need to read"
);
AddAttr
<
std
::
vector
<
std
::
string
>>
(
"slots"
,
"the slots that should be extract from file"
);
AddComment
(
R"DOC(
Create CTRReader to support read ctr data with cpp.
)DOC"
);
}
};
}
// namespace reader
}
// namespace operators
}
// namespace paddle
namespace
reader
=
::
paddle
::
operators
::
reader
;
REGISTER_FILE_READER_OPERATOR
(
create_ctr_reader
,
reader
::
CreateCTRReaderOp
,
reader
::
CreateCTRReaderOpMaker
);
paddle/fluid/operators/reader/ctr_reader.cc
0 → 100644
浏览文件 @
a02ce58f
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reader/ctr_reader.h"
#include <gzstream.h>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <unordered_map>
#include <algorithm>
#include <random>
namespace
paddle
{
namespace
operators
{
namespace
reader
{
static
inline
void
string_split
(
const
std
::
string
&
s
,
const
char
delimiter
,
std
::
vector
<
std
::
string
>*
output
)
{
size_t
start
=
0
;
size_t
end
=
s
.
find_first_of
(
delimiter
);
while
(
end
<=
std
::
string
::
npos
)
{
output
->
emplace_back
(
s
.
substr
(
start
,
end
-
start
));
if
(
end
==
std
::
string
::
npos
)
{
break
;
}
start
=
end
+
1
;
end
=
s
.
find_first_of
(
delimiter
,
start
);
}
}
static
inline
void
parse_line
(
const
std
::
string
&
line
,
const
std
::
unordered_map
<
std
::
string
,
size_t
>&
slot_to_index
,
int64_t
*
label
,
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int64_t
>>*
slot_to_data
)
{
std
::
vector
<
std
::
string
>
ret
;
string_split
(
line
,
' '
,
&
ret
);
*
label
=
std
::
stoi
(
ret
[
2
])
>
0
;
for
(
size_t
i
=
3
;
i
<
ret
.
size
();
++
i
)
{
const
std
::
string
&
item
=
ret
[
i
];
std
::
vector
<
std
::
string
>
feasign_and_slot
;
string_split
(
item
,
':'
,
&
feasign_and_slot
);
if
(
feasign_and_slot
.
size
()
==
2
&&
slot_to_index
.
find
(
feasign_and_slot
[
1
])
!=
slot_to_index
.
end
())
{
int64_t
feasign
=
std
::
strtoll
(
feasign_and_slot
[
0
].
c_str
(),
NULL
,
10
);
(
*
slot_to_data
)[
feasign_and_slot
[
1
]].
push_back
(
feasign
);
}
}
// NOTE:: if the slot has no value, then fill [0] as it's data.
for
(
auto
&
item
:
slot_to_index
)
{
if
(
slot_to_data
->
find
(
item
.
first
)
==
slot_to_data
->
end
())
{
(
*
slot_to_data
)[
item
.
first
].
push_back
(
0
);
}
}
}
class
Reader
{
public:
virtual
~
Reader
()
{}
virtual
bool
HasNext
()
=
0
;
virtual
void
NextLine
(
std
::
string
*
line
)
=
0
;
};
class
GzipReader
:
public
Reader
{
public:
explicit
GzipReader
(
const
std
::
string
&
file_name
)
:
gzstream_
(
file_name
.
c_str
())
{}
~
GzipReader
()
{}
bool
HasNext
()
override
{
return
gzstream_
.
peek
()
!=
EOF
;
}
void
NextLine
(
std
::
string
*
line
)
override
{
std
::
getline
(
gzstream_
,
*
line
);
}
private:
igzstream
gzstream_
;
};
class
MultiGzipReader
:
public
Reader
{
public:
explicit
MultiGzipReader
(
const
std
::
vector
<
std
::
string
>&
file_list
)
{
for
(
auto
&
file
:
file_list
)
{
readers_
.
emplace_back
(
std
::
make_shared
<
GzipReader
>
(
file
));
}
}
bool
HasNext
()
override
{
if
(
current_reader_index_
>=
readers_
.
size
())
{
return
false
;
}
if
(
!
readers_
[
current_reader_index_
]
->
HasNext
())
{
current_reader_index_
++
;
return
HasNext
();
}
return
true
;
}
void
NextLine
(
std
::
string
*
line
)
override
{
readers_
[
current_reader_index_
]
->
NextLine
(
line
);
}
private:
std
::
vector
<
std
::
shared_ptr
<
GzipReader
>>
readers_
;
size_t
current_reader_index_
=
0
;
};
void
MonitorThread
(
std
::
vector
<
ReaderThreadStatus
>*
thread_status
,
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue
)
{
VLOG
(
30
)
<<
"monitor thread in"
;
bool
reader_thread_is_running
=
true
;
while
(
reader_thread_is_running
)
{
VLOG
(
30
)
<<
"reader_thread_is_running"
;
reader_thread_is_running
=
false
;
for
(
size_t
i
=
0
;
i
<
(
*
thread_status
).
size
();
++
i
)
{
if
((
*
thread_status
)[
i
]
==
Running
)
{
VLOG
(
30
)
<<
"reader is running!"
;
reader_thread_is_running
=
true
;
}
}
std
::
this_thread
::
sleep_for
(
std
::
chrono
::
milliseconds
(
1000
));
}
VLOG
(
30
)
<<
"all reader thread is stopped, push empty data into queue"
;
queue
->
Push
({});
VLOG
(
30
)
<<
"monitor thread exited"
;
}
void
ReadThread
(
const
std
::
vector
<
std
::
string
>&
file_list
,
const
std
::
vector
<
std
::
string
>&
slots
,
int
batch_size
,
int
thread_id
,
std
::
vector
<
ReaderThreadStatus
>*
thread_status
,
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue
)
{
VLOG
(
30
)
<<
"["
<<
thread_id
<<
"]"
<<
" reader thread start! thread_id = "
<<
thread_id
;
for
(
auto
&
file
:
file_list
)
{
VLOG
(
30
)
<<
"["
<<
thread_id
<<
"]"
<<
" file "
<<
file
;
}
(
*
thread_status
)[
thread_id
]
=
Running
;
VLOG
(
30
)
<<
"set status to running"
;
std
::
unordered_map
<
std
::
string
,
size_t
>
slot_to_index
;
for
(
size_t
i
=
0
;
i
<
slots
.
size
();
++
i
)
{
slot_to_index
[
slots
[
i
]]
=
i
;
}
std
::
string
line
;
std
::
vector
<
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int64_t
>>>
batch_data
;
std
::
vector
<
int64_t
>
batch_label
;
MultiGzipReader
reader
(
file_list
);
VLOG
(
30
)
<<
"reader inited"
;
while
(
reader
.
HasNext
())
{
batch_data
.
clear
();
batch_data
.
reserve
(
batch_size
);
batch_label
.
clear
();
batch_label
.
reserve
(
batch_size
);
// read batch_size data
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
if
(
reader
.
HasNext
())
{
reader
.
NextLine
(
&
line
);
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int64_t
>>
slot_to_data
;
int64_t
label
;
parse_line
(
line
,
slot_to_index
,
&
label
,
&
slot_to_data
);
batch_data
.
push_back
(
slot_to_data
);
batch_label
.
push_back
(
label
);
}
else
{
break
;
}
}
std
::
vector
<
framework
::
LoDTensor
>
lod_datas
;
// first insert tensor for each slots
for
(
auto
&
slot
:
slots
)
{
std
::
vector
<
size_t
>
lod_data
{
0
};
std
::
vector
<
int64_t
>
batch_feasign
;
for
(
size_t
i
=
0
;
i
<
batch_data
.
size
();
++
i
)
{
auto
&
feasign
=
batch_data
[
i
][
slot
];
lod_data
.
push_back
(
lod_data
.
back
()
+
feasign
.
size
());
batch_feasign
.
insert
(
batch_feasign
.
end
(),
feasign
.
begin
(),
feasign
.
end
());
}
framework
::
LoDTensor
lod_tensor
;
framework
::
LoD
lod
{
lod_data
};
lod_tensor
.
set_lod
(
lod
);
int64_t
*
tensor_data
=
lod_tensor
.
mutable_data
<
int64_t
>
(
framework
::
make_ddim
({
1
,
static_cast
<
int64_t
>
(
batch_feasign
.
size
())}),
platform
::
CPUPlace
());
memcpy
(
tensor_data
,
batch_feasign
.
data
(),
batch_feasign
.
size
()
*
sizeof
(
int64_t
));
lod_datas
.
push_back
(
lod_tensor
);
}
// insert label tensor
framework
::
LoDTensor
label_tensor
;
auto
*
label_tensor_data
=
label_tensor
.
mutable_data
<
int64_t
>
(
framework
::
make_ddim
({
1
,
static_cast
<
int64_t
>
(
batch_label
.
size
())}),
platform
::
CPUPlace
());
memcpy
(
label_tensor_data
,
batch_label
.
data
(),
batch_label
.
size
()
*
sizeof
(
int64_t
));
lod_datas
.
push_back
(
label_tensor
);
queue
->
Push
(
lod_datas
);
VLOG
(
40
)
<<
"push one data, queue_size="
<<
queue
->
Size
();
}
(
*
thread_status
)[
thread_id
]
=
Stopped
;
VLOG
(
30
)
<<
"set status to stopped, thread "
<<
thread_id
<<
" exited"
;
}
}
// namespace reader
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/reader/ctr_reader.h
0 → 100644
浏览文件 @
a02ce58f
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <sys/time.h>
#include <chrono> // NOLINT
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/threadpool.h"
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
namespace
paddle
{
namespace
operators
{
namespace
reader
{
enum
ReaderThreadStatus
{
Running
,
Stopped
};
void
ReadThread
(
const
std
::
vector
<
std
::
string
>&
file_list
,
const
std
::
vector
<
std
::
string
>&
slots
,
int
batch_size
,
int
thread_id
,
std
::
vector
<
ReaderThreadStatus
>*
thread_status
,
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue
);
// monitor all running thread, if they are all stopped,
// then push an empty data into LoDTensorBlockingQueue
void
MonitorThread
(
std
::
vector
<
ReaderThreadStatus
>*
thread_status
,
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue
);
class
CTRReader
:
public
framework
::
FileReader
{
public:
explicit
CTRReader
(
const
std
::
shared_ptr
<
LoDTensorBlockingQueue
>&
queue
,
int
batch_size
,
int
thread_num
,
const
std
::
vector
<
std
::
string
>&
slots
,
const
std
::
vector
<
std
::
string
>&
file_list
)
:
batch_size_
(
batch_size
),
slots_
(
slots
),
file_list_
(
file_list
)
{
PADDLE_ENFORCE_GT
(
thread_num
,
0
,
"thread num should be larger then 0!"
