未验证 提交 a0069278 编写于 作者: C chenjian 提交者: GitHub

[Prim] Add prod backward composite rule (#51238)

* first commit

* add registry

* add unit test

* fix format

* add unit test

* fix  bug

* replace unsuqeeze to reshape

* fix

* fix unit test

* update test

* update test

* fix unit test

* fix

* fix
上级 967dee45
...@@ -13,6 +13,9 @@ ...@@ -13,6 +13,9 @@
// limitations under the License. // limitations under the License.
#include "paddle/fluid/operators/reduce_ops/reduce_prod_op.h" #include "paddle/fluid/operators/reduce_ops/reduce_prod_op.h"
#include "paddle/fluid/prim/api/composite_backward/composite_backward_api.h"
#include "paddle/fluid/prim/utils/static/composite_grad_desc_maker.h"
#include "paddle/fluid/prim/utils/static/desc_tensor.h"
#include "paddle/fluid/framework/infershape_utils.h" #include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/core/infermeta_utils.h" #include "paddle/phi/core/infermeta_utils.h"
...@@ -27,6 +30,42 @@ class OpBase; ...@@ -27,6 +30,42 @@ class OpBase;
} // namespace imperative } // namespace imperative
} // namespace paddle } // namespace paddle
namespace paddle {
namespace operators {
class ReduceProdCompositeGradOpMaker : public prim::CompositeGradOpMakerBase {
public:
using prim::CompositeGradOpMakerBase::CompositeGradOpMakerBase;
void Apply() override {
// get inputs
paddle::Tensor x = this->GetSingleForwardInput("X");
paddle::Tensor out = this->GetSingleForwardOutput("Out");
paddle::Tensor out_grad = this->GetSingleOutputGrad("Out");
// get attr
std::vector<int> axis = this->Attr<std::vector<int>>("dim");
bool keep_dim = this->Attr<bool>("keep_dim");
bool reduce_all = this->Attr<bool>("reduce_all");
// get output
paddle::Tensor x_grad_t = this->GetSingleInputGrad("X");
// get output ptr
auto x_grad = this->GetOutputPtr(&x_grad_t);
// get output orginal name
std::string x_grad_name = this->GetOutputName(x_grad_t);
VLOG(6) << "Runing prod_grad composite func";
// call composite backward func
prim::prod_grad<prim::DescTensor>(
x, out, out_grad, axis, keep_dim, reduce_all, x_grad);
// recover output name
this->RecoverOutputName(x_grad_t, x_grad_name);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
class ReduceProdOpMaker : public ops::ReduceBaseOpMaker { class ReduceProdOpMaker : public ops::ReduceBaseOpMaker {
...@@ -46,5 +85,6 @@ REGISTER_OPERATOR( ...@@ -46,5 +85,6 @@ REGISTER_OPERATOR(
ReduceProdOpMaker, ReduceProdOpMaker,
paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>, paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>, paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>,
ops::ReduceProdCompositeGradOpMaker,
ReduceProdInferShapeFunctor); ReduceProdInferShapeFunctor);
REGISTER_OPERATOR(reduce_prod_grad, ops::ReduceGradOp); REGISTER_OPERATOR(reduce_prod_grad, ops::ReduceGradOp);
...@@ -1069,6 +1069,58 @@ void gather_nd_grad(const Tensor& x, ...@@ -1069,6 +1069,58 @@ void gather_nd_grad(const Tensor& x,
} }
} }
template <typename T>
void prod_grad(const Tensor& x,
const Tensor& out,
const Tensor& out_grad,
const IntArray& axis,
bool keep_dim,
bool reduce_all,
Tensor* x_grad) {
if (x_grad) {
std::vector<int64_t> x_dim = phi::vectorize<int64_t>(x.dims());
int64_t axis_size = axis.size();
int64_t x_dim_size = x_dim.size();
reduce_all = false;
if (reduce_all || axis_size == 0 || axis_size == x_dim_size) {
reduce_all = true;
} else {
reduce_all = false;
}
auto x_grad_tmp = Tensor();
auto out_tmp = Tensor();
if (x_dim_size == 1) {
x_grad_tmp = out_grad.expand(IntArray(x_dim));
out_tmp = out.expand(IntArray(x_dim));
} else {
if (!keep_dim) {
auto axis_ = std::vector<int64_t>();
if (reduce_all) {
for (int64_t i = 1; i < x_dim_size; i++) {
axis_.push_back(i);
}
} else {
axis_ = axis.GetData();
for (int64_t i = 0; i < axis_size; i++) {
if (axis[i] < 0) {
axis_[i] = axis[i] + x_dim_size;
}
}
}
auto out_grad_ = unsqueeze<T>(out_grad, axis_);
x_grad_tmp = out_grad_.expand(IntArray(x_dim));
auto out_ = unsqueeze<T>(out, axis_);
out_tmp = out_.expand(IntArray(x_dim));
} else {
x_grad_tmp = out_grad.expand(IntArray(x_dim));
out_tmp = out.expand(IntArray(x_dim));
}
}
auto x_grad_res = x_grad_tmp * out_tmp * (1 / x);
set_output<T>(x_grad_res, x_grad);
}
}
template <typename T> template <typename T>
void max_grad(const Tensor& x, void max_grad(const Tensor& x,
const Tensor& out, const Tensor& out,
......
...@@ -875,6 +875,7 @@ ...@@ -875,6 +875,7 @@
param : [x] param : [x]
kernel : kernel :
func : prod_grad func : prod_grad
composite: prod_grad(x, out, out_grad, dims, keep_dim, reduce_all, x_grad)