);
PADDLE_ENFORCE
(
queue
!=
nullptr
,
"LoDTensorBlockingQueue must not be null"
);
PADDLE_ENFORCE_GT
(
file_list
.
size
(),
0
,
"file list should not be empty"
);
thread_num_
=
file_list_
.
size
()
>
thread_num
?
thread_num
:
file_list_
.
size
();
queue_
=
queue
;
SplitFiles
();
for
(
size_t
i
=
0
;
i
<
thread_num_
;
++
i
)
{
read_thread_status_
.
push_back
(
Stopped
);
}
}
~
CTRReader
()
{}
void
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
bool
success
;
*
out
=
queue_
->
Pop
(
&
success
);
if
(
!
success
)
out
->
clear
();
}
void
Shutdown
()
override
{
VLOG
(
3
)
<<
"Shutdown reader"
;
if
(
status_
==
ReaderStatus
::
kStopped
)
{
return
;
}
// shutdown should stop all the reader thread
for
(
auto
&
read_thread
:
read_threads_
)
{
read_thread
->
join
();
}
monitor_thread_
->
join
();
read_threads_
.
clear
();
monitor_thread_
.
reset
(
nullptr
);
queue_
->
Close
();
status_
=
ReaderStatus
::
kStopped
;
}
void
Start
()
override
{
VLOG
(
3
)
<<
"Start reader"
;
PADDLE_ENFORCE_EQ
(
read_threads_
.
size
(),
0
,
"read thread should be empty!"
);
queue_
->
ReOpen
();
VLOG
(
3
)
<<
"reopen success"
;
VLOG
(
3
)
<<
"thread_num "
<<
thread_num_
;
for
(
int
thread_id
=
0
;
thread_id
<
thread_num_
;
thread_id
++
)
{
read_threads_
.
emplace_back
(
new
std
::
thread
(
std
::
bind
(
&
ReadThread
,
file_groups_
[
thread_id
],
slots_
,
batch_size_
,
thread_id
,
&
read_thread_status_
,
queue_
)));
}
monitor_thread_
.
reset
(
new
std
::
thread
(
std
::
bind
(
&
MonitorThread
,
&
read_thread_status_
,
queue_
)));
status_
=
ReaderStatus
::
kRunning
;
}
private:
void
SplitFiles
()
{
file_groups_
.
resize
(
thread_num_
);
for
(
size_t
i
=
0
;
i
<
file_list_
.
size
();
++
i
)
{
auto
&
file_name
=
file_list_
[
i
];
std
::
ifstream
f
(
file_name
.
c_str
());
PADDLE_ENFORCE
(
f
.
good
(),
"file %s not exist!"
,
file_name
);
file_groups_
[
i
%
thread_num_
].
push_back
(
file_name
);
}
}
private:
size_t
thread_num_
;
const
int
batch_size_
;
const
std
::
vector
<
std
::
string
>
slots_
;
const
std
::
vector
<
std
::
string
>
file_list_
;
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue_
;
std
::
vector
<
std
::
unique_ptr
<
std
::
thread
>>
read_threads_
;
std
::
unique_ptr
<
std
::
thread
>
monitor_thread_
;
std
::
vector
<
ReaderThreadStatus
>
read_thread_status_
;
std
::
vector
<
std
::
vector
<
std
::
string
>>
file_groups_
;
};
}
// namespace reader
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/reader/ctr_reader_test.cc
0 → 100644
浏览文件 @
a02ce58f
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reader/ctr_reader.h"
#include <gzstream.h>
#include <time.h>
#include <math.h>
#include <stdio.h>
#include <cstring>
#include <fstream>
#include <tuple>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
using
paddle
::
operators
::
reader
::
LoDTensorBlockingQueue
;
using
paddle
::
operators
::
reader
::
LoDTensorBlockingQueueHolder
;
using
paddle
::
operators
::
reader
::
CTRReader
;
using
paddle
::
framework
::
LoDTensor
;
using
paddle
::
framework
::
LoD
;
using
paddle
::
framework
::
DDim
;
using
paddle
::
platform
::
CPUPlace
;
using
paddle
::
framework
::
make_ddim
;
static
void
generatedata
(
const
std
::
vector
<
std
::
string
>&
data
,
const
std
::
string
&
file_name
)
{
std
::
ifstream
in
(
file_name
.
c_str
());
if
(
in
.
good
())
{
VLOG
(
3
)
<<
"file "
<<
file_name
<<
" exist, delete it first!"
;
remove
(
file_name
.
c_str
());
}
else
{
in
.
close
();
}
ogzstream
out
(
file_name
.
c_str
());
PADDLE_ENFORCE
(
out
.
good
(),
"open file %s failed!"
,
file_name
);
for
(
auto
&
c
:
data
)
{
out
<<
c
;
}
out
.
close
();
PADDLE_ENFORCE
(
out
.
good
(),
"save file %s failed!"
,
file_name
);
}
static
inline
void
check_all_data
(
const
std
::
vector
<
std
::
string
>&
ctr_data
,
const
std
::
vector
<
std
::
string
>&
slots
,
const
std
::
vector
<
DDim
>&
label_dims
,
const
std
::
vector
<
int64_t
>&
label_value
,
const
std
::
vector
<
std
::
tuple
<
LoD
,
std
::
vector
<
int64_t
>>>&
data_slot_6002
,
const
std
::
vector
<
std
::
tuple
<
LoD
,
std
::
vector
<
int64_t
>>>&
data_slot_6003
,
size_t
batch_num
,
size_t
batch_size
,
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue
,
CTRReader
*
reader
)
{
std
::
vector
<
LoDTensor
>
out
;
for
(
size_t
i
=
0
;
i
<
batch_num
;
++
i
)
{
reader
->
ReadNext
(
&
out
);
ASSERT_EQ
(
out
.
size
(),
slots
.
size
()
+
1
);
auto
&
label_tensor
=
out
.
back
();
ASSERT_EQ
(
label_tensor
.
dims
(),
label_dims
[
i
]);
for
(
size_t
j
=
0
;
j
<
batch_size
&&
i
*
batch_num
+
j
<
ctr_data
.
size
();
++
j
)
{
auto
&
label
=
label_tensor
.
data
<
int64_t
>
()[
j
];
ASSERT_TRUE
(
label
==
0
||
label
==
1
);
ASSERT_EQ
(
label
,
label_value
[
i
*
batch_size
+
j
]);
}
auto
&
tensor_6002
=
out
[
0
];
ASSERT_EQ
(
std
::
get
<
0
>
(
data_slot_6002
[
i
]),
tensor_6002
.
lod
());
ASSERT_EQ
(
std
::
memcmp
(
std
::
get
<
1
>
(
data_slot_6002
[
i
]).
data
(),
tensor_6002
.
data
<
int64_t
>
(),
tensor_6002
.
dims
()[
1
]
*
sizeof
(
int64_t
)),
0
);
}
reader
->
ReadNext
(
&
out
);
ASSERT_EQ
(
out
.
size
(),
0
);
ASSERT_EQ
(
queue
->
Size
(),
0
);
}
TEST
(
CTR_READER
,
read_data
)
{
const
std
::
vector
<
std
::
string
>
ctr_data
=
{
"aaaa 1 0 0:6002 1:6003 2:6004 3:6005 4:6006 -1
\n
"
,
"bbbb 1 0 5:6003 6:6003 7:6003 8:6004 9:6004 -1
\n
"
,
"cccc 1 1 10:6002 11:6002 12:6002 13:6002 14:6002 -2
\n
"
,
"dddd 1 0 15:6003 16:6003 17:6003 18:6003 19:6004 -3
\n
"
,
"1111 1 1 20:6001 21:6001 22:6001 23:6001 24:6001 12
\n
"
,
"2222 1 1 25:6004 26:6004 27:6004 28:6005 29:6005 aa
\n
"
,
"3333 1 0 30:6002 31:6003 32:6004 33:6004 34:6005 er
\n
"
,
"eeee 1 1 35:6003 36:6003 37:6005 38:6005 39:6005 dd
\n
"
,
"ffff 1 1 40:6002 41:6003 42:6004 43:6004 44:6005 66
\n
"
,
"gggg 1 1 46:6006 45:6006 47:6003 48:6003 49:6003 ba
\n
"
,
};
std
::
string
gz_file_name
=
"test_ctr_reader_data.gz"
;
generatedata
(
ctr_data
,
gz_file_name
);
std
::
vector
<
int64_t
>
label_value
=
{
0
,
0
,
1
,
0
,
1
,
1
,
0
,
1
,
1
,
1
};
std
::
tuple
<
LoD
,
std
::
vector
<
int64_t
>>
a1
({{
0
,
1
,
2
,
7
}},
{
0
,
0
,
10
,
11
,
12
,
13
,
14
});
std
::
tuple
<
LoD
,
std
::
vector
<
int64_t
>>
a2
({{
0
,
1
,
2
,
3
}},
{
0
,
0
,
0
});
std
::
tuple
<
LoD
,
std
::
vector
<
int64_t
>>
a3
({{
0
,
1
,
2
,
3
}},
{
30
,
0
,
40
});
std
::
tuple
<
LoD
,
std
::
vector
<
int64_t
>>
a4
({{
0
,
1
}},
{
0
});
std
::
vector
<
std
::
tuple
<
LoD
,
std
::
vector
<
int64_t
>>>
data_slot_6002
{
a1
,
a2
,
a3
,
a4
};
std
::
tuple
<
LoD
,
std
::
vector
<
int64_t
>>
b1
({{
0
,
1
,
4
,
5
}},
{
1
,
5
,
6
,
7
,
0
});
std
::
tuple
<
LoD
,
std
::
vector
<
int64_t
>>
b2
({{
0
,
4
,
5
,
6
}},
{
15
,
16
,
17
,
18
,
0
,
0
});
std
::
tuple
<
LoD
,
std
::
vector
<
int64_t
>>
b3
({{
0
,
1
,
3
,
4
}},
{
31
,
35
,
36
,
41
});
std
::
tuple
<
LoD
,
std
::
vector
<
int64_t
>>
b4
({{
0
,
3
}},
{
47
,
48
,
49
});
std
::
vector
<
std
::
tuple
<
LoD
,
std
::
vector
<
int64_t
>>>
data_slot_6003
{
b1
,
b2
,
b3
,
b4
};
std
::
vector
<
DDim
>
label_dims
=
{{
1
,
3
},
{
1
,
3
},
{
1
,
3
},
{
1
,
1
}};
LoDTensorBlockingQueueHolder
queue_holder
;
int
capacity
=
64
;
queue_holder
.
InitOnce
(
capacity
,
{},
false
);
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue
=
queue_holder
.
GetQueue
();
int
batch_size
=
3
;
int
thread_num
=
1
;
std
::
vector
<
std
::
string
>
slots
=
{
"6002"
,
"6003"
};
std
::
vector
<
std
::
string
>
file_list
;
for
(
int
i
=
0
;
i
<
thread_num
;
++
i
)
{
file_list
.
push_back
(
gz_file_name
);
}
CTRReader
reader
(
queue
,
batch_size
,
thread_num
,
slots
,
file_list
);
reader
.
Start
();
size_t
batch_num
=
std
::
ceil
(
static_cast
<
float
>
(
ctr_data
.
size
())
/
batch_size
)
*
thread_num
;
check_all_data
(
ctr_data
,
slots
,
label_dims
,
label_value
,
data_slot_6002
,
data_slot_6003
,
batch_num
,
batch_size
,
queue
,
&
reader
);
reader
.
Shutdown
();
reader
.
Start
();
check_all_data
(
ctr_data
,
slots
,
label_dims
,
label_value
,
data_slot_6002
,
data_slot_6003
,
batch_num
,
batch_size
,
queue
,
&
reader
);
reader
.
Shutdown
();
}
paddle/fluid/platform/float16.h
浏览文件 @
a02ce58f
...
...
@@ -1039,6 +1039,11 @@ HOSTDEVICE inline float16 exp(const float16& a) {
return
float16
(
::
expf
(
static_cast
<
float
>
(
a
)));
}
template
<
>
HOSTDEVICE
inline
float16
erf
(
const
float16
&
a
)
{
return
float16
(
::
erff
(
static_cast
<
float
>
(
a
)));
}
template
<
>
HOSTDEVICE
inline
float16
log
(
const
float16
&
a
)
{
return
float16
(
::
logf
(
static_cast
<
float
>
(
a
)));
...
...
paddle/fluid/platform/gpu_info.cc
浏览文件 @
a02ce58f
...
...
@@ -20,12 +20,12 @@ limitations under the License. */
#include "paddle/fluid/platform/enforce.h"
#ifndef _WIN32
const
float
fraction_of_gpu_memory_to_use
=
0.92
f
;
const
expr
static
float
fraction_of_gpu_memory_to_use
=
0.92
f
;
#else
// fraction_of_gpu_memory_to_use cannot be too high on windows,
// since the win32 graphic sub-system can occupy some GPU memory
// which may lead to insufficient memory left for paddle
const
float
fraction_of_gpu_memory_to_use
=
0.5
f
;
const
expr
static
float
fraction_of_gpu_memory_to_use
=
0.5
f
;
#endif
DEFINE_double
(
fraction_of_gpu_memory_to_use
,
fraction_of_gpu_memory_to_use
,
...
...
paddle/fluid/platform/mkldnn_helper.h
浏览文件 @
a02ce58f
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <mkldnn.h>
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/framework/operator.h"
...
...
@@ -292,5 +293,21 @@ inline mkldnn::memory::format data_format_to_memory_format(
}
}
inline
mkldnn
::
memory
::
format
StringToMKLDNNFormat
(
std
::
string
*
format
)
{
std
::
transform
(
format
->
begin
(),
format
->
end
(),
format
->
begin
(),
::
tolower
);
if
(
!
format
->
compare
(
"nchw"
))
{
return
mkldnn
::
memory
::
format
::
nchw
;
}
else
if
(
!
format
->
compare
(
"nchw16c"
))
{
return
mkldnn
::
memory
::
format
::
nChw16c
;
}
else
if
(
!
format
->
compare
(
"nchw8c"
))
{
return
mkldnn
::
memory
::
format
::
nChw8c
;
}
else
if
(
!
format
->
compare
(
"nhwc"
))
{
return
mkldnn
::
memory
::
format
::
nhwc
;
}
else
{
return
mkldnn
::
memory
::
format
::
any
;
}
}
}
// namespace platform
}
// namespace paddle
paddle/fluid/pybind/protobuf.cc
浏览文件 @
a02ce58f
...
...
@@ -29,8 +29,16 @@ limitations under the License. */
namespace
pybind11
{
namespace
detail
{
#if !defined(PYBIND11_HIDDEN)
#ifdef _WIN32
#define PYBIND11_HIDDEN __declspec(dllexport)
#else
#define PYBIND11_HIDDEN __attribute__((visibility("hidden")))
#endif
#endif
// Can be replaced by a generic lambda in C++14
struct
__attribute__
((
visibility
(
"hidden"
)))
paddle_variant_caster_visitor
struct
PYBIND11_HIDDEN
paddle_variant_caster_visitor
:
public
boost
::
static_visitor
<
handle
>
{
return_value_policy
policy
;
handle
parent
;
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
a02ce58f
...
...
@@ -860,6 +860,12 @@ All parameter, weight, gradient are variables in Paddle.
self
.
remove_unnecessary_lock_
=
b
;
},
R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC"
)
.
def_property
(
"num_trainers"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
num_trainers_
;
},
[](
BuildStrategy
&
self
,
int
num_trainers
)
{
self
.
num_trainers_
=
num_trainers
;
})
.
def_property
(
"fuse_elewise_add_act_ops"
,
[](
const
BuildStrategy
&
self
)
{
...
...
paddle/legacy/cuda/src/hl_cuda_device.cc
浏览文件 @
a02ce58f
...
...
@@ -137,10 +137,10 @@ inline pid_t gettid() {
#define __NR_gettid 224
#endif
pid_t
tid
=
syscall
(
__NR_gettid
);
#endif
#else // _WIN32
pid_t
tid
=
_getpid
();
#endif // _WIN32
#endif
CHECK_NE
((
int
)
tid
,
-
1
);
return
tid
;
}
...
...
paddle/scripts/paddle_build.sh
浏览文件 @
a02ce58f
...
...
@@ -469,18 +469,21 @@ function assert_api_spec_approvals() {
BRANCH
=
"develop"
fi
API_CHANGE
=
`
git diff
--name-only
upstream/
$BRANCH
|
grep
"paddle/fluid/API.spec"
||
true
`
echo
"checking API.spec change, PR:
${
GIT_PR_ID
}
, changes:
${
API_CHANGE
}
"
if
[
${
API_CHANGE
}
]
&&
[
"
${
GIT_PR_ID
}
"
!=
""
]
;
then
# NOTE: per_page=10000 should be ok for all cases, a PR review > 10000 is not human readable.
APPROVALS
=
`
curl
-H
"Authorization: token
${
GITHUB_API_TOKEN
}
"
https://api.github.com/repos/PaddlePaddle/Paddle/pulls/
${
GIT_PR_ID
}
/reviews?per_page
=
10000 |
\
python
${
PADDLE_ROOT
}
/tools/check_pr_approval.py 2 7845005 2887803 728699 13348433
`
echo
"current pr
${
GIT_PR_ID
}
got approvals:
${
APPROVALS
}
"
if
[
"
${
APPROVALS
}
"
==
"FALSE"
]
;
then
echo
"You must have at least 2 approvals for the api change!"
exit
1
fi
fi
API_FILES
=(
"paddle/fluid/API.spec"
"paddle/fluid/framework/operator.h"
)
for
API_FILE
in
${
API_FILES
[*]
}
;
do
API_CHANGE
=
`
git diff
--name-only
upstream/
$BRANCH
|
grep
"
${
API_FILE
}
"
||
true
`
echo
"checking
${
API_FILE
}
change, PR:
${
GIT_PR_ID
}
, changes:
${
API_CHANGE
}
"
if
[
${
API_CHANGE
}
]
&&
[
"
${
GIT_PR_ID
}
"
!=
""
]
;
then
# NOTE: per_page=10000 should be ok for all cases, a PR review > 10000 is not human readable.
APPROVALS
=
`
curl
-H
"Authorization: token
${
GITHUB_API_TOKEN
}
"
https://api.github.com/repos/PaddlePaddle/Paddle/pulls/
${
GIT_PR_ID
}
/reviews?per_page
=
10000 |
\
python
${
PADDLE_ROOT
}
/tools/check_pr_approval.py 2 7845005 2887803 728699 13348433
`
echo
"current pr
${
GIT_PR_ID
}
got approvals:
${
APPROVALS
}
"
if
[
"
${
APPROVALS
}
"
==
"FALSE"
]
;
then
echo
"You must have at least 2 approvals for the api change!
${
API_FILE
}
"
exit
1
fi
fi
done
}
...
...
python/paddle/fluid/contrib/reader/ctr_reader.py
0 → 100644
浏览文件 @
a02ce58f
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
from
paddle.fluid
import
core
from
paddle.fluid.executor
import
global_scope
from
paddle.fluid.framework
import
default_main_program
,
\
default_startup_program
,
Variable
from
paddle.fluid.unique_name
import
generate
as
unique_name
def
monkey_patch_reader_methods
(
reader
):
def
__get_reader__
():
scope
=
global_scope
()
var
=
scope
.
find_var
(
reader
.
name
)
return
var
.
get_reader
()
def
reset
():
return
__get_reader__
().
reset
()
reader
.
reset
=
reset
reader
.
stop_gradient
=
True
reader
.
persistable
=
True
return
reader
def
_copy_reader_var_
(
block
,
var
):
new_var
=
block
.
create_var
(
name
=
var
.
name
,
type
=
core
.
VarDesc
.
VarType
.
READER
)
new_var
.
desc
.
set_shapes
(
var
.
desc
.
shapes
())
new_var
.
desc
.
set_dtypes
(
var
.
desc
.
dtypes
())
new_var
.
persistable
=
True
return
new_var
def
ctr_reader
(
feed_data
,
capacity
,
thread_num
,
batch_size
,
file_list
,
slots
,
name
=
None
):
"""
Create a CTR reader for data feeding in Python
This layer returns a Reader Variable.
The Reader provides :code:`decorate_paddle_reader()` and
:code:`decorate_tensor_provider()` to set a Python generator as the data
source in Python side. When :code:`Executor::Run()` is invoked in C++
side, the data from the generator would be read automatically. Unlike
:code:`DataFeeder.feed()`, the data reading process and
:code:`Executor::Run()` process can run in parallel using
:code:`py_reader`. The :code:`start()` method of the Reader should be
called when each pass begins, while the :code:`reset()` method should be
called when the pass ends and :code:`fluid.core.EOFException` raises.
Note that :code:`Program.clone()` method cannot clone :code:`py_reader`.
Args:
capacity(int): The buffer capacity maintained by :code:`py_reader`.
thread_num(list|tuple): List of tuples which declaring data shapes.
batch_size(list|tuple): List of strs which declaring data type.
file_list(list|tuple): List of ints which declaring data lod_level.
slots(bool): Whether use double buffer or not.
name(basestring): The prefix Python queue name and Reader name. None will
be generated automatically.
Returns:
Variable: A Reader from which we can get feeding data.
Examples:
1. The basic usage of :code:`py_reader` is as follows:
"""
if
name
is
None
:
queue_name
=
unique_name
(
'lod_tensor_blocking_queue'
)
reader_name
=
unique_name
(
'create_ctr_reader'
)
else
:
queue_name
=
"_"
.
join
([
name
,
"queue"
])
reader_name
=
"_"
.
join
([
name
,
"reader"
])
var
=
global_scope
().
var
(
queue_name
)
feed_queue
=
core
.
init_lod_tensor_blocking_queue
(
var
,
capacity
,
shapes
)
startup_blk
=
default_startup_program
().
current_block
()
reader_var
=
startup_blk
.
create_var
(
name
=
reader_name
)
startup_blk
.
append_op
(
type
=
'create_ctr_reader'
,
inputs
=
{
'blocking_queue'
:
[
queue_name
]},
outputs
=
{
'Out'
:
[
reader_var
]},
attrs
=
{
'thread_num'
:
thread_num
,
'batch_size'
:
batch_size
,
'file_list'
:
file_list
,
'slots'
:
slots
,
})
reader_var
.
persistable
=
True
main_prog_reader_var
=
_copy_reader_var_
(
default_main_program
().
current_block
(),
reader_var
)
reader
=
monkey_patch_reader_methods
(
main_prog_reader_var
)
# monkey patch py_reader special methods
reader
.
queue
=
feed_queue
reader
.
exited
=
False
main_blk
=
default_main_program
().
current_block
()
main_blk
.
append_op
(
type
=
'read'
,
inputs
=
{
'Reader'
:
[
reader
]},
outputs
=
{
'Out'
:
feed_data
})
return
reader
python/paddle/fluid/io.py
浏览文件 @
a02ce58f
...