- backward_op : psroi_pool_grad - backward_op : psroi_pool_grad
forward : psroi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, int output_channels, float spatial_scale) -> Tensor(out) forward : psroi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, int output_channels, float spatial_scale) -> Tensor(out)
......
...@@ -407,6 +407,9 @@ class TestProdOp(OpTest): ...@@ -407,6 +407,9 @@ class TestProdOp(OpTest):
def setUp(self): def setUp(self):
self.op_type = "reduce_prod" self.op_type = "reduce_prod"
self.python_api = raw_reduce_prod self.python_api = raw_reduce_prod
self.public_python_api = raw_reduce_prod
self.prim_op_type = "prim"
self.init_data_type() self.init_data_type()
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.data_type)} self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.data_type)}
self.outputs = {'Out': self.inputs['X'].prod(axis=0)} self.outputs = {'Out': self.inputs['X'].prod(axis=0)}
...@@ -420,17 +423,27 @@ class TestProdOp(OpTest): ...@@ -420,17 +423,27 @@ class TestProdOp(OpTest):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
self.check_grad(['X'], 'Out') self.check_grad(['X'], 'Out', check_prim=True)
class TestProdOpFp64(TestProdOp):
def init_data_type(self):
self.data_type = "float64"
class TestProdOp_ZeroDim(OpTest): class TestProdOp_ZeroDim(OpTest):
def setUp(self): def setUp(self):
self.python_api = paddle.prod self.python_api = raw_reduce_prod
self.public_python_api = raw_reduce_prod
self.op_type = "reduce_prod" self.op_type = "reduce_prod"
self.prim_op_type = "prim"
self.inputs = {'X': np.random.random([]).astype("float64")} self.inputs = {'X': np.random.random([]).astype("float64")}
self.outputs = {'Out': self.inputs['X'].prod()} self.outputs = {'Out': self.inputs['X'].prod()}
self.attrs = {'dim': [], 'reduce_all': True} self.attrs = {'dim': [], 'reduce_all': True}
# 0-D tensor doesn't support in cinn
self.enable_cinn = False
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
...@@ -442,6 +455,8 @@ class TestProd6DOp(OpTest): ...@@ -442,6 +455,8 @@ class TestProd6DOp(OpTest):
def setUp(self): def setUp(self):
self.op_type = "reduce_prod" self.op_type = "reduce_prod"
self.python_api = raw_reduce_prod self.python_api = raw_reduce_prod
self.public_python_api = raw_reduce_prod
self.prim_op_type = "prim"
self.init_data_type() self.init_data_type()
self.inputs = { self.inputs = {
'X': np.random.random((5, 6, 2, 3, 4, 2)).astype(self.data_type) 'X': np.random.random((5, 6, 2, 3, 4, 2)).astype(self.data_type)
...@@ -460,13 +475,14 @@ class TestProd6DOp(OpTest): ...@@ -460,13 +475,14 @@ class TestProd6DOp(OpTest):
self.check_output() self.check_output()
def test_check_grad(self): def test_check_grad(self):
self.check_grad(['X'], 'Out') self.check_grad(['X'], 'Out', check_prim=True)
class TestProd8DOp(OpTest): class TestProd8DOp(OpTest):
def setUp(self): def setUp(self):
self.op_type = "reduce_prod" self.op_type = "reduce_prod"
self.python_api = raw_reduce_prod self.python_api = raw_reduce_prod
self.public_python_api = raw_reduce_prod
self.init_data_type() self.init_data_type()
self.inputs = { self.inputs = {
'X': np.random.random((2, 5, 3, 2, 2, 3, 4, 2)).astype( 'X': np.random.random((2, 5, 3, 2, 2, 3, 4, 2)).astype(
...@@ -1178,15 +1194,16 @@ class TestReduceWithDtype2(TestReduceWithDtype): ...@@ -1178,15 +1194,16 @@ class TestReduceWithDtype2(TestReduceWithDtype):
class TestReduceSumOpError(unittest.TestCase): class TestReduceSumOpError(unittest.TestCase):
def test_errors(self): def test_errors(self):
with program_guard(Program(), Program()): with paddle.fluid.framework._static_guard():
# The input type of reduce_sum_op must be Variable. with program_guard(Program(), Program()):
x1 = fluid.create_lod_tensor( # The input type of reduce_sum_op must be Variable.
np.array([[-1]]), [[1]], fluid.CPUPlace() x1 = fluid.create_lod_tensor(
) np.array([[-1]]), [[1]], fluid.CPUPlace()
self.assertRaises(TypeError, paddle.sum, x1) )
# The input dtype of reduce_sum_op must be float32 or float64 or int32 or int64. self.assertRaises(TypeError, paddle.sum, x1)
x2 = paddle.static.data(name='x2', shape=[-1, 4], dtype="uint8") # The input dtype of reduce_sum_op must be float32 or float64 or int32 or int64.
self.assertRaises(TypeError, paddle.sum, x2) x2 = paddle.static.data(name='x2', shape=[-1, 4], dtype="uint8")
self.assertRaises(TypeError, paddle.sum, x2)
class API_TestSumOp(unittest.TestCase): class API_TestSumOp(unittest.TestCase):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册