...
@@ -637,8 +637,8 @@ def save_inference_model(dirname,
if
isinstance
(
target_vars
,
Variable
):
target_vars
=
[
target_vars
]
elif
export_for_deployment
:
if
not
(
bool
(
target_vars
)
and
all
(
isinstance
(
var
,
Variable
)
for
var
in
target_vars
)):
if
not
(
bool
(
target_vars
)
and
all
(
isinstance
(
var
,
Variable
)
for
var
in
target_vars
)):
raise
ValueError
(
"'target_vars' should be a list of Variable."
)
if
main_program
is
None
:
...
...
@@ -667,10 +667,15 @@ def save_inference_model(dirname,
if
export_for_deployment
:
main_program
=
main_program
.
clone
()
global_block
=
main_program
.
global_block
()
need_to_remove_op_index
=
[]
for
i
,
op
in
enumerate
(
global_block
.
ops
):
op
.
desc
.
set_is_target
(
False
)
if
op
.
type
==
"feed"
or
op
.
type
==
"fetch"
:
global_block
.
_remove_op
(
i
)
need_to_remove_op_index
.
append
(
i
)
for
index
in
need_to_remove_op_index
[::
-
1
]:
global_block
.
_remove_op
(
index
)
main_program
.
desc
.
flush
()
main_program
=
main_program
.
_prune
(
targets
=
target_vars
)
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
a02ce58f
...
...
@@ -4394,7 +4394,8 @@ def nce(input,
name
=
None
,
sampler
=
"uniform"
,
custom_dist
=
None
,
seed
=
0
):
seed
=
0
,
is_sparse
=
False
):
"""
${comment}
...
...
@@ -4420,11 +4421,12 @@ def nce(input,
sampler (str): The sampler used to sample class from negtive classes.
It can be 'uniform', 'log_uniform' or 'custom_dist'.
default: 'uniform'.
custom_dist (
Variable): A tensor with shape [num_total_classes]
.
custom_dist (
float[]): A float[] with size=num_total_classes
.
It is used when sampler is set to 'custom_dist'.
custom_dist[i] is the probsbility of i-th class to be sampled.
default: None.
seed (int): The seed used in sampler. default: 0.
is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
Returns:
Variable: The output nce loss.
...
...
@@ -4476,12 +4478,7 @@ def nce(input,
shape
=
[
num_total_classes
,
dim
],
is_bias
=
False
,
dtype
=
input
.
dtype
)
inputs
=
{
'Input'
:
input
,
'Label'
:
label
,
'Weight'
:
w
,
'SampleWeight'
:
sample_weight
if
sample_weight
is
not
None
else
[]
}
inputs
=
{}
if
helper
.
bias_attr
:
b
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
...
...
@@ -4493,18 +4490,10 @@ def nce(input,
sample_logits
=
helper
.
create_variable_for_type_inference
(
dtype
=
input
.
dtype
)
sample_labels
=
helper
.
create_variable_for_type_inference
(
dtype
=
label
.
dtype
)
if
num_neg_samples
is
None
:
num_neg_samples
=
10
else
:
num_neg_samples
=
int
(
num_neg_samples
)
inputs
=
{
'Input'
:
input
,
'Label'
:
label
,
'Weight'
:
w
,
'Bias'
:
b
,
'SampleWeight'
:
sample_weight
if
sample_weight
is
not
None
else
[]
}
inputs
[
'Input'
]
=
input
inputs
[
'Label'
]
=
label
inputs
[
'Weight'
]
=
w
inputs
[
'SampleWeight'
]
=
sample_weight
if
sample_weight
is
not
None
else
[]
if
sampler
==
"uniform"
:
sampler
=
0
...
...
@@ -4512,17 +4501,73 @@ def nce(input,
sampler
=
1
elif
sampler
==
"custom_dist"
:
assert
custom_dist
is
not
None
assert
isinstance
(
custom_dist
,
Variable
)
inputs
[
'CustomDistribution'
]
=
custom_dist
# assert isinstance(custom_dist, Variable)
custom_dist_len
=
len
(
custom_dist
)
alias_probs_
=
[
0
]
*
custom_dist_len
alias_
=
[
0
]
*
custom_dist_len
bigs
=
[]
littles
=
[]
for
i
in
range
(
custom_dist_len
):
normal_prob
=
custom_dist
[
i
]
*
custom_dist_len
if
normal_prob
-
1.0
>
1e-4
:
bigs
.
append
((
i
,
normal_prob
))
elif
1.0
-
normal_prob
>
1e-4
:
littles
.
append
((
i
,
normal_prob
))
else
:
alias_probs_
[
i
]
=
normal_prob
alias_
[
i
]
=
-
1
while
len
(
bigs
)
and
len
(
littles
):
big
=
bigs
.
pop
(
0
)
little
=
littles
.
pop
(
0
)
big_idx
=
big
[
0
]
big_prob
=
big
[
1
]
alias_probs_
[
little
[
0
]]
=
little
[
1
]
alias_
[
little
[
0
]]
=
big_idx
big_left
=
big
[
1
]
+
little
[
1
]
-
1
if
big_left
-
1.0
>
1e-4
:
bigs
.
append
((
big_idx
,
big_left
))
elif
1.0
-
big_left
>
1e-4
:
littles
.
append
((
big_idx
,
big_left
))
else
:
alias_probs_
[
big_idx
]
=
big_left
alias_
[
big_idx
]
=
-
1
if
len
(
bigs
):
big
=
bigs
.
pop
(
0
)
alias_probs_
[
big
[
0
]]
=
1.0
alias_
[
big
[
0
]]
=
-
1
if
len
(
littles
):
little
=
littles
.
pop
(
0
)
alias_probs_
[
little
[
0
]]
=
1.0
alias_
[
little
[
0
]]
=
-
1
probs
=
assign
(
input
=
np
.
array
(
custom_dist
).
astype
(
'float32'
))
custom_alias
=
assign
(
input
=
np
.
array
(
alias_
).
astype
(
'int32'
))
custom_alias_probs
=
assign
(
input
=
np
.
array
(
alias_probs_
).
astype
(
'float32'
))
inputs
[
'CustomDistProbs'
]
=
probs
inputs
[
'CustomDistAlias'
]
=
custom_alias
inputs
[
'CustomDistAliasProbs'
]
=
custom_alias_probs
sampler
=
2
else
:
raise
Exception
(
"Unsupported sampler type."
)
if
num_neg_samples
is
None
:
num_neg_samples
=
10
else
:
num_neg_samples
=
int
(
num_neg_samples
)
attrs
=
{
'num_total_classes'
:
int
(
num_total_classes
),
'num_neg_samples'
:
num_neg_samples
,
'seed'
:
seed
,
'sampler'
:
sampler
'sampler'
:
sampler
,
'is_sparse'
:
is_sparse
}
helper
.
append_op
(
...
...
@@ -4542,27 +4587,43 @@ def hsigmoid(input,
num_classes
,
param_attr
=
None
,
bias_attr
=
None
,
name
=
None
):
name
=
None
,
path_table
=
None
,
path_code
=
None
,
is_custom
=
False
,
is_sparse
=
False
):
"""
The hierarchical sigmoid operator is used to accelerate the training
process of language model. This operator organizes the classes into a
complete binary tree, each leaf node represents a class(a word) and each
complete binary tree, or you can use is_custom to pass your own tree to
implement hierarchical. Each leaf node represents a class(a word) and each
internal node acts as a binary classifier. For each word there's a unique
path from root to it's leaf node, hsigmoid calculate the cost for each
internal node on the path, and sum them to get a total cost. hsigmoid can
achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
represents the size of word dict.
Refer to `Hierarchical Probabilistic Neural Network Language Model
Using default tree you can
Refer to `Hierarchical Probabilistic Neural Network Language Model
<http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
means label of each binary classification, using 1 indicate true, 0 indicate false.
4. now, each word should has its path and code along the path, you can pass a batch of path and code
related to the same batch of inputs.
Args:
input (Variable): The input tensor variable with shape
:math:`[N
\\
times D]`, where :math:`N` is the size of mini-batch,
and :math:`D` is the feature size.
label (Variable): The tensor variable contains labels of training data.
It's a tensor with shape is :math:`[N
\\
times 1]`.
num_classes: (int), The number of classes, must not be less than 2.
num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
which indicates the num of classes using by binary classify.
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
will create ParamAttr as param_attr. If the Initializer of the param_attr
...
...
@@ -4574,9 +4635,19 @@ def hsigmoid(input,
is not set, the bias is initialized zero. Default: None.
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None.
path_table: (Variable|None) this variable can store each batch of samples' path to root,
it should be in leaf -> root order
path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
structure and each element in this array is indexes in parent nodes' Weight Matrix.
path_code: (Variable|None) this variable can store each batch of samples' code,
each code consist with every code of parent nodes. it should be in leaf -> root order
is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
of W and input will be sparse.
Returns:
Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
Out: (
Lod
Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
Examples:
...
...
@@ -4592,27 +4663,62 @@ def hsigmoid(input,
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
pre_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
dim
=
input
.
shape
[
1
]
if
num_classes
<
2
:
raise
ValueError
(
"num_classes must not be less than 2."
)
weights
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
[
num_classes
-
1
,
dim
],
is_bias
=
False
,
dtype
=
input
.
dtype
)
inputs
=
{
"X"
:
input
,
"W"
:
weights
,
"Label"
:
label
}
if
helper
.
bias_attr
:
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
shape
=
[
1
,
num_classes
-
1
],
is_bias
=
True
,
if
((
num_classes
is
None
)
or
(
num_classes
<
2
))
and
(
not
is_custom
):
raise
ValueError
(
"num_classes must not be less than 2 with default tree"
)
if
(
is_custom
)
and
(
path_code
is
None
):
raise
ValueError
(
"path_code should not be None with costum tree"
)
elif
(
is_custom
)
and
(
path_table
is
None
):
raise
ValueError
(
"path_table should not be None with costum tree"
)
elif
(
is_custom
)
and
(
num_classes
is
None
):
raise
ValueError
(
"num_classes should not be None with costum tree"
)
else
:
pass
weights
=
None
if
not
is_custom
:
weights
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
[
num_classes
-
1
,
dim
],
is_bias
=
False
,
dtype
=
input
.
dtype
)
inputs
[
'Bias'
]
=
bias
else
:
weights
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
[
num_classes
,
dim
],
is_bias
=
False
,
dtype
=
input
.
dtype
)
inputs
=
{
"X"
:
input
,
"W"
:
weights
,
"PTable"
:
path_table
,
"PathCode"
:
path_code
,
"Label"
:
label
}
if
helper
.
bias_attr
:
if
not
is_custom
:
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
shape
=
[
num_classes
-
1
,
1
],
is_bias
=
True
,
dtype
=
input
.
dtype
)
inputs
[
'Bias'
]
=
bias
else
:
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
shape
=
[
num_classes
,
1
],
is_bias
=
True
,
dtype
=
input
.
dtype
)
inputs
[
'Bias'
]
=
bias
helper
.
append_op
(
type
=
"hierarchical_sigmoid"
,
inputs
=
inputs
,
outputs
=
{
"Out"
:
out
,
"PreOut"
:
pre_out
},
attrs
=
{
"num_classes"
:
num_classes
})
attrs
=
{
"num_classes"
:
num_classes
,
"is_sparse"
:
is_sparse
})
return
out
...
...
@@ -5870,9 +5976,10 @@ def image_resize(input,
raise
ValueError
(
"The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
)
resample_type
=
resample_methods
[
resample
]
if
out_shape
is
None
and
scale
is
None
:
raise
ValueError
(
"One of out_shape and scale must not be None."
)
helper
=
LayerHelper
(
'
interpolate'
,
**
locals
())
helper
=
LayerHelper
(
'
{}_interp'
.
format
(
resample_type
)
,
**
locals
())
dtype
=
helper
.
input_dtype
()
def
_is_list_or_turple_
(
data
):
...
...
@@ -5906,18 +6013,16 @@ def image_resize(input,
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
'
interpolate'
,
type
=
'
{}_interp'
.
format
(
resample_type
)
,
inputs
=
inputs
,
outputs
=
{
"Out"
:
out
},
attrs
=
{
"out_h"
:
out_h
,
"out_w"
:
out_w
,
"interp_method"
:
resample_methods
[
resample
]
})
attrs
=
{
"out_h"
:
out_h
,
"out_w"
:
out_w
,
"interp_method"
:
resample_type
})
return
out
@
templatedoc
(
op_type
=
"
interpolate
"
)
@
templatedoc
(
op_type
=
"
bilinear_interp
"
)
def
resize_bilinear
(
input
,
out_shape
=
None
,
scale
=
None
,
...
...
@@ -5973,7 +6078,7 @@ def resize_bilinear(input,
return
image_resize
(
input
,
out_shape
,
scale
,
name
,
'BILINEAR'
,
actual_shape
)
@
templatedoc
(
op_type
=
"
interpolate
"
)
@
templatedoc
(
op_type
=
"
nearest_interp
"
)
def
resize_nearest
(
input
,
out_shape
=
None
,
scale
=
None
,
...
...
@@ -6475,7 +6580,7 @@ def crop(x, shape=None, offsets=None, name=None):
helper
=
LayerHelper
(
'crop'
,
**
locals
())
if
not
(
isinstance
(
shape
,
list
)
or
isinstance
(
shape
,
tuple
)
or
\
isinstance
(
shape
,
Variable
)):
isinstance
(
shape
,
Variable
)):
raise
ValueError
(
"The shape should be a list, tuple or Variable."
)
if
offsets
is
None
:
...
...
@@ -6597,7 +6702,7 @@ def affine_grid(theta, out_shape, name=None):
helper
=
LayerHelper
(
'affine_grid'
)
if
not
(
isinstance
(
out_shape
,
list
)
or
isinstance
(
out_shape
,
tuple
)
or
\
isinstance
(
out_shape
,
Variable
)):
isinstance
(
out_shape
,
Variable
)):
raise
ValueError
(
"The out_shape should be a list, tuple or Variable."
)
if
not
isinstance
(
theta
,
Variable
):
...
...
@@ -6838,6 +6943,13 @@ def elu(x, alpha=1.0, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.elu(x, alpha=0.2)
"""
helper
=
LayerHelper
(
'elu'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
...
...
@@ -6861,6 +6973,13 @@ def relu6(x, threshold=6.0, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.relu6(x, threshold=6.0)
"""
helper
=
LayerHelper
(
'relu6'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
...
...
@@ -6884,6 +7003,13 @@ def pow(x, factor=1.0, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.pow(x, factor=2.0)
"""
helper
=
LayerHelper
(
'pow'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
...
...
@@ -6908,6 +7034,13 @@ def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
"""
helper
=
LayerHelper
(
'stanh'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
...
...
@@ -6933,6 +7066,13 @@ def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
"""
helper
=
LayerHelper
(
'hard_sigmoid'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
...
...
@@ -6957,6 +7097,13 @@ def swish(x, beta=1.0, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.swish(x, beta=2.0)
"""
helper
=
LayerHelper
(
'swish'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
...
...
python/paddle/fluid/parallel_executor.py
浏览文件 @
a02ce58f
...
...
@@ -124,16 +124,11 @@ class ParallelExecutor(object):
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
exec_strategy
.
num_threads
=
cpu_num
*
2
# Set 1 thread num under nccl2 distribute
# env to make sure all gpus run ops in same order.
if
num_trainers
>
1
:
assert
(
use_cuda
)
# FIXME(gongwb): avoid this set.
exec_strategy
.
num_threads
=
1
if
build_strategy
is
None
:
build_strategy
=
BuildStrategy
()
build_strategy
.
num_trainers
=
num_trainers
main
=
main_program
main
=
main
if
main
else
framework
.
default_main_program
()
if
scope
==
None
:
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
a02ce58f
...
...
@@ -63,7 +63,7 @@ function(py_test_modules TARGET_NAME)
set
(
multiValueArgs MODULES DEPS ENVS
)
cmake_parse_arguments
(
py_test_modules
"
${
options
}
"
"
${
oneValueArgs
}
"
"
${
multiValueArgs
}
"
${
ARGN
}
)
add_test
(
NAME
${
TARGET_NAME
}
COMMAND env PYTHONPATH=
${
PADDLE_BINARY_DIR
}
/python
${
py_test_modules_ENVS
}
COMMAND
${
CMAKE_COMMAND
}
-E
env PYTHONPATH=
${
PADDLE_BINARY_DIR
}
/python
${
py_test_modules_ENVS
}
${
PYTHON_EXECUTABLE
}
${
PADDLE_SOURCE_DIR
}
/tools/test_runner.py
${
py_test_modules_MODULES
}
WORKING_DIRECTORY
${
CMAKE_CURRENT_BINARY_DIR
}
)
if
(
py_test_modules_SERIAL
)
...
...
@@ -81,12 +81,14 @@ list(REMOVE_ITEM TEST_OPS test_dist_se_resnext)
list
(
REMOVE_ITEM TEST_OPS test_dist_transformer
)
list
(
REMOVE_ITEM TEST_OPS test_parallel_executor_transformer
)
list
(
REMOVE_ITEM TEST_OPS test_image_classification_resnet
)
list
(
REMOVE_ITEM TEST_OPS test_interpolate_op
)
list
(
REMOVE_ITEM TEST_OPS test_bilinear_interp_op
)
list
(
REMOVE_ITEM TEST_OPS test_nearest_interp_op
)
foreach
(
TEST_OP
${
TEST_OPS
}
)
py_test_modules
(
${
TEST_OP
}
MODULES
${
TEST_OP
}
)
endforeach
(
TEST_OP
)
py_test_modules
(
test_warpctc_op MODULES test_warpctc_op ENVS FLAGS_warpctc_dir=
${
WARPCTC_LIB_DIR
}
SERIAL
)
py_test_modules
(
test_interpolate_op MODULES test_interpolate_op SERIAL
)
py_test_modules
(
test_bilinear_interp_op MODULES test_bilinear_interp_op SERIAL
)
py_test_modules
(
test_nearest_interp_op MODULES test_nearest_interp_op SERIAL
)
if
(
WITH_DISTRIBUTE
)
py_test_modules
(
test_dist_train MODULES test_dist_train SERIAL
)
set_tests_properties
(
test_listen_and_serv_op PROPERTIES TIMEOUT 20
)
...
...
python/paddle/fluid/tests/unittests/test_activation_op.py
浏览文件 @
a02ce58f
...
...
@@ -18,7 +18,7 @@ import unittest
import
numpy
as
np
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
from
scipy.special
import
expit
from
scipy.special
import
expit
,
erf
class
TestActivation
(
OpTest
):
...
...
@@ -295,6 +295,23 @@ class TestRelu(TestActivation):
self
.
check_grad
([
'X'
],
'Out'
,
max_relative_error
=
0.007
)
class
TestGelu
(
TestActivation
):
def
setUp
(
self
):
self
.
op_type
=
"gelu"
self
.
init_dtype
()
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
self
.
dtype
)
out
=
0.5
*
x
*
(
1.0
+
erf
(
x
/
np
.
sqrt
(
2.0
)))
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
)}
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
self
.
check_grad
([
'X'
],
'Out'
,
max_relative_error
=
0.007
)
class
TestBRelu
(
TestActivation
):
def
setUp
(
self
):
self
.
op_type
=
"brelu"
...
...
@@ -628,6 +645,7 @@ create_test_act_fp16_class(TestCos, grad_atol=0.85)
create_test_act_fp16_class
(
TestSin
)
create_test_act_fp16_class
(
TestRound
,
grad_check
=
False
)
create_test_act_fp16_class
(
TestRelu
)
create_test_act_fp16_class
(
TestGelu
)
create_test_act_fp16_class
(
TestBRelu
)
create_test_act_fp16_class
(
TestRelu6
)
create_test_act_fp16_class
(
TestSoftRelu
)
...
...
python/paddle/fluid/tests/unittests/test_
interpolate
_op.py
→
python/paddle/fluid/tests/unittests/test_
bilinear_interp
_op.py
浏览文件 @
a02ce58f
...
...
@@ -20,36 +20,6 @@ from op_test import OpTest
import
paddle.fluid.core
as
core
def
nearest_neighbor_interp_np
(
X
,
out_h
,
out_w
,
out_size
=
None
,
actual_shape
=
None
):
"""nearest neighbor interpolation implement in shape [N, C, H, W]"""
if
out_size
is
not
None
:
out_h
=
out_size
[
0
]
out_w
=
out_size
[
1
]
if
actual_shape
is
not
None
:
out_h
=
actual_shape
[
0
]
out_w
=
actual_shape
[
1
]
n
,
c
,
in_h
,
in_w
=
X
.
shape
ratio_h
=
ratio_w
=
0.0
if
out_h
>
1
:
ratio_h
=
(
in_h
-
1.0
)
/
(
out_h
-
1.0
)
if
out_w
>
1
:
ratio_w
=
(
in_w
-
1.0
)
/
(
out_w
-
1.0
)
out
=
np
.
zeros
((
n
,
c
,
out_h
,
out_w
))
for
i
in
range
(
out_h
):
in_i
=
int
(
ratio_h
*
i
+
0.5
)
for
j
in
range
(
out_w
):
in_j
=
int
(
ratio_w
*
j
+
0.5
)
out
[:,
:,
i
,
j
]
=
X
[:,
:,
in_i
,
in_j
]
return
out
.
astype
(
X
.
dtype
)
def
bilinear_interp_np
(
input
,
out_h
,
out_w
,
out_size
=
None
,
actual_shape
=
None
):
"""bilinear interpolation implement in shape [N, C, H, W]"""
if
out_size
is
not
None
:
...
...
@@ -87,22 +57,16 @@ def bilinear_interp_np(input, out_h, out_w, out_size=None, actual_shape=None):
return
out
.
astype
(
input
.
dtype
)
INTERPOLATE_FUNCS
=
{
'bilinear'
:
bilinear_interp_np
,
'nearest'
:
nearest_neighbor_interp_np
,
}
class
TestInterpolateOp
(
OpTest
):
class
TestBilinearInterpOp
(
OpTest
):
def
setUp
(
self
):
self
.
out_size
=
None
self
.
actual_shape
=
None
self
.
init_test_case
()
self
.
op_type
=
"
interpolate
"
self
.
op_type
=
"
bilinear_interp
"
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
output_np
=
INTERPOLATE_FUNCS
[
self
.
interp_method
](
input_np
,
self
.
out_h
,
self
.
out_w
,
self
.
out_size
,
self
.
actual_shape
)
output_np
=
bilinear_interp_np
(
input_np
,
self
.
out_h
,
self
.
out_w
,
self
.
out_size
,
self
.
actual_shape
)
self
.
inputs
=
{
'X'
:
input_np
}
if
self
.
out_size
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
...
...
@@ -129,7 +93,7 @@ class TestInterpolateOp(OpTest):
self
.
out_size
=
np
.
array
([
3
,
3
]).
astype
(
"int32"
)
class
TestBilinearInterpCase1
(
Test
Interpolate
Op
):
class
TestBilinearInterpCase1
(
Test
BilinearInterp
Op
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bilinear'
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
...
...
@@ -137,7 +101,7 @@ class TestBilinearInterpCase1(TestInterpolateOp):
self
.
out_w
=
1
class
TestBilinearInterpCase2
(
Test
Interpolate
Op
):
class
TestBilinearInterpCase2
(
Test
BilinearInterp
Op
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bilinear'
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
...
...
@@ -145,7 +109,7 @@ class TestBilinearInterpCase2(TestInterpolateOp):
self
.
out_w
=
12
class
TestBilinearInterpCase3
(
Test
Interpolate
Op
):
class
TestBilinearInterpCase3
(
Test
BilinearInterp
Op
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bilinear'
self
.
input_shape
=
[
1
,
1
,
128
,
64
]
...
...
@@ -153,7 +117,7 @@ class TestBilinearInterpCase3(TestInterpolateOp):
self
.
out_w
=
128
class
TestBilinearInterpCase4
(
Test
Interpolate
Op
):
class
TestBilinearInterpCase4
(
Test
BilinearInterp
Op
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bilinear'
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
...
...
@@ -162,7 +126,7 @@ class TestBilinearInterpCase4(TestInterpolateOp):
self
.
out_size
=
np
.
array
([
2
,
2
]).
astype
(
"int32"
)
class
TestBilinearInterpCase5
(
Test
Interpolate
Op
):
class
TestBilinearInterpCase5
(
Test
BilinearInterp
Op
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bilinear'
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
...
...
@@ -171,7 +135,7 @@ class TestBilinearInterpCase5(TestInterpolateOp):
self
.
out_size
=
np
.
array
([
11
,
11
]).
astype
(
"int32"
)
class
TestBilinearInterpCase6
(
Test
Interpolate
Op
):
class
TestBilinearInterpCase6
(
Test
BilinearInterp
Op
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bilinear'
self
.
input_shape
=
[
1
,
1
,
128
,
64
]
...
...
@@ -180,7 +144,7 @@ class TestBilinearInterpCase6(TestInterpolateOp):
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
class
TestBilinearInterpActualShape
(
Test
Interpolate
Op
):
class
TestBilinearInterpActualShape
(
Test
BilinearInterp
Op
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bilinear'
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
...
...
@@ -189,25 +153,16 @@ class TestBilinearInterpActualShape(TestInterpolateOp):
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
class
TestBilinearInterpBigScale
(
TestInterpolateOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bilinear'
self
.
input_shape
=
[
4
,
4
,
64
,
32
]
self
.
out_h
=
100
self
.
out_w
=
50
self
.
out_size
=
np
.
array
([
101
,
51
]).
astype
(
'int32'
)
class
TestInterpolateOpUint8
(
OpTest
):
class
TestBilinearInterpOpUint8
(
OpTest
):
def
setUp
(
self
):
self
.
out_size
=
None
self
.
actual_shape
=
None
self
.
init_test_case
()
self
.
op_type
=
"
interpolate
"
self
.
op_type
=
"
bilinear_interp
"
input_np
=
np
.
random
.
randint
(
low
=
0
,
high
=
256
,
size
=
self
.
input_shape
).
astype
(
"uint8"
)
output_np
=
INTERPOLATE_FUNCS
[
self
.
interp_method
](
input_np
,
self
.
out_h
,
self
.
out_w
,
self
.
out_size
,
self
.
actual_shape
)
output_np
=
bilinear_interp_np
(
input_np
,
self
.
out_h
,
self
.
out_w
,
self
.
out_size
,
self
.
actual_shape
)
self
.
inputs
=
{
'X'
:
input_np
}
if
self
.
out_size
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
...
...
@@ -228,7 +183,7 @@ class TestInterpolateOpUint8(OpTest):
self
.
out_w
=
9
class
TestBilinearInterpCase1Uint8
(
Test
Interpolate
OpUint8
):
class
TestBilinearInterpCase1Uint8
(
Test
BilinearInterp
OpUint8
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bilinear'
self
.
input_shape
=
[
2
,
3
,
128
,
64
]
...
...
@@ -236,7 +191,7 @@ class TestBilinearInterpCase1Uint8(TestInterpolateOpUint8):
self
.
out_w
=
50
class
TestBilinearInterpCase2Uint8
(
Test
Interpolate
OpUint8
):
class
TestBilinearInterpCase2Uint8
(
Test
BilinearInterp
OpUint8
):
def
init_test_case
(
self
):
self
.
interp_method
=
'bilinear'
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
...
...
@@ -245,91 +200,5 @@ class TestBilinearInterpCase2Uint8(TestInterpolateOpUint8):
self
.
out_size
=
np
.
array
([
6
,
15
]).
astype
(
"int32"
)
class
TestNearestNeighborInterpCase1
(
TestInterpolateOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
1
self
.
out_w
=
1
class
TestNearestNeighborInterpCase2
(
TestInterpolateOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_w
=
12
class
TestNearestNeighborInterpCase3
(
TestInterpolateOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
1
,
1
,
128
,
64
]
self
.
out_h
=
64
self
.
out_w
=
128
class
TestNearestNeighborInterpCase4
(
TestInterpolateOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
1
self
.
out_w
=
1
self
.
out_size
=
np
.
array
([
2
,
2
]).
astype
(
"int32"
)
class
TestNearestNeighborInterpCase5
(
TestInterpolateOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_w
=
12
self
.
out_size
=
np
.
array
([
11
,
11
]).
astype
(
"int32"
)
class
TestNearestNeighborInterpCase6
(
TestInterpolateOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
1
,
1
,
128
,
64
]
self
.
out_h
=
64
self
.
out_w
=
128
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
class
TestNearestNeighborInterpActualShape
(
TestInterpolateOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
class
TestNearestNeighborInterpBigScale
(
TestInterpolateOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
4
,
4
,
64
,
32
]
self
.
out_h
=
100
self
.
out_w
=
50
self
.
out_size
=
np
.
array
([
101
,
51
]).
astype
(
'int32'
)
class
TestNearestNeighborInterpCase1Uint8
(
TestInterpolateOpUint8
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
2
,
3
,
128
,
64
]
self
.
out_h
=
120
self
.
out_w
=
50
class
TestNearestNeighborInterpCase2Uint8
(
TestInterpolateOpUint8
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
5
self
.
out_w
=
13
self
.
out_size
=
np
.
array
([
6
,
15
]).
astype
(
"int32"
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
浏览文件 @
a02ce58f
...
...
@@ -16,6 +16,8 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
import
math
from
op_test
import
OpTest
...
...
@@ -40,6 +42,29 @@ class CodeTable(object):
return
self
.
c
&
(
1
<<
bit
)
class
CodeTableWithCustomTree
(
object
):
def
__init__
(
self
,
path_table
,
path_code
,
index
):
self
.
ptable_
=
path_table
self
.
pcode_
=
path_code
self
.
index_
=
index
def
cal_index
(
self
,
bit
):
return
self
.
ptable_
[
self
.
index_
][
bit
]
def
get_length
(
self
):
length
=
0
for
ele
in
self
.
ptable_
[
self
.
index_
]:
# find the first -1 to stop trace
if
ele
>=
0
:
length
=
length
+
1
else
:
return
length
return
length
def
cal_bit
(
self
,
bit
):
return
self
.
pcode_
[
self
.
index_
][
bit
]
def
hsigmoid
(
x
,
w
,
label
,
bias
,
num_classes
):
batch_size
=
x
.
shape
[
0
]
code_length
=
find_latest_set
(
num_classes
-
1
)
...
...
@@ -52,7 +77,7 @@ def hsigmoid(x, w, label, bias, num_classes):
length
=
code_table
.
get_length
()
for
j
in
range
(
length
):
idx
=
code_table
.
cal_index
(
j
)
pre_output
[
i
][
j
]
+=
bias
[
0
][
idx
]
pre_output
[
i
][
j
]
+=
bias
[
idx
][
0
]
for
i
in
range
(
batch_size
):
code_table
=
CodeTable
(
num_classes
,
label
[
i
])
length
=
code_table
.
get_length
()
...
...
@@ -77,17 +102,58 @@ def hsigmoid(x, w, label, bias, num_classes):
return
pre_output
,
out
def
hsigmoidWithCustomTree
(
x
,
w
,
path_table
,
path_code
,
label
,
bias
,
num_classes
):
batch_size
=
x
.
shape
[
0
]
code_length
=
len
(
path_table
[
0
])
code_table
=
[
0
for
_
in
range
(
code_length
)]
# init pre_out with shape [N, code_length]
pre_output
=
np
.
zeros
((
batch_size
,
code_length
))
pre_sum
=
np
.
zeros
((
batch_size
,
1
))
out
=
np
.
zeros
((
batch_size
,
1
)).
astype
(
"float32"
)
if
isinstance
(
bias
,
np
.
ndarray
):
for
i
in
range
(
batch_size
):
code_table
=
CodeTableWithCustomTree
(
path_table
,
path_code
,
i
)
length
=
code_table
.
get_length
()
for
j
in
range
(
length
):
idx
=
code_table
.
cal_index
(
j
)
pre_output
[
i
][
j
]
+=
bias
[
idx
][
0
]
for
i
in
range
(
batch_size
):
code_table
=
CodeTableWithCustomTree
(
path_table
,
path_code
,
i
)
length
=
code_table
.
get_length
()
for
j
in
range
(
length
):
idx
=
code_table
.
cal_index
(
j
)
pre_output
[
i
][
j
]
+=
np
.
dot
(
w
[
idx
],
x
[
i
])
# clip[-40.0, 40.0]
pre_output
=
np
.
clip
(
pre_output
,
-
40.0
,
40.0
)
# out(i, 0) = \sum_j bit(i, j) * preout(i, j)
for
i
in
range
(
batch_size
):
code_table
=
CodeTableWithCustomTree
(
path_table
,
path_code
,
i
)
length
=
code_table
.
get_length
()
sum
=
0.0
for
j
in
range
(
length
):
if
code_table
.
cal_bit
(
j
):
sum
+=
pre_output
[
i
][
j
]
out
[
i
]
=
-
1.0
*
sum
# soft relu
pre_output
=
np
.
log
(
1
+
np
.
exp
(
pre_output
))
pre_sum
=
pre_output
.
sum
(
1
).
reshape
((
batch_size
,
1
))
out
+=
pre_sum
return
pre_output
,
out
class
TestHSigmoidOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid"
num_classes
=
6
feature_size
=
8
batch_size
=
4
x
=
np
.
random
.
random
((
batch_size
,
feature_size
)).
astype
(
"float32"
)
w
=
np
.
random
.
random
((
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
x
=
np
.
random
.
random
((
batch_size
,
feature_size
)).
astype
(
"float32"
)
*
2
w
=
np
.
random
.
random
(
(
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
*
2
label
=
np
.
random
.
randint
(
0
,
num_classes
,
(
batch_size
,
1
))
bias
=
np
.
random
.
random
((
1
,
num_classes
-
1
)).
astype
(
"float32"
)
self
.
attrs
=
{
'num_classes'
:
num_classes
}
bias
=
np
.
random
.
random
((
num_classes
-
1
,
1
)).
astype
(
"float32"
)
self
.
attrs
=
{
'num_classes'
:
num_classes
,
'is_sparse'
:
False
}
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'Label'
:
label
,
'Bias'
:
bias
}
pre_output
,
out
=
hsigmoid
(
x
,
w
,
label
,
bias
,
num_classes
)
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
...
...
@@ -99,5 +165,185 @@ class TestHSigmoidOp(OpTest):
self
.
check_grad
([
'Bias'
,
'X'
,
'W'
],
[
'Out'
],
no_grad_set
=
set
(
'Label'
))
class
TestHSigmoidOpSparse
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid"
num_classes
=
6
#using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
feature_size
=
8
batch_size
=
4
x
=
np
.
random
.
random
((
batch_size
,
feature_size
)).
astype
(
"float32"
)
w
=
np
.
random
.
random
((
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
label
=
np
.
array
([
0
,
1
,
4
,
5
])
path_table
=
np
.
array
(
[(
0
,
2
,
-
1
,
-
1
,
-
1
),
(
0
,
1
,
3
,
-
1
,
-
1
),
(
0
,
1
,
4
,
-
1
,
-
1
),
(
0
,
2
,
-
1
,
-
1
,
-
1
)])
#np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
path_code
=
np
.
array
([(
0
,
0
,
-
1
,
-
1
,
-
1
),
(
1
,
1
,
1
,
-
1
,
-
1
),
(
1
,
0
,
0
,
-
1
,
-
1
),
(
0
,
1
,
-
1
,
-
1
,
-
1
)])
#np.array to store
bias
=
np
.
random
.
random
((
num_classes
-
1
,
1
)).
astype
(
"float32"
)
self
.
attrs
=
{
'num_classes'
:
num_classes
,
'is_sparse'
:
True
}
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'PTable'
:
path_table
,
'PathCode'
:
path_code
,
'Label'
:
label
,
'Bias'
:
bias
}
pre_output
,
out
=
hsigmoidWithCustomTree
(
x
,
w
,
path_table
,
path_code
,
label
,
bias
,
num_classes
)
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestHSigmoidOpWithSparseGrad
(
unittest
.
TestCase
):
def
hs_net_conf
(
self
,
is_sparse
):
input_word
=
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
1
],
dtype
=
'int64'
)
path_table
=
fluid
.
layers
.
data
(
name
=
'path_table'
,
shape
=
[
3
],
dtype
=
'int64'
)
path_code
=
fluid
.
layers
.
data
(
name
=
'path_code'
,
shape
=
[
3
],
dtype
=
'int64'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
data_list
=
[
input_word
,
path_table
,
path_code
,
label
]
emb
=
fluid
.
layers
.
embedding
(
input
=
input_word
,
is_sparse
=
is_sparse
,
size
=
[
3
,
3
],
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
1
/
math
.
sqrt
(
3
))))
cost
=
fluid
.
layers
.
hsigmoid
(
input
=
emb
,
label
=
label
,
bias_attr
=
True
,
num_classes
=
3
,
path_table
=
path_table
,
path_code
=
path_code
,
is_custom
=
True
,
is_sparse
=
is_sparse
)
avg_cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
return
avg_cost
,
data_list
def
training_test
(
self
,
is_sparse
):
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
start_up
=
fluid
.
default_startup_program
()
start_up
.
random_seed
=
1
# Fix random seed
x
=
np
.
arange
(
6
).
reshape
(
6
)
path_table
=
np
.
array
([(
1
,
2
,
-
1
),
(
1
,
2
,
-
1
)])
path_code
=
np
.
array
([(
1
,
0
,
-
1
),
(
0
,
0
,
-
1
)])
label
=
np
.
array
([
1
,
4
])
loss
,
data_list
=
self
.
hs_net_conf
(
is_sparse
)
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
1e-3
)
optimizer
.
minimize
(
loss
)
main_program
=
fluid
.
default_main_program
()
place
=
fluid
.
CPUPlace
()
feeder
=
fluid
.
DataFeeder
(
feed_list
=
data_list
,
place
=
place
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
start_up
)
result
=
list
()
for
i
in
range
(
10
):
data
=
[([[
x
[
i
%
2
]]],
[
list
(
path_table
[
i
%
2
])],
[
list
(
path_code
[
i
%
2
])],
[
label
[
i
%
2
]])]
loss_val
=
exe
.
run
(
main_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
loss
])
result
.
append
(
loss_val
)
return
result
def
test_hs_grad_with_sparse
(
self
):
dense_result
=
self
.
training_test
(
is_sparse
=
False
)
sparse_result
=
self
.
training_test
(
is_sparse
=
True
)
assert
(
dense_result
==
sparse_result
)
class
TestHSigmoidOpWithCostumTree
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid"
num_classes
=
6
#using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
feature_size
=
8
batch_size
=
4
x
=
np
.
random
.
random
((
batch_size
,
feature_size
)).
astype
(
"float32"
)
*
2
w
=
np
.
random
.
random
(
(
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
*
2
label
=
np
.
array
([
0
,
1
,
4
,
5
])
path_table
=
np
.
array
(
[(
0
,
2
,
-
1
,
-
1
,
-
1
),
(
0
,
1
,
3
,
-
1
,
-
1
),
(
0
,
1
,
4
,
-
1
,
-
1
),
(
0
,
2
,
-
1
,
-
1
,
-
1
)])
#np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
path_code
=
np
.
array
([(
0
,
0
,
-
1
,
-
1
,
-
1
),
(
1
,
1
,
1
,
-
1
,
-
1
),
(
1
,
0
,
0
,
-
1
,
-
1
),
(
0
,
1
,
-
1
,
-
1
,
-
1
)])
#np.array to store
bias
=
np
.
random
.
random
((
num_classes
-
1
,
1
)).
astype
(
"float32"
)
self
.
attrs
=
{
'num_classes'
:
num_classes
,
'is_sparse'
:
False
}
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'PTable'
:
path_table
,
'PathCode'
:
path_code
,
'Label'
:
label
,
'Bias'
:
bias
}
pre_output
,
out
=
hsigmoidWithCustomTree
(
x
,
w
,
path_table
,
path_code
,
label
,
bias
,
num_classes
)
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'Bias'
,
'X'
,
'W'
],
[
'Out'
],
no_grad_set
=
set
(
'Label'
))
class
TestHSigmoidOpWithCostumTreeWithoutBias
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid"
num_classes
=
6
#using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
feature_size
=
8
batch_size
=
4
x
=
np
.
random
.
random
((
batch_size
,
feature_size
)).
astype
(
"float32"
)
*
2
w
=
np
.
random
.
random
(
(
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
*
2
label
=
np
.
array
([
0
,
1
,
4
,
5
])
path_table
=
np
.
array
(
[(
0
,
2
,
-
1
,
-
1
,
-
1
),
(
0
,
1
,
3
,
-
1
,
-
1
),
(
0
,
1
,
4
,
-
1
,
-
1
),
(
0
,
2
,
-
1
,
-
1
,
-
1
)])
#np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
path_code
=
np
.
array
([(
0
,
0
,
-
1
,
-
1
,
-
1
),
(
1
,
1
,
1
,
-
1
,
-
1
),
(
1
,
0
,
0
,
-
1
,
-
1
),
(
0
,
1
,
-
1
,
-
1
,
-
1
)])
#np.array to store
# bias = np.random.random((num_classes - 1, 1)).astype("float32")
self
.
attrs
=
{
'num_classes'
:
num_classes
,
'is_sparse'
:
False
}
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'PTable'
:
path_table
,
'PathCode'
:
path_code
,
'Label'
:
label
,
}
pre_output
,
out
=
hsigmoidWithCustomTree
(
x
=
x
,
w
=
w
,
path_table
=
path_table
,
path_code
=
path_code
,
label
=
label
,
bias
=
None
,
num_classes
=
num_classes
)
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
,
'W'
],
[
'Out'
],
no_grad_set
=
set
(
'Label'
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
a02ce58f
...
...
@@ -185,6 +185,25 @@ class TestBook(unittest.TestCase):
input
=
x
,
label
=
y
,
num_classes
=
2
))
print
(
str
(
program
))
# test hsigmod with custom tree structure
program2
=
Program
()
with
program_guard
(
program2
):
x2
=
layers
.
data
(
name
=
'x2'
,
shape
=
[
4
,
8
],
dtype
=
'float32'
)
y2
=
layers
.
data
(
name
=
'y2'
,
shape
=
[
4
],
dtype
=
'int64'
)
path_table
=
layers
.
data
(
name
=
'path_table'
,
shape
=
[
4
,
6
],
dtype
=
'int64'
)
path_code
=
layers
.
data
(
name
=
'path_code'
,
shape
=
[
4
,
6
],
dtype
=
'int64'
)
self
.
assertIsNotNone
(
layers
.
hsigmoid
(
input
=
x2
,
label
=
y2
,
num_classes
=
6
,
path_table
=
path_table
,
path_code
=
path_code
,
is_custom
=
True
))
print
(
str
(
program2
))
def
test_sequence_expand
(
self
):
program
=
Program
()
with
program_guard
(
program
):
...
...
python/paddle/fluid/tests/unittests/test_nce.py
浏览文件 @
a02ce58f
...
...
@@ -14,8 +14,12 @@
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
unittest
import
paddle.fluid
as
fluid
import
paddle.fluid.initializer
as
initializer
from
op_test
import
OpTest
...
...
@@ -59,7 +63,7 @@ def nce(input, weight, bias, sample_weight, labels, num_classes,
class
TestNCE
(
OpTest
):
def
generate_data
(
self
,
dim
,
batch_size
,
num_classes
,
num_true_class
,
num_neg_samples
):
num_neg_samples
,
is_sparse
):
input
=
np
.
random
.
randn
(
batch_size
,
dim
).
astype
(
np
.
float32
)
weight
=
np
.
random
.
randn
(
num_classes
,
dim
).
astype
(
np
.
float32
)
bias
=
np
.
random
.
randn
(
num_classes
).
astype
(
np
.
float32
)
...
...
@@ -70,7 +74,8 @@ class TestNCE(OpTest):
'num_neg_samples'
:
num_neg_samples
,
'custom_neg_classes'
:
list
(
range
(
num_neg_samples
)),
'seed'
:
0
,
'sampler'
:
0
'sampler'
:
0
,
'is_sparse'
:
is_sparse
}
self
.
inputs
=
{
'Input'
:
input
,
...
...
@@ -81,7 +86,7 @@ class TestNCE(OpTest):
}
def
set_data
(
self
):
self
.
generate_data
(
5
,
5
,
4
,
1
,
2
)
self
.
generate_data
(
5
,
5
,
4
,
1
,
2
,
False
)
def
compute
(
self
):
out
=
nce
(
self
.
inputs
[
'Input'
],
self
.
inputs
[
'Weight'
],
...
...
@@ -107,9 +112,110 @@ class TestNCE(OpTest):
[
"Input"
,
"Weight"
,
"Bias"
],
"Cost"
,
max_relative_error
=
0.02
)
class
TestNCECase1
(
TestNCE
):
class
TestNCECase1
Tensor
(
TestNCE
):
def
set_data
(
self
):
self
.
generate_data
(
10
,
20
,
10
,
2
,
5
)
self
.
generate_data
(
10
,
20
,
10
,
2
,
5
,
False
)
class
TestNCECase1SelectedRows
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
base_lr
=
0.0001
self
.
batch_size
=
8
@
staticmethod
def
get_place
():
place
=
fluid
.
core
.
CPUPlace
()
return
place
@
staticmethod
def
get_train_data
(
batch_size
):
batchs
=
[]
for
i
in
range
(
batch_size
):
input
=
np
.
random
.
randn
(
batch_size
,
10
).
astype
(
np
.
float32
)
labels
=
np
.
random
.
randint
(
0
,
20
,
(
batch_size
,
1
))
batchs
.
append
([
input
,
labels
])
return
batchs
def
get_optimizer
(
self
):
# SGD optimizer
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
self
.
base_lr
)
return
optimizer
def
train_network
(
self
,
num_total_classes
,
num_neg_samples
,
sampler
,
custom_dist
,
is_sparse
):
input
=
fluid
.
layers
.
data
(
name
=
"input"
,
shape
=
[
10
],
dtype
=
"float32"
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
w_param
=
fluid
.
default_main_program
().
global_block
().
create_parameter
(
shape
=
[
num_total_classes
,
10
],
dtype
=
'float32'
,
name
=
'nce_w'
,
initializer
=
initializer
.
ConstantInitializer
())
b_param
=
fluid
.
default_main_program
().
global_block
().
create_parameter
(
shape
=
[
num_total_classes
,
1
],
dtype
=
'float32'
,
name
=
'nce_b'
,
initializer
=
initializer
.
ConstantInitializer
())
cost
=
fluid
.
layers
.
nce
(
input
=
input
,
label
=
label
,
num_total_classes
=
num_total_classes
,
sampler
=
sampler
,
custom_dist
=
custom_dist
,
sample_weight
=
None
,
param_attr
=
'nce_w'
,
bias_attr
=
'nce_b'
,
seed
=
1
,
num_neg_samples
=
num_neg_samples
,
is_sparse
=
is_sparse
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
# optimizer
optimizer
=
self
.
get_optimizer
()
optimizer
.
minimize
(
avg_cost
)
return
[
avg_cost
,
[
input
,
label
]]
def
test_input_is_selected_rows
(
self
):
place
=
self
.
get_place
()
exe
=
fluid
.
Executor
(
place
)
data
=
self
.
get_train_data
(
self
.
batch_size
)
nid_freq_arr
=
np
.
random
.
dirichlet
(
np
.
ones
(
20
)
*
1000
).
astype
(
'float32'
)
rets
=
[]
# for dense
dense_scope
=
fluid
.
core
.
Scope
()
dense_startup_program
=
fluid
.
framework
.
Program
()
dense_train_program
=
fluid
.
framework
.
Program
()
with
fluid
.
scope_guard
(
dense_scope
):
with
fluid
.
program_guard
(
dense_train_program
,
dense_startup_program
):
cost
,
feeds
=
self
.
train_network
(
20
,
5
,
"custom_dist"
,
nid_freq_arr
.
tolist
(),
False
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
feeds
,
place
=
place
)
exe
.
run
(
dense_startup_program
)
loss_val
=
exe
.
run
(
dense_train_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
cost
.
name
])
rets
.
append
(
np
.
mean
(
loss_val
))
# for sparse
sparse_scope
=
fluid
.
core
.
Scope
()
sparse_startup_program
=
fluid
.
framework
.
Program
()
sparse_train_program
=
fluid
.
framework
.
Program
()
with
fluid
.
scope_guard
(
sparse_scope
):
with
fluid
.
program_guard
(
sparse_train_program
,
sparse_startup_program
):
cost
,
feeds
=
self
.
train_network
(
20
,
5
,
"custom_dist"
,
nid_freq_arr
.
tolist
(),
True
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
feeds
,
place
=
place
)
exe
.
run
(
sparse_startup_program
)
loss_val
=
exe
.
run
(
sparse_train_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
cost
.
name
])
rets
.
append
(
np
.
mean
(
loss_val
))
self
.
assertEqual
(
rets
[
0
],
rets
[
1
])
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_nearest_interp_op.py
0 → 100644
浏览文件 @
a02ce58f
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle.fluid.core
as
core
def
nearest_neighbor_interp_np
(
X
,
out_h
,
out_w
,
out_size
=
None
,
actual_shape
=
None
):
"""nearest neighbor interpolation implement in shape [N, C, H, W]"""
if
out_size
is
not
None
:
out_h
=
out_size
[
0
]
out_w
=
out_size
[
1
]
if
actual_shape
is
not
None
:
out_h
=
actual_shape
[
0
]
out_w
=
actual_shape
[
1
]
n
,
c
,
in_h
,
in_w
=
X
.
shape
ratio_h
=
ratio_w
=
0.0
if
out_h
>
1
:
ratio_h
=
(
in_h
-
1.0
)
/
(
out_h
-
1.0
)
if
out_w
>
1
:
ratio_w
=
(
in_w
-
1.0
)
/
(
out_w
-
1.0
)
out
=
np
.
zeros
((
n
,
c
,
out_h
,
out_w
))
for
i
in
range
(
out_h
):
in_i
=
int
(
ratio_h
*
i
+
0.5
)
for
j
in
range
(
out_w
):
in_j
=
int
(
ratio_w
*
j
+
0.5
)
out
[:,
:,
i
,
j
]
=
X
[:,
:,
in_i
,
in_j
]
return
out
.
astype
(
X
.
dtype
)
class
TestNearestInterpOp
(
OpTest
):
def
setUp
(
self
):
self
.
out_size
=
None
self
.
actual_shape
=
None
self
.
init_test_case
()
self
.
op_type
=
"nearest_interp"
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
output_np
=
nearest_neighbor_interp_np
(
input_np
,
self
.
out_h
,
self
.
out_w
,
self
.
out_size
,
self
.
actual_shape
)
self
.
inputs
=
{
'X'
:
input_np
}
if
self
.
out_size
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
if
self
.
actual_shape
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
actual_shape
self
.
attrs
=
{
'out_h'
:
self
.
out_h
,
'out_w'
:
self
.
out_w
,
'interp_method'
:
self
.
interp_method
}
self
.
outputs
=
{
'Out'
:
output_np
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
,
in_place
=
True
)
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
2
,
3
,
4
,
4
]
self
.
out_h
=
2
self
.
out_w
=
2
self
.
out_size
=
np
.
array
([
3
,
3
]).
astype
(
"int32"
)
class
TestNearestNeighborInterpCase1
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
1
self
.
out_w
=
1
class
TestNearestNeighborInterpCase2
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_w
=
12
class
TestNearestNeighborInterpCase3
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
1
,
1
,
128
,
64
]
self
.
out_h
=
64
self
.
out_w
=
128
class
TestNearestNeighborInterpCase4
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
1
self
.
out_w
=
1
self
.
out_size
=
np
.
array
([
2
,
2
]).
astype
(
"int32"
)
class
TestNearestNeighborInterpCase5
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
3
,
9
,
6
]
self
.
out_h
=
12
self
.
out_w
=
12
self
.
out_size
=
np
.
array
([
11
,
11
]).
astype
(
"int32"
)
class
TestNearestNeighborInterpCase6
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
1
,
1
,
128
,
64
]
self
.
out_h
=
64
self
.
out_w
=
128
self
.
out_size
=
np
.
array
([
65
,
129
]).
astype
(
"int32"
)
class
TestNearestNeighborInterpActualShape
(
TestNearestInterpOp
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
3
,
2
,
32
,
16
]
self
.
out_h
=
64
self
.
out_w
=
32
self
.
out_size
=
np
.
array
([
66
,
40
]).
astype
(
"int32"
)
class
TestNearestInterpOpUint8
(
OpTest
):
def
setUp
(
self
):
self
.
out_size
=
None
self
.
actual_shape
=
None
self
.
init_test_case
()
self
.
op_type
=
"nearest_interp"
input_np
=
np
.
random
.
randint
(
low
=
0
,
high
=
256
,
size
=
self
.
input_shape
).
astype
(
"uint8"
)
output_np
=
nearest_neighbor_interp_np
(
input_np
,
self
.
out_h
,
self
.
out_w
,
self
.
out_size
,
self
.
actual_shape
)
self
.
inputs
=
{
'X'
:
input_np
}
if
self
.
out_size
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
self
.
attrs
=
{
'out_h'
:
self
.
out_h
,
'out_w'
:
self
.
out_w
,
'interp_method'
:
self
.
interp_method
}
self
.
outputs
=
{
'Out'
:
output_np
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
place
=
core
.
CPUPlace
(),
atol
=
1
)
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
1
,
3
,
9
,
6
]
self
.
out_h
=
10
self
.
out_w
=
9
class
TestNearestNeighborInterpCase1Uint8
(
TestNearestInterpOpUint8
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
2
,
3
,
128
,
64
]
self
.
out_h
=
120
self
.
out_w
=
50
class
TestNearestNeighborInterpCase2Uint8
(
TestNearestInterpOpUint8
):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self
.
out_h
=
5
self
.
out_w
=
13
self
.
out_size
=
np
.
array
([
6
,
15
]).
astype
(
"int32"
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